mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-10 18:08:30 -04:00
498 lines
20 KiB
C++
498 lines
20 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#if HAL_MAX_CAN_PROTOCOL_DRIVERS
|
|
|
|
#include <AP_HAL/utility/sparse-endian.h>
|
|
#include <AP_BoardConfig/AP_BoardConfig.h>
|
|
#include <AP_CANManager/AP_CANManager.h>
|
|
#include <AP_Common/AP_Common.h>
|
|
#include <AP_Scheduler/AP_Scheduler.h>
|
|
#include <SRV_Channel/SRV_Channel.h>
|
|
#include <GCS_MAVLink/GCS.h>
|
|
#include "AP_ToshibaCAN.h"
|
|
#include <AP_Logger/AP_Logger.h>
|
|
#include <stdio.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
#if HAL_CANMANAGER_ENABLED
|
|
#define debug_can(level_debug, fmt, args...) do { AP::can().log_text(level_debug, "ToshibaCAN", fmt, ##args); } while (0)
|
|
#else
|
|
#define debug_can(level_debug, fmt, args...)
|
|
#endif
|
|
|
|
// stupid compiler is not able to optimise this under gnu++11
|
|
// move this back when moving to gnu++17
|
|
const uint16_t AP_ToshibaCAN::TOSHIBACAN_SEND_TIMEOUT_US = 500;
|
|
|
|
AP_ToshibaCAN::AP_ToshibaCAN()
|
|
{
|
|
debug_can(AP_CANManager::LOG_INFO, "ToshibaCAN: constructed\n\r");
|
|
(void)COMMAND_STOP;
|
|
(void)MOTOR_DATA5;
|
|
}
|
|
|
|
AP_ToshibaCAN *AP_ToshibaCAN::get_tcan(uint8_t driver_index)
|
|
{
|
|
if (driver_index >= AP::can().get_num_drivers() ||
|
|
AP::can().get_driver_type(driver_index) != AP_CANManager::Driver_Type_ToshibaCAN) {
|
|
return nullptr;
|
|
}
|
|
return static_cast<AP_ToshibaCAN*>(AP::can().get_driver(driver_index));
|
|
}
|
|
|
|
|
|
bool AP_ToshibaCAN::add_interface(AP_HAL::CANIface* can_iface) {
|
|
if (_can_iface != nullptr) {
|
|
debug_can(AP_CANManager::LOG_ERROR, "ToshibaCAN: Multiple Interface not supported\n\r");
|
|
return false;
|
|
}
|
|
|
|
_can_iface = can_iface;
|
|
|
|
if (_can_iface == nullptr) {
|
|
debug_can(AP_CANManager::LOG_ERROR, "ToshibaCAN: CAN driver not found\n\r");
|
|
return false;
|
|
}
|
|
|
|
if (!_can_iface->is_initialized()) {
|
|
debug_can(AP_CANManager::LOG_ERROR, "ToshibaCAN: Driver not initialized\n\r");
|
|
return false;
|
|
}
|
|
|
|
if (!_can_iface->set_event_handle(&_event_handle)) {
|
|
debug_can(AP_CANManager::LOG_ERROR, "ToshibaCAN: Cannot add event handle\n\r");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
// initialise ToshibaCAN bus
|
|
void AP_ToshibaCAN::init(uint8_t driver_index, bool enable_filters)
|
|
{
|
|
_driver_index = driver_index;
|
|
|
|
debug_can(AP_CANManager::LOG_DEBUG, "ToshibaCAN: starting init\n\r");
|
|
|
|
if (_initialized) {
|
|
debug_can(AP_CANManager::LOG_ERROR, "ToshibaCAN: already initialized\n\r");
|
|
return;
|
|
}
|
|
|
|
if (_can_iface == nullptr) {
|
|
debug_can(AP_CANManager::LOG_ERROR, "ToshibaCAN: Interface not found\n\r");
|
|
return;
|
|
}
|
|
|
|
// start calls to loop in separate thread
|
|
if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_ToshibaCAN::loop, void), _thread_name, 4096, AP_HAL::Scheduler::PRIORITY_MAIN, 1)) {
