mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-14 20:58:30 -04:00
9f50924980
git-svn-id: https://arducopter.googlecode.com/svn/trunk@1601 f9c3cf11-9bcb-44bc-f272-b75c42450872
838 lines
19 KiB
Plaintext
838 lines
19 KiB
Plaintext
// These are function definitions so the Menu can be constructed before the functions
|
|
// are defined below. Order matters to the compiler.
|
|
static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_radio(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_stabilize(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_fbw(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_gps(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_adc(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_imu(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_dcm(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_omega(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_battery(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_current(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_relay(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_wp(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_pressure(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_mag(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_xbee(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_eedump(uint8_t argc, const Menu::arg *argv);
|
|
|
|
// This is the help function
|
|
// PSTR is an AVR macro to read strings from flash memory
|
|
// printf_P is a version of printf that reads from flash memory
|
|
/*static int8_t help_test(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
Serial.printf_P(PSTR("\n"
|
|
"Commands:\n"
|
|
" radio\n"
|
|
" servos\n"
|
|
" gps\n"
|
|
" imu\n"
|
|
" battery\n"
|
|
"\n"));
|
|
}*/
|
|
|
|
// Creates a constant array of structs representing menu options
|
|
// and stores them in Flash memory, not RAM.
|
|
// User enters the string in the console to call the functions on the right.
|
|
// See class Menu in AP_Coommon for implementation details
|
|
const struct Menu::command test_menu_commands[] PROGMEM = {
|
|
{"pwm", test_radio_pwm},
|
|
{"radio", test_radio},
|
|
{"failsafe", test_failsafe},
|
|
{"stabilize", test_stabilize},
|
|
{"fbw", test_fbw},
|
|
{"gps", test_gps},
|
|
{"adc", test_adc},
|
|
{"imu", test_imu},
|
|
{"dcm", test_dcm},
|
|
{"omega", test_omega},
|
|
{"battery", test_battery},
|
|
{"current", test_current},
|
|
{"relay", test_relay},
|
|
{"waypoints", test_wp},
|
|
{"airpressure", test_pressure},
|
|
{"compass", test_mag},
|
|
{"xbee", test_xbee},
|
|
{"eedump", test_eedump},
|
|
};
|
|
|
|
// A Macro to create the Menu
|
|
MENU(test_menu, "test", test_menu_commands);
|
|
|
|
int8_t
|
|
test_mode(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
Serial.printf_P(PSTR("Test Mode\n\n"));
|
|
test_menu.run();
|
|
}
|
|
|
|
static int8_t
|
|
test_eedump(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
int i, j;
|
|
|
|
// hexdump the EEPROM
|
|
for (i = 0; i < EEPROM_MAX_ADDR; i += 16) {
|
|
Serial.printf_P(PSTR("%04x:"), i);
|
|
for (j = 0; j < 16; j++)
|
|
Serial.printf_P(PSTR(" %02x"), eeprom_read_byte((const uint8_t *)(i + j)));
|
|
Serial.println();
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
static int8_t
|
|
test_radio_pwm(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
