ardupilot/libraries/AP_Compass/Compass.cpp

169 lines
4.7 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "Compass.h"
// Default constructor.
// Note that the Vector/Matrix constructors already implicitly zero
// their values.
//
Compass::Compass(AP_Var::Key key) :
_group(key, PSTR("COMPASS_")),
_orientation_matrix (&_group, 0),
_offset (&_group, 1),
_declination (&_group, 2, 0.0, PSTR("DEC")),
_null_init_done(false),
product_id(AP_COMPASS_TYPE_UNKNOWN)
{
// Default the orientation matrix to none - will be overridden at group load time
// if an orientation has previously been saved.
_orientation_matrix.set(ROTATION_NONE);
}
//_group
// Default init method, just returns success.
//
bool
Compass::init()
{
return true;
}
void
Compass::set_orientation(const Matrix3f &rotation_matrix)
{
_orientation_matrix.set_and_save(rotation_matrix);
}
void
Compass::set_offsets(const Vector3f &offsets)
{
_offset.set(offsets);
}
void
Compass::save_offsets()
{
_offset.save();
}
Vector3f &
Compass::get_offsets()
{
return _offset.get();
}
void
Compass::set_declination(float radians)
{
_declination.set_and_save(radians);
}
float
Compass::get_declination()
{
return _declination.get();
}
void
Compass::calculate(float roll, float pitch)
{
// Note - This function implementation is deprecated
// The alternate implementation of this function using the dcm matrix is preferred
float headX;
float headY;
float cos_roll;
float sin_roll;
float cos_pitch;
float sin_pitch;
cos_roll = cos(roll);
sin_roll = sin(roll);
cos_pitch = cos(pitch);
sin_pitch = sin(pitch);
// Tilt compensated magnetic field X component:
headX = mag_x*cos_pitch + mag_y*sin_roll*sin_pitch + mag_z*cos_roll*sin_pitch;
// Tilt compensated magnetic field Y component:
headY = mag_y*cos_roll - mag_z*sin_roll;
// magnetic heading
heading = atan2(-headY,headX);
// Declination correction (if supplied)
if( fabs(_declination) > 0.0 )
{
heading = heading + _declination;
if (heading > M_PI) // Angle normalization (-180 deg, 180 deg)
heading -= (2.0 * M_PI);
else if (heading < -M_PI)
heading += (2.0 * M_PI);
}
// Optimization for external DCM use. Calculate normalized components
heading_x = cos(heading);
heading_y = sin(heading);
}
void
Compass::calculate(const Matrix3f &dcm_matrix)
{
float headX;
float headY;
float cos_pitch = sqrt(1-(dcm_matrix.c.x*dcm_matrix.c.x));
// sin(pitch) = - dcm_matrix(3,1)
// cos(pitch)*sin(roll) = - dcm_matrix(3,2)
// cos(pitch)*cos(roll) = - dcm_matrix(3,3)
// Tilt compensated magnetic field X component:
headX = mag_x*cos_pitch - mag_y*dcm_matrix.c.y*dcm_matrix.c.x/cos_pitch - mag_z*dcm_matrix.c.z*dcm_matrix.c.x/cos_pitch;
// Tilt compensated magnetic field Y component:
headY = mag_y*dcm_matrix.c.z/cos_pitch - mag_z*dcm_matrix.c.y/cos_pitch;
// magnetic heading
// 6/4/11 - added constrain to keep bad values from ruining DCM Yaw - Jason S.
heading = constrain(atan2(-headY,headX), -3.15, 3.15);
// Declination correction (if supplied)
if( fabs(_declination) > 0.0 )
{
heading = heading + _declination;
if (heading > M_PI) // Angle normalization (-180 deg, 180 deg)
heading -= (2.0 * M_PI);
else if (heading < -M_PI)
heading += (2.0 * M_PI);
}
// Optimization for external DCM use. Calculate normalized components
heading_x = cos(heading);
heading_y = sin(heading);
}
void
Compass::null_offsets(const Matrix3f &dcm_matrix)
{
// Update our estimate of the offsets in the magnetometer
Vector3f calc(0.0, 0.0, 0.0); // XXX should be safe to remove explicit init here as the default ctor should do the right thing
Matrix3f dcm_new_from_last;
float weight;
Vector3f mag_body_new = Vector3f(mag_x,mag_y,mag_z);
if(_null_init_done) {
dcm_new_from_last = dcm_matrix.transposed() * _last_dcm_matrix; // Note 11/20/2010: transpose() is not working, transposed() is.
weight = 3.0 - fabs(dcm_new_from_last.a.x) - fabs(dcm_new_from_last.b.y) - fabs(dcm_new_from_last.c.z);
if (weight > .001) {
calc = mag_body_new + _mag_body_last; // Eq 11 from Bill P's paper
calc -= dcm_new_from_last * _mag_body_last;
calc -= dcm_new_from_last.transposed() * mag_body_new;
if(weight > 0.5) weight = 0.5;
calc = calc * (weight);
_offset.set(_offset.get() - calc);
}
} else {
_null_init_done = true;
}
_mag_body_last = mag_body_new - calc;
_last_dcm_matrix = dcm_matrix;
}