|
|
debug_can(AP_CANManager::LOG_ERROR, "ToshibaCAN: couldn't create thread\n\r");
|
|
return;
|
|
}
|
|
|
|
_initialized = true;
|
|
|
|
debug_can(AP_CANManager::LOG_DEBUG, "ToshibaCAN: init done\n\r");
|
|
|
|
return;
|
|
}
|
|
|
|
// loop to send output to ESCs in background thread
|
|
void AP_ToshibaCAN::loop()
|
|
{
|
|
uint64_t timeout = 0;
|
|
const uint32_t timeout_us = MIN(AP::scheduler().get_loop_period_us(), TOSHIBACAN_SEND_TIMEOUT_US);
|
|
|
|
while (true) {
|
|
if (!_initialized) {
|
|
// if not initialised wait 2ms
|
|
debug_can(AP_CANManager::LOG_DEBUG, "ToshibaCAN: not initialized\n\r");
|
|
hal.scheduler->delay_microseconds(2000);
|
|
continue;
|
|
}
|
|
|
|
// check for updates
|
|
if (update_count == update_count_sent) {
|
|
hal.scheduler->delay_microseconds(50);
|
|
continue;
|
|
}
|
|
|
|
// prepare commands and frames
|
|
if (send_stage == 0) {
|
|
motor_lock_cmd_t unlock_cmd = {};
|
|
motor_rotation_cmd_t mot_rot_cmd1;
|
|
motor_rotation_cmd_t mot_rot_cmd2;
|
|
motor_rotation_cmd_t mot_rot_cmd3;
|
|
{
|
|
// take semaphore to read scaled motor outputs
|
|
WITH_SEMAPHORE(_rc_out_sem);
|
|
|
|
// prepare command to lock or unlock motors
|
|
unlock_cmd.motor1 = (_scaled_output[0] == 0) ? 2 : 1;
|
|
unlock_cmd.motor2 = (_scaled_output[1] == 0) ? 2 : 1;
|
|
unlock_cmd.motor3 = (_scaled_output[2] == 0) ? 2 : 1;
|
|
unlock_cmd.motor4 = (_scaled_output[3] == 0) ? 2 : 1;
|
|
unlock_cmd.motor5 = (_scaled_output[4] == 0) ? 2 : 1;
|
|
unlock_cmd.motor6 = (_scaled_output[5] == 0) ? 2 : 1;
|
|
unlock_cmd.motor7 = (_scaled_output[6] == 0) ? 2 : 1;
|
|
unlock_cmd.motor8 = (_scaled_output[7] == 0) ? 2 : 1;
|
|
unlock_cmd.motor9 = (_scaled_output[8] == 0) ? 2 : 1;
|
|
unlock_cmd.motor10 = (_scaled_output[9] == 0) ? 2 : 1;
|
|
unlock_cmd.motor11 = (_scaled_output[10] == 0) ? 2 : 1;
|
|
unlock_cmd.motor12 = (_scaled_output[11] == 0) ? 2 : 1;
|
|
|
|
// prepare command to spin motors in bank1
|
|
mot_rot_cmd1.motor1 = htobe16(_scaled_output[0]);
|
|
mot_rot_cmd1.motor2 = htobe16(_scaled_output[1]);
|
|
mot_rot_cmd1.motor3 = htobe16(_scaled_output[2]);
|
|
mot_rot_cmd1.motor4 = htobe16(_scaled_output[3]);
|
|
|
|
// prepare message to spin motors in bank2
|
|
mot_rot_cmd2.motor1 = htobe16(_scaled_output[4]);
|
|
mot_rot_cmd2.motor2 = htobe16(_scaled_output[5]);
|
|
mot_rot_cmd2.motor3 = htobe16(_scaled_output[6]);
|
|
mot_rot_cmd2.motor4 = htobe16(_scaled_output[7]);
|
|
|
|
// prepare message to spin motors in bank3
|
|
mot_rot_cmd3.motor1 = htobe16(_scaled_output[8]);
|
|
mot_rot_cmd3.motor2 = htobe16(_scaled_output[9]);
|
|
mot_rot_cmd3.motor3 = htobe16(_scaled_output[10]);
|
|
mot_rot_cmd3.motor4 = htobe16(_scaled_output[11]);
|
|
|
|
// copy update time
|
|
update_count_buffered = update_count;
|
|
}
|
|
unlock_frame = {(uint8_t)COMMAND_LOCK, unlock_cmd.data, sizeof(unlock_cmd.data)};
|
|