while(1){
|
|
delay(20);
|
|
|
|
// Filters radio input - adjust filters in the radio.pde file
|
|
// ----------------------------------------------------------
|
|
read_radio();
|
|
|
|
Serial.printf_P(PSTR("IN: 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"), rc_1.radio_in, rc_2.radio_in, rc_3.radio_in, rc_4.radio_in, rc_5.radio_in, rc_6.radio_in, rc_7.radio_in, rc_8.radio_in);
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
test_radio(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
// read the radio to set trims
|
|
// ---------------------------
|
|
trim_radio();
|
|
|
|
while(1){
|
|
delay(20);
|
|
read_radio();
|
|
output_manual_throttle();
|
|
|
|
rc_1.calc_pwm();
|
|
rc_2.calc_pwm();
|
|
rc_3.calc_pwm();
|
|
rc_4.calc_pwm();
|
|
|
|
Serial.printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\n"), (rc_1.control_in), (rc_2.control_in), (rc_3.control_in), (rc_4.control_in), rc_5.control_in, rc_6.control_in, rc_7.control_in);
|
|
//Serial.printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d\n"), (rc_1.servo_out / 100), (rc_2.servo_out / 100), rc_3.servo_out, (rc_4.servo_out / 100));
|
|
|
|
/*Serial.printf_P(PSTR( "min: %d"
|
|
"\t in: %d"
|
|
"\t pwm_in: %d"
|
|
"\t sout: %d"
|
|
"\t pwm_out %d\n"),
|
|
rc_3.radio_min,
|
|
rc_3.control_in,
|
|
rc_3.radio_in,
|
|
rc_3.servo_out,
|
|
rc_3.pwm_out
|
|
);
|
|
*/
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int8_t
|
|
test_failsafe(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
byte fail_test;
|
|
print_hit_enter();
|
|
for(int i = 0; i < 50; i++){
|
|
delay(20);
|
|
read_radio();
|
|
}
|
|
|
|
// read the radio to set trims
|
|
// ---------------------------
|
|
trim_radio();
|
|
|
|
oldSwitchPosition = readSwitch();
|
|
|
|
Serial.printf_P(PSTR("Unplug battery, throttle in neutral, turn off radio.\n"));
|
|
while(rc_3.control_in > 0){
|
|
delay(20);
|
|
read_radio();
|
|
}
|
|
|
|
while(1){
|
|
delay(20);
|
|
read_radio();
|
|
|
|
if(rc_3.control_in > 0){
|
|
Serial.printf_P(PSTR("THROTTLE CHANGED %d \n"), rc_3.control_in);
|
|
fail_test++;
|
|
}
|
|
|
|
if(oldSwitchPosition != readSwitch()){
|
|
Serial.printf_P(PSTR("CONTROL MODE CHANGED: "));
|
|
Serial.println(flight_mode_strings[readSwitch()]);
|
|
fail_test++;
|
|
}
|
|
|
|
if(throttle_failsafe_enabled && rc_3.get_failsafe()){
|
|
Serial.printf_P(PSTR("THROTTLE FAILSAFE ACTIVATED: %d, "), rc_3.radio_in);
|
|
Serial.println(flight_mode_strings[readSwitch()]);
|
|
fail_test++;
|
|
}
|
|
|
|
if(fail_test > 0){
|
|
return (0);
|
|
}
|
|
if(Serial.available() > 0){
|
|
Serial.printf_P(PSTR("LOS caused no change in ACM.\n"));
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
test_stabilize(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
static byte ts_num;
|
|
|
|
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
// setup the radio
|
|
// ---------------
|
|
init_rc_in();
|
|
|
|
control_mode = STABILIZE;
|
|
Serial.printf_P(PSTR("pid_stabilize_roll.kP: %4.4f\n"), pid_stabilize_roll.kP());
|
|
Serial.printf_P(PSTR("max_stabilize_dampener:%d\n\n "), max_stabilize_dampener);
|
|
|
|
trim_radio();
|
|
|
|
motor_auto_safe = false;
|
|
motor_armed = true;
|
|
|
|
while(1){
|
|
// 50 hz
|
|
if (millis() - fast_loopTimer > 19) {
|
|
delta_ms_fast_loop = millis() - fast_loopTimer;
|
|
