ardupilot/APMrover2/radio.cpp

157 lines
4.5 KiB
C++

#include "Rover.h"
/*
allow for runtime change of control channel ordering
*/
void Rover::set_control_channels(void)
{
// check change on RCMAP
channel_steer = rc().channel(rcmap.roll()-1);
channel_throttle = rc().channel(rcmap.throttle()-1);
channel_lateral = rc().channel(rcmap.yaw()-1);
// set rc channel ranges
channel_steer->set_angle(SERVO_MAX);
channel_throttle->set_angle(100);
channel_lateral->set_angle(100);
// Allow to reconfigure ouput when not armed
if (!arming.is_armed()) {
g2.motors.setup_servo_output();
// For a rover safety is TRIM throttle
g2.motors.setup_safety_output();
}
// setup correct scaling for ESCs like the UAVCAN PX4ESC which
// take a proportion of speed. Default to 1000 to 2000 for systems without
// a k_throttle output
hal.rcout->set_esc_scaling(1000, 2000);
g2.servo_channels.set_esc_scaling_for(SRV_Channel::k_throttle);
}
void Rover::init_rc_in()
{
// set rc dead zones
channel_steer->set_default_dead_zone(30);
channel_throttle->set_default_dead_zone(30);
channel_lateral->set_default_dead_zone(30);
}
void Rover::init_rc_out()
{
// set auxiliary ranges
update_aux();
}
/*
check for driver input on rudder/steering stick for arming/disarming
*/
void Rover::rudder_arm_disarm_check()
{
// check if arming/disarm using rudder is allowed
AP_Arming::ArmingRudder arming_rudder = arming.get_rudder_arming_type();
if (arming_rudder == AP_Arming::ARMING_RUDDER_DISABLED) {
return;
}
// In Rover we need to check that its set to the throttle trim and within the DZ
// if throttle is not within trim dz, then pilot cannot rudder arm/disarm
if (!channel_throttle->in_trim_dz()) {
rudder_arm_timer = 0;
return;
}
// check if arming/disarming allowed from this mode
if (!control_mode->allows_arming_from_transmitter()) {
rudder_arm_timer = 0;
return;
}
if (!arming.is_armed()) {
// when not armed, full right rudder starts arming counter
if (channel_steer->get_control_in() > 4000) {
const uint32_t now = millis();
if (rudder_arm_timer == 0 ||
now - rudder_arm_timer < ARM_DELAY_MS) {
if (rudder_arm_timer == 0) {
rudder_arm_timer = now;
}
} else {
// time to arm!
arm_motors(AP_Arming::RUDDER);
rudder_arm_timer = 0;
}
} else {
// not at full right rudder
rudder_arm_timer = 0;
}
} else if ((arming_rudder == AP_Arming::ARMING_RUDDER_ARMDISARM) && !g2.motors.active()) {
// when armed and motor not active (not moving), full left rudder starts disarming counter
if (channel_steer->get_control_in() < -4000) {
const uint32_t now = millis();
if (rudder_arm_timer == 0 ||
now - rudder_arm_timer < ARM_DELAY_MS) {
if (rudder_arm_timer == 0) {
rudder_arm_timer = now;
}
} else {
// time to disarm!
disarm_motors();
rudder_arm_timer = 0;
}
} else {
// not at full left rudder
rudder_arm_timer = 0;
}
}
}
void Rover::read_radio()
{
if (!rc().read_input()) {
// check if we lost RC link
radio_failsafe_check(channel_throttle->get_radio_in());
return;
}
failsafe.last_valid_rc_ms = AP_HAL::millis();
// check that RC value are valid
radio_failsafe_check(channel_throttle->get_radio_in());
// check if we try to do RC arm/disarm
rudder_arm_disarm_check();
}
void Rover::radio_failsafe_check(uint16_t pwm)
{
if (!g.fs_throttle_enabled) {
// radio failsafe disabled
return;
}
bool failed = pwm < static_cast<uint16_t>(g.fs_throttle_value);
if (AP_HAL::millis() - failsafe.last_valid_rc_ms > 200) {
failed = true;
}
failsafe_trigger(FAILSAFE_EVENT_THROTTLE, failed);
}
bool Rover::trim_radio()
{
if (!rc().has_valid_input()) {
// can't trim without valid input
return false;
}
// Store control surface trim values
// ---------------------------------
if ((channel_steer->get_radio_in() > 1400) && (channel_steer->get_radio_in() < 1600)) {
channel_steer->set_and_save_radio_trim(channel_steer->get_radio_in());
} else {
return false;
}
return true;
}