mot_rot_frame1 = {((uint8_t)COMMAND_MOTOR1 & AP_HAL::CANFrame::MaskStdID), mot_rot_cmd1.data, sizeof(mot_rot_cmd1.data)};
|
|
mot_rot_frame2 = {((uint8_t)COMMAND_MOTOR2 & AP_HAL::CANFrame::MaskStdID), mot_rot_cmd2.data, sizeof(mot_rot_cmd2.data)};
|
|
mot_rot_frame3 = {((uint8_t)COMMAND_MOTOR3 & AP_HAL::CANFrame::MaskStdID), mot_rot_cmd3.data, sizeof(mot_rot_cmd3.data)};
|
|
|
|
// advance to next stage
|
|
send_stage++;
|
|
}
|
|
|
|
// send unlock command
|
|
if (send_stage == 1) {
|
|
timeout = AP_HAL::native_micros64() + timeout_us;
|
|
if (!write_frame(unlock_frame, timeout)) {
|
|
continue;
|
|
}
|
|
send_stage++;
|
|
}
|
|
|
|
// send output to motor bank3
|
|
if (send_stage == 2) {
|
|
timeout = AP_HAL::native_micros64() + timeout_us;
|
|
if (!write_frame(mot_rot_frame3, timeout)) {
|
|
continue;
|
|
}
|
|
send_stage++;
|
|
}
|
|
|
|
// send output to motor bank2
|
|
if (send_stage == 3) {
|
|
timeout = AP_HAL::native_micros64() + timeout_us;
|
|
if (!write_frame(mot_rot_frame2, timeout)) {
|
|
continue;
|
|
}
|
|
send_stage++;
|
|
}
|
|
|
|
// send output to motor bank1
|
|
if (send_stage == 4) {
|
|
timeout = AP_HAL::native_micros64() + timeout_us;
|
|
if (!write_frame(mot_rot_frame1, timeout)) {
|
|
continue;
|
|
}
|
|
send_stage++;
|
|
}
|
|
|
|
// check if we should request update from ESCs
|
|
if (send_stage == 5) {
|
|
uint32_t now_ms = AP_HAL::native_millis();
|
|
uint32_t diff_ms = now_ms - _telemetry_req_ms;
|
|
|
|
// check if 100ms has passed since last update request
|
|
if (diff_ms >= TOSHIBA_CAN_ESC_UPDATE_MS) {
|
|
// set _telem_req_ms to time we ideally should have requested update
|
|
if (diff_ms >= 2 * TOSHIBA_CAN_ESC_UPDATE_MS) {
|
|
_telemetry_req_ms = now_ms;
|
|
} else {
|
|
_telemetry_req_ms += TOSHIBA_CAN_ESC_UPDATE_MS;
|
|
}
|
|
|
|
// prepare command to request data1 (rpm and voltage) from all ESCs
|
|
motor_request_data_cmd_t request_data_cmd = get_motor_request_data_cmd(1);
|
|
AP_HAL::CANFrame request_data_frame;
|
|
request_data_frame = {(uint8_t)COMMAND_REQUEST_DATA, request_data_cmd.data, sizeof(request_data_cmd.data)};
|
|
|
|
// send request data command
|
|
timeout = AP_HAL::native_micros64() + timeout_us;
|
|
if (!write_frame(request_data_frame, timeout)) {
|
|
continue;
|
|
}
|
|
|
|
// increment count to request temperature and usage
|
|
_telemetry_temp_req_counter++;
|
|
_telemetry_usage_req_counter++;
|
|
}
|
|
|
|
send_stage++;
|
|
}
|
|
|
|
// check if we should request temperature from ESCs
|
|
if (send_stage == 6) {
|
|
if (_telemetry_temp_req_counter > 10) {
|
|
_telemetry_temp_req_counter = 0;
|
|
|
|
// prepare command to request data2 (temperature) from all ESCs
|
|
motor_request_data_cmd_t request_data_cmd = get_motor_request_data_cmd(2);
|
|
AP_HAL::CANFrame request_data_frame;
|
|
request_data_frame = {(uint8_t)COMMAND_REQUEST_DATA, request_data_cmd.data, sizeof(request_data_cmd.data)};
|
|
|
|
// send request data command
|
|