fast_loopTimer = millis();
|
|
G_Dt = (float)delta_ms_fast_loop / 1000.f;
|
|
|
|
if(compass_enabled){
|
|
medium_loopCounter++;
|
|
if(medium_loopCounter == 5){
|
|
compass.read(); // Read magnetometer
|
|
compass.calculate(roll, pitch); // Calculate heading
|
|
medium_loopCounter = 0;
|
|
}
|
|
}
|
|
// for trim features
|
|
read_trim_switch();
|
|
|
|
// Filters radio input - adjust filters in the radio.pde file
|
|
// ----------------------------------------------------------
|
|
read_radio();
|
|
|
|
// IMU
|
|
// ---
|
|
read_AHRS();
|
|
|
|
// allow us to zero out sensors with control switches
|
|
if(rc_5.control_in < 600){
|
|
dcm.roll_sensor = dcm.pitch_sensor = 0;
|
|
}
|
|
|
|
// custom code/exceptions for flight modes
|
|
// ---------------------------------------
|
|
update_current_flight_mode();
|
|
|
|
// write out the servo PWM values
|
|
// ------------------------------
|
|
set_servos_4();
|
|
|
|
ts_num++;
|
|
if (ts_num > 10){
|
|
ts_num = 0;
|
|
Serial.printf_P(PSTR("r: %d, p:%d, rc1:%d, "),
|
|
(int)(dcm.roll_sensor/100),
|
|
(int)(dcm.pitch_sensor/100),
|
|
rc_1.pwm_out);
|
|
|
|
print_motor_out();
|
|
}
|
|
// R: 1417, L: 1453 F: 1453 B: 1417
|
|
|
|
//Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100));
|
|
//Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100));
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
test_fbw(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
static byte ts_num;
|
|
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
// setup the radio
|
|
// ---------------
|
|
init_rc_in();
|
|
|
|
control_mode = FBW;
|
|
//Serial.printf_P(PSTR("pid_stabilize_roll.kP: %4.4f\n"), pid_stabilize_roll.kP());
|
|
//Serial.printf_P(PSTR("max_stabilize_dampener:%d\n\n "), max_stabilize_dampener);
|
|
|
|
motor_armed = true;
|
|
trim_radio();
|
|
|
|
nav_yaw = 8000;
|
|
scaleLongDown = 1;
|
|
|
|
while(1){
|
|
// 50 hz
|
|
if (millis() - fast_loopTimer > 19) {
|
|
delta_ms_fast_loop = millis() - fast_loopTimer;
|
|
fast_loopTimer = millis();
|
|
G_Dt = (float)delta_ms_fast_loop / 1000.f;
|
|
|
|
|
|
if(compass_enabled){
|
|
medium_loopCounter++;
|
|
if(medium_loopCounter == 5){
|
|
compass.read(); // Read magnetometer
|
|
compass.calculate(roll, pitch); // Calculate heading
|
|
medium_loopCounter = 0;
|
|
}
|
|
}
|
|
// for trim features
|
|
read_trim_switch();
|
|
|
|
// Filters radio input - adjust filters in the radio.pde file
|
|
// ----------------------------------------------------------
|
|
read_radio();
|
|
|
|
// IMU
|
|
// ---
|
|
read_AHRS();
|
|
|
|
// allow us to zero out sensors with control switches
|
|
if(rc_5.control_in < 600){
|
|
dcm.roll_sensor = dcm.pitch_sensor = 0;
|
|
}
|
|
|
|
// custom code/exceptions for flight modes
|
|
// ---------------------------------------
|
|
update_current_flight_mode();
|
|
|
|
// write out the servo PWM values
|
|
// ------------------------------
|
|
set_servos_4();
|
|
|
|
ts_num++;
|
|
if (ts_num == 5){
|
|
// 10 hz
|
|
ts_num = 0;
|
|
GPS.longitude = 0;
|
|
GPS.latitude = 0;
|
|
calc_nav();
|
|
|
|
Serial.printf_P(PSTR("ys:%ld, WP.lat:%ld, WP.lng:%ld, n_lat:%ld, n_lon:%ld, nroll:%ld, npitch:%ld, pmax:%ld, \t- "),
|
|
dcm.yaw_sensor,
|
|
next_WP.lat,
|
|
next_WP.lng,
|
|
nav_lat,
|
|
nav_lon,
|
|
nav_roll,
|
|
nav_pitch,
|
|
pitch_max);
|
|
|
|
print_motor_out();
