mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-14 20:58:30 -04:00
2493cdbcb6
this removes the dma_flush and dma_invalidate methods and uses a common bouncebuffer system for all CPU types. This enables microSD support on STM32F7
111 lines
3.6 KiB
C
111 lines
3.6 KiB
C
/*
|
|
* This file is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*
|
|
bouncebuffer code for DMA safe memory operations
|
|
*/
|
|
#include "stm32_util.h"
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include "bouncebuffer.h"
|
|
|
|
#if defined(STM32F7) && STM32_DMA_CACHE_HANDLING == TRUE
|
|
// on F7 we check we are in the DTCM region, and 16 bit aligned
|
|
#define IS_DMA_SAFE(addr) ((((uint32_t)(addr)) & 0xFFFE0001) == 0x20000000)
|
|
#else
|
|
// this checks an address is in main memory and 16 bit aligned
|
|
#define IS_DMA_SAFE(addr) ((((uint32_t)(addr)) & 0xF0000001) == 0x20000000)
|
|
#endif
|
|
|
|
/*
|
|
initialise a bouncebuffer
|
|
*/
|
|
void bouncebuffer_init(struct bouncebuffer_t **bouncebuffer)
|
|
{
|
|
(*bouncebuffer) = calloc(1, sizeof(struct bouncebuffer_t));
|
|
osalDbgAssert(((*bouncebuffer) != NULL), "bouncebuffer init");
|
|
}
|
|
|
|
/*
|
|
setup for reading from a device into memory, allocating a bouncebuffer if needed
|
|
*/
|
|
void bouncebuffer_setup_read(struct bouncebuffer_t *bouncebuffer, uint8_t **buf, uint32_t size)
|
|
{
|
|
if (!bouncebuffer || IS_DMA_SAFE(*buf)) {
|
|
// nothing needs to be done
|
|
return;
|
|
}
|
|
osalDbgAssert((bouncebuffer->busy == false), "bouncebuffer read");
|
|
bouncebuffer->orig_buf = *buf;
|
|
if (bouncebuffer->size < size) {
|
|
if (bouncebuffer->size > 0) {
|
|
free(bouncebuffer->dma_buf);
|
|
}
|
|
bouncebuffer->dma_buf = malloc_dma(size);
|
|
osalDbgAssert((bouncebuffer->dma_buf != NULL), "bouncebuffer read allocate");
|
|
bouncebuffer->size = size;
|
|
}
|
|
*buf = bouncebuffer->dma_buf;
|
|
bouncebuffer->busy = true;
|
|
}
|
|
|
|
/*
|
|
finish a read operation
|
|
*/
|
|
void bouncebuffer_finish_read(struct bouncebuffer_t *bouncebuffer, const uint8_t *buf, uint32_t size)
|
|
{
|
|
if (bouncebuffer && buf == bouncebuffer->dma_buf) {
|
|
osalDbgAssert((bouncebuffer->busy == true), "bouncebuffer finish_read");
|
|
memcpy(bouncebuffer->orig_buf, buf, size);
|
|
bouncebuffer->busy = false;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
setup for reading from memory to a device, allocating a bouncebuffer if needed
|
|
*/
|
|
void bouncebuffer_setup_write(struct bouncebuffer_t *bouncebuffer, const uint8_t **buf, uint32_t size)
|
|
{
|
|
if (!bouncebuffer || IS_DMA_SAFE(*buf)) {
|
|
// nothing needs to be done
|
|
return;
|
|
}
|
|
osalDbgAssert((bouncebuffer->busy == false), "bouncebuffer write");
|
|
if (bouncebuffer->size < size) {
|
|
if (bouncebuffer->size > 0) {
|
|
free(bouncebuffer->dma_buf);
|
|
}
|
|
bouncebuffer->dma_buf = malloc_dma(size);
|
|
osalDbgAssert((bouncebuffer->dma_buf != NULL), "bouncebuffer write allocate");
|
|
bouncebuffer->size = size;
|
|
}
|
|
memcpy(bouncebuffer->dma_buf, *buf, size);
|
|
*buf = bouncebuffer->dma_buf;
|
|
bouncebuffer->busy = true;
|
|
}
|
|
|
|
|
|
/*
|
|
finish a write operation
|
|
*/
|
|
void bouncebuffer_finish_write(struct bouncebuffer_t *bouncebuffer, const uint8_t *buf)
|
|
{
|
|
if (bouncebuffer && buf == bouncebuffer->dma_buf) {
|
|
osalDbgAssert((bouncebuffer->busy == true), "bouncebuffer finish_wite");
|
|
bouncebuffer->busy = false;
|
|
}
|
|
}
|