timeout = AP_HAL::native_micros64() + timeout_us;
|
|
if (!write_frame(request_data_frame, timeout)) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
send_stage++;
|
|
}
|
|
|
|
// check if we should request usage from ESCs
|
|
if (send_stage == 7) {
|
|
if (_telemetry_usage_req_counter > 100) {
|
|
_telemetry_usage_req_counter = 0;
|
|
|
|
// prepare command to request data2 (temperature) from all ESCs
|
|
motor_request_data_cmd_t request_data_cmd = get_motor_request_data_cmd(3);
|
|
AP_HAL::CANFrame request_data_frame;
|
|
request_data_frame = {(uint8_t)COMMAND_REQUEST_DATA, request_data_cmd.data, sizeof(request_data_cmd.data)};
|
|
|
|
// send request data command
|
|
timeout = AP_HAL::native_micros64() + timeout_us;
|
|
if (!write_frame(request_data_frame, timeout)) {
|
|
continue;
|
|
}
|
|
}
|
|
send_stage++;
|
|
}
|
|
|
|
// check for replies from ESCs
|
|
if (send_stage == 8) {
|
|
AP_HAL::CANFrame recv_frame;
|
|
while (read_frame(recv_frame, timeout)) {
|
|
#if HAL_WITH_ESC_TELEM
|
|
// decode rpm and voltage data
|
|
if ((recv_frame.id >= MOTOR_DATA1) && (recv_frame.id <= MOTOR_DATA1 + TOSHIBACAN_MAX_NUM_ESCS)) {
|
|
// copy contents to our structure
|
|
motor_reply_data1_t reply_data;
|
|
memcpy(reply_data.data, recv_frame.data, sizeof(reply_data.data));
|
|
// store response in telemetry array
|
|
const uint8_t esc_id = recv_frame.id - MOTOR_DATA1;
|
|
if (esc_id < TOSHIBACAN_MAX_NUM_ESCS) {
|
|
update_rpm(esc_id, (int16_t)be16toh(reply_data.rpm));
|
|
|
|
// update total current
|
|
const uint32_t now_ms = AP_HAL::native_millis();
|
|
const uint32_t diff_ms = now_ms - _telemetry[esc_id].last_update_ms;
|
|
TelemetryData t {};
|
|
t.voltage = float(be16toh(reply_data.voltage_mv)) * 0.001f; // millivolts to volts
|
|
t.current = MAX((int16_t)be16toh(reply_data.current_ma), 0) * (4.0f * 0.001f); // milli-amps to amps
|
|
if (diff_ms <= 1000) {
|
|
// convert centi-amps milliseconds to mAh
|
|
_telemetry[esc_id].current_tot_mah += t.current * diff_ms * amp_ms_to_mah;
|
|
}
|
|
t.consumption_mah = _telemetry[esc_id].current_tot_mah;
|
|
update_telem_data(esc_id, t,
|
|
AP_ESC_Telem_Backend::TelemetryType::CURRENT
|
|
| AP_ESC_Telem_Backend::TelemetryType::VOLTAGE
|
|
| AP_ESC_Telem_Backend::TelemetryType::CONSUMPTION);
|
|
|
|
_telemetry[esc_id].last_update_ms = now_ms;
|
|
_esc_present_bitmask_recent |= ((uint32_t)1 << esc_id);
|
|
}
|
|
}
|
|
|
|
// decode temperature data
|
|
if ((recv_frame.id >= MOTOR_DATA2) && (recv_frame.id <= MOTOR_DATA2 + TOSHIBACAN_MAX_NUM_ESCS)) {
|
|
// motor data2 data format is 8 bytes (64 bits)
|
|
// 10 bits: U temperature
|
|
// 10 bits: V temperature
|
|
// 10 bits: W temperature
|
|
// 10 bits: motor temperature
|
|
// remaining 24 bits: reserved
|
|
const uint16_t u_temp = ((uint16_t)recv_frame.data[0] << 2) | ((uint16_t)recv_frame.data[1] >> 6);
|
|
const uint16_t v_temp = (((uint16_t)recv_frame.data[1] & (uint16