|
|
}
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
test_adc(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
adc.Init();
|
|
delay(1000);
|
|
Serial.printf_P(PSTR("ADC\n"));
|
|
delay(1000);
|
|
|
|
while(1){
|
|
for(int i = 0; i < 9; i++){
|
|
Serial.printf_P(PSTR("i:%d\t"),adc.Ch(i));
|
|
}
|
|
Serial.println();
|
|
delay(20);
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
static int8_t
|
|
test_imu(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
//Serial.printf_P(PSTR("Calibrating."));
|
|
|
|
imu.init_gyro();
|
|
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
while(1){
|
|
delay(20);
|
|
if (millis() - fast_loopTimer > 19) {
|
|
delta_ms_fast_loop = millis() - fast_loopTimer;
|
|
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator
|
|
fast_loopTimer = millis();
|
|
|
|
|
|
// IMU
|
|
// ---
|
|
read_AHRS();
|
|
|
|
Vector3f accels = imu.get_accel();
|
|
Vector3f gyros = imu.get_gyro();
|
|
|
|
if(compass_enabled){
|
|
medium_loopCounter++;
|
|
if(medium_loopCounter == 5){
|
|
compass.read(); // Read magnetometer
|
|
compass.calculate(roll, pitch); // Calculate heading
|
|
medium_loopCounter = 0;
|
|
}
|
|
}
|
|
|
|
// We are using the IMU
|
|
// ---------------------
|
|
Serial.printf_P(PSTR("A: %4.4f, %4.4f, %4.4f\t"
|
|
"G: %4.4f, %4.4f, %4.4f\t"),
|
|
accels.x, accels.y, accels.z,
|
|
gyros.x, gyros.y, gyros.z);
|
|
|
|
Serial.printf_P(PSTR("r: %ld\tp: %ld\t y: %ld\n"),
|
|
dcm.roll_sensor,
|
|
dcm.pitch_sensor,
|
|
dcm.yaw_sensor);
|
|
}
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
test_gps(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
while(1){
|
|
delay(100);
|
|
update_GPS();
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
|
|
if(home.lng != 0){
|
|
break;
|
|
}
|
|
}
|
|
|
|
while(1){
|
|
delay(100);
|
|
calc_distance_error();
|
|
// Blink GPS LED if we don't have a fix
|
|
// ------------------------------------
|
|
//update_GPS_light();
|
|
|
|
GPS.update();
|
|
|
|
if (GPS.new_data){
|
|
Serial.print("Lat:");
|
|
Serial.print((float)GPS.latitude/10000000, 10);
|
|
Serial.print(" Lon:");
|
|
Serial.print((float)GPS.longitude/10000000, 10);
|
|
Serial.printf_P(PSTR(" alt %dm, spd: %d dist:%d, #sats: %d\n"), (int)GPS.altitude/100, (int)GPS.ground_speed, (int)wp_distance, (int)GPS.num_sats);
|
|
}else{
|
|
//Serial.print(".");
|
|
}
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
test_dcm(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
Serial.printf_P(PSTR("Gyro | Accel\n"));
|
|
Vector3f _cam_vector;
|
|
Vector3f _out_vector;
|
|
|
|
G_Dt = .02;
|
|
|
|
while(1){
|
|
for(byte i = 0; i <= 50; i++){
|
|
delay(20);
|
|
// IMU
|
|
// ---
|
|
read_AHRS();
|
|
}
|
|
|
|
Matrix3f temp = dcm.get_dcm_matrix();
|
|
Matrix3f temp_t = dcm.get_dcm_transposed();
|
|
|
|
Serial.printf_P(PSTR("dcm\n"
|
|
"%4.4f \t %4.4f \t %4.4f \n"
|
|
"%4.4f \t %4.4f \t %4.4f \n"
|
|
"%4.4f \t %4.4f \t %4.4f \n\n"),
|
|
temp.a.x, temp.a.y, temp.a.z,
|
|
temp.b.x, temp.b.y, temp.b.z,
|
|
temp.c.x, temp.c.y, temp.c.z);
|
|
|
|
int _pitch = degrees(-asin(temp.c.x));
|
|
int _roll = degrees(atan2(temp.c.y, temp.c.z));
|
|
int _yaw = degrees(atan2(temp.b.x, temp.a.x));
|
|
Serial.printf_P(PSTR( "angles\n"
|
|
"%d \t %d \t %d\n\n"),
|
|
_pitch,
|
|
_roll,
|
|
_yaw);
|
|
|
|
//_out_vector = _cam_vector * temp;
