mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-04 15:08:28 -04:00
207 lines
4.8 KiB
C++
207 lines
4.8 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include <AP_HAL.h>
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
|
|
|
|
#include "AP_HAL_PX4.h"
|
|
#include "Scheduler.h"
|
|
|
|
#include <unistd.h>
|
|
#include <stdlib.h>
|
|
#include <sched.h>
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <drivers/drv_hrt.h>
|
|
#include <nuttx/arch.h>
|
|
#include <systemlib/systemlib.h>
|
|
#include <poll.h>
|
|
|
|
using namespace PX4;
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
uint64_t PX4Scheduler::_sketch_start_time;
|
|
|
|
AP_HAL::TimedProc PX4Scheduler::_failsafe = NULL;
|
|
volatile bool PX4Scheduler::_timer_suspended = false;
|
|
AP_HAL::TimedProc PX4Scheduler::_timer_proc[PX4_SCHEDULER_MAX_TIMER_PROCS] = {NULL};
|
|
uint8_t PX4Scheduler::_num_timer_procs = 0;
|
|
bool PX4Scheduler::_in_timer_proc = false;
|
|
uint8_t PX4Scheduler::_nested_atomic_ctr;
|
|
bool PX4Scheduler::_timer_pending;
|
|
|
|
PX4Scheduler::PX4Scheduler()
|
|
{}
|
|
|
|
void PX4Scheduler::init(void *unused)
|
|
{
|
|
_sketch_start_time = hrt_absolute_time();
|
|
|
|
// setup a 1kHz timer
|
|
memset(&_call, 0, sizeof(_call));
|
|
hrt_call_every(&_call, 1000, 1000, _timer_event, NULL);
|
|
}
|
|
|
|
uint32_t PX4Scheduler::_micros()
|
|
{
|
|
return (uint32_t)(hrt_absolute_time() - _sketch_start_time);
|
|
}
|
|
|
|
uint32_t PX4Scheduler::micros()
|
|
{
|
|
return _micros();
|
|
}
|
|
|
|
uint32_t PX4Scheduler::millis()
|
|
{
|
|
return hrt_absolute_time() / 1000;
|
|
}
|
|
|
|
void PX4Scheduler::delay_microseconds(uint16_t usec)
|
|
{
|
|
uint32_t start = micros();
|
|
while (micros() - start < usec) {
|
|
up_udelay(usec - (micros() - start));
|
|
}
|
|
}
|
|
|
|
void PX4Scheduler::delay(uint16_t ms)
|
|
{
|
|
uint64_t start = hrt_absolute_time();
|
|
|
|
while ((hrt_absolute_time() - start)/1000 < ms) {
|
|
// this yields the CPU to other apps
|
|
poll(NULL, 0, 1);
|
|
if (_min_delay_cb_ms <= ms) {
|
|
if (_delay_cb) {
|
|
_delay_cb();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void PX4Scheduler::register_delay_callback(AP_HAL::Proc proc,
|
|
uint16_t min_time_ms)
|
|
{
|
|
_delay_cb = proc;
|
|
_min_delay_cb_ms = min_time_ms;
|
|
}
|
|
|
|
void PX4Scheduler::register_timer_process(AP_HAL::TimedProc proc)
|
|
{
|
|
for (uint8_t i = 0; i < _num_timer_procs; i++) {
|
|
if (_timer_proc[i] == proc) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (_num_timer_procs < PX4_SCHEDULER_MAX_TIMER_PROCS) {
|
|
_timer_proc[_num_timer_procs] = proc;
|
|
_num_timer_procs++;
|
|
}
|
|
|
|
}
|
|
|
|
void PX4Scheduler::register_timer_failsafe(AP_HAL::TimedProc failsafe, uint32_t period_us)
|
|
{
|
|
hal.console->printf("Not registering failsafe handler\n");
|
|
// _failsafe = failsafe;
|
|
}
|
|
|
|
void PX4Scheduler::suspend_timer_procs() {
|
|
_timer_suspended = true;
|
|
}
|
|
|
|
void PX4Scheduler::resume_timer_procs() {
|
|
_timer_suspended = false;
|
|
}
|
|
|
|
void PX4Scheduler::begin_atomic() {
|
|
_nested_atomic_ctr++;
|
|
}
|
|
|
|
void PX4Scheduler::end_atomic() {
|
|
if (_nested_atomic_ctr == 0) {
|
|
hal.uartA->println_P(PSTR("ATOMIC NESTING ERROR"));
|
|
return;
|
|
}
|
|
_nested_atomic_ctr--;
|
|
if (_nested_atomic_ctr == 0 && _timer_pending) {
|
|
// a timer went off during an atomic operation - run it now
|
|
_timer_pending = false;
|
|
_timer_event(NULL);
|
|
}
|
|
}
|
|
|
|
void PX4Scheduler::reboot()
|
|
{
|
|
up_systemreset();
|
|
}
|
|
|
|
void PX4Scheduler::_timer_event(void *arg)
|
|
{
|
|
if (_nested_atomic_ctr != 0) {
|
|
_timer_pending = true;
|
|
return;
|
|
}
|
|
|
|
uint32_t tnow = _micros();
|
|
if (_in_timer_proc) {
|
|
// the timer calls took longer than the period of the
|
|
// timer. This is bad, and may indicate a serious
|
|
// driver failure. We can't just call the drivers
|
|
// again, as we could run out of stack. So we only
|
|
// call the _failsafe call. It's job is to detect if
|
|
// the drivers or the main loop are indeed dead and to
|
|
// activate whatever failsafe it thinks may help if
|
|
// need be. We assume the failsafe code can't
|
|
// block. If it does then we will recurse and die when
|
|
// we run out of stack
|
|
if (_failsafe != NULL) {
|
|
_failsafe(tnow);
|
|
}
|
|
return;
|
|
}
|
|
_in_timer_proc = true;
|
|
|
|
if (!_timer_suspended) {
|
|
// now call the timer based drivers
|
|
for (int i = 0; i < _num_timer_procs; i++) {
|
|
if (_timer_proc[i] != NULL) {
|
|
_timer_proc[i](tnow);
|
|
}
|
|
}
|
|
}
|
|
|
|
// and the failsafe, if one is setup
|
|
if (_failsafe != NULL) {
|
|
_failsafe(tnow);
|
|
}
|
|
|
|
_in_timer_proc = false;
|
|
}
|
|
|
|
void PX4Scheduler::panic(const prog_char_t *errormsg) {
|
|
write(1, errormsg, strlen(errormsg));
|
|
hal.scheduler->delay_microseconds(10000);
|
|
exit(1);
|
|
}
|
|
|
|
bool PX4Scheduler::in_timerprocess() {
|
|
return _in_timer_proc;
|
|
}
|
|
|
|
bool PX4Scheduler::system_initializing() {
|
|
return !_initialized;
|
|
}
|
|
|
|
void PX4Scheduler::system_initialized() {
|
|
if (_initialized) {
|
|
panic(PSTR("PANIC: scheduler::system_initialized called"
|
|
"more than once"));
|
|
}
|
|
_initialized = true;
|
|
}
|
|
|
|
#endif
|