|
|
//Serial.printf_P(PSTR( "cam\n"
|
|
// "%d \t %d \t %d\n\n"),
|
|
// (int)temp.a.x * 100, (int)temp.a.y * 100, (int)temp.a.x * 100);
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
static int8_t
|
|
test_dcm(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
Serial.printf_P(PSTR("Gyro | Accel\n"));
|
|
delay(1000);
|
|
|
|
while(1){
|
|
Vector3f accels = dcm.get_accel();
|
|
Serial.print("accels.z:");
|
|
Serial.print(accels.z);
|
|
Serial.print("omega.z:");
|
|
Serial.print(omega.z);
|
|
delay(100);
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
*/
|
|
static int8_t
|
|
test_omega(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
static byte ts_num;
|
|
float old_yaw;
|
|
|
|
print_hit_enter();
|
|
delay(1000);
|
|
Serial.printf_P(PSTR("Omega"));
|
|
delay(1000);
|
|
|
|
G_Dt = .02;
|
|
|
|
while(1){
|
|
delay(20);
|
|
// IMU
|
|
// ---
|
|
read_AHRS();
|
|
float my_oz = (dcm.yaw - old_yaw) * 50;
|
|
|
|
old_yaw = dcm.yaw;
|
|
|
|
ts_num++;
|
|
if (ts_num > 2){
|
|
ts_num = 0;
|
|
//Serial.printf_P(PSTR("R: %4.4f\tP: %4.4f\tY: %4.4f\tY: %4.4f\n"), omega.x, omega.y, omega.z, my_oz);
|
|
Serial.printf_P(PSTR(" Yaw: %ld\tY: %4.4f\tY: %4.4f\n"), dcm.yaw_sensor, omega.z, my_oz);
|
|
}
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int8_t
|
|
test_battery(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
#if BATTERY_EVENT == 1
|
|
for (int i = 0; i < 20; i++){
|
|
delay(20);
|
|
read_battery();
|
|
}
|
|
Serial.printf_P(PSTR("Volts: 1:"));
|
|
Serial.print(battery_voltage1, 4);
|
|
Serial.print(" 2:");
|
|
Serial.print(battery_voltage2, 4);
|
|
Serial.print(" 3:");
|
|
Serial.print(battery_voltage3, 4);
|
|
Serial.print(" 4:");
|
|
Serial.println(battery_voltage4, 4);
|
|
#else
|
|
Serial.printf_P(PSTR("Not enabled\n"));
|
|
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
static int8_t
|
|
test_current(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delta_ms_medium_loop = 100;
|
|
|
|
while(1){
|
|
delay(100);
|
|
read_radio();
|
|
read_current();
|
|
Serial.printf_P(PSTR("V: %4.4f, A: %4.4f, mAh: %4.4f\n"), current_voltage, current_amps, current_total);
|
|
|
|
//if(rc_3.control_in > 0){
|
|
APM_RC.OutputCh(CH_1, rc_3.radio_in);
|
|
APM_RC.OutputCh(CH_2, rc_3.radio_in);
|
|
APM_RC.OutputCh(CH_3, rc_3.radio_in);
|
|
APM_RC.OutputCh(CH_4, rc_3.radio_in);
|
|
//}
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static int8_t
|
|
test_relay(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
while(1){
|
|
Serial.println("Relay A");
|
|
relay_A();
|
|
delay(3000);
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
|
|
Serial.println("Relay B");
|
|
relay_B();
|
|
delay(3000);
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
test_wp(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
delay(1000);
|
|
read_EEPROM_waypoint_info();
|
|
|
|
|
|
// save the alitude above home option
|
|
if(alt_to_hold == -1){
|
|
Serial.printf_P(PSTR("Hold current altitude\n"));
|
|
}else{
|
|
Serial.printf_P(PSTR("Hold altitude of %dm\n"), alt_to_hold/100);
|
|
}
|
|
|
|
Serial.printf_P(PSTR("%d waypoints\n"), wp_total);
|
|
Serial.printf_P(PSTR("Hit radius: %d\n"), wp_radius);
|
|
Serial.printf_P(PSTR("Loiter radius: %d\n\n"), loiter_radius);
|
|
|
|
for(byte i = 0; i <= wp_total; i++){
|
|
struct Location temp = get_wp_with_index(i);
|
|
print_waypoint(&temp, i);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
static int8_t
|
|
test_xbee(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
Serial.printf_P(PSTR("Begin XBee X-CTU Range and RSSI Test:\n"));
|
|
while(1){
|
|
delay(250);
|
|
// Timeout set high enough for X-CTU RSSI Calc over XBee @ 115200
|
|
Serial3.printf_P(PSTR("0123456789:;<=>?@ABCDEFGHIJKLMNO\n"));
|
|
//Serial.print("X");
|
|
// Default 32bit data from X-CTU Range Test
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
test_pressure(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
uint32_t sum;
|
|
|
|
Serial.printf_P(PSTR("Uncalibrated Abs Airpressure\n"));
|
|
Serial.printf_P(PSTR("Altitude is relative to the start of this test\n"));
|
|
print_hit_enter();
|
|
|
|
Serial.printf_P(PSTR("\nCalibrating....\n"));
|
|
/*
|
|
for (int i = 1; i < 301; i++) {
|
|
read_barometer();
|
|
if(i > 200)
|
|
sum += abs_pressure;
|
|
delay(10);
|
|
}
|
|
abs_pressure_ground = (float)sum / 100.0;
|
|
*/
|
|
|
|
home.alt = 0;
|
|
wp_distance = 0;
|
|
init_pressure_ground();
|
|
|
|
while(1){
|
|
if (millis()-fast_loopTimer > 9) {
|
|
delta_ms_fast_loop = millis() - fast_loopTimer;
|
|
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator
|
|
fast_loopTimer = millis();
|
|
|
|
|
|
calc_altitude_error();
|
|
calc_nav_throttle();
|
|
}
|
|
|
|
if (millis()-medium_loopTimer > 100) {
|
|
medium_loopTimer = millis();
|
|
|
|
read_radio(); // read the radio first
|
|
next_WP.alt = home.alt + rc_6.control_in; // 0 - 2000 (20 meters)
|
|
read_trim_switch();
|
|
read_barometer();
|
|
|
|
Serial.printf_P(PSTR("AP: %ld,\tAlt: %ld, \tnext_alt: %ld \terror: %ld, \tcruise: %d, \t out:%d\n"),
|
|
abs_pressure,
|
|
current_loc.alt,
|
|
next_WP.alt,
|
|
altitude_error,
|
|
throttle_cruise,
|
|
rc_3.servo_out);
|
|
|
|
/*
|
|
Serial.print("Altitude: ");
|
|
Serial.print((int)current_loc.alt,DEC);
|
|
Serial.print("\tnext_alt: ");
|
|
Serial.print((int)next_WP.alt,DEC);
|
|
Serial.print("\talt_err: ");
|
|
Serial.print((int)altitude_error,DEC);
|
|
Serial.print("\ttNom: ");
|
|
Serial.print(throttle_cruise,DEC);
|
|
Serial.print("\ttOut: ");
|
|
Serial.println(rc_3.servo_out,DEC);
|
|
*/
|
|
//Serial.print(" Raw pressure value: ");
|
|
//Serial.println(abs_pressure);
|
|
}
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
test_mag(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
if(compass_enabled == false){
|
|
Serial.printf_P(PSTR("Compass disabled\n"));
|
|
return (0);
|
|
}else{
|
|
print_hit_enter();
|
|
while(1){
|
|
delay(250);
|
|
compass.read();
|
|
compass.calculate(0,0);
|
|
Serial.printf_P(PSTR("Heading: ("));
|
|
Serial.print(ToDeg(compass.heading));
|
|
Serial.printf_P(PSTR(") XYZ: ("));
|
|
Serial.print(compass.mag_x);
|
|
Serial.print(comma);
|
|
Serial.print(compass.mag_y);
|
|
Serial.print(comma);
|
|
Serial.print(compass.mag_z);
|
|
Serial.println(")");
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void print_hit_enter()
|
|
{
|
|
Serial.printf_P(PSTR("Hit Enter to exit.\n\n"));
|
|
}
|
|
|
|
|
|
|
|
void print_motor_out(){
|
|
Serial.printf("out: R: %d, L: %d F: %d B: %d\n",
|
|
(motor_out[RIGHT] - rc_3.radio_min),
|
|
(motor_out[LEFT] - rc_3.radio_min),
|
|
(motor_out[FRONT] - rc_3.radio_min),
|
|
(motor_out[BACK] - rc_3.radio_min));
|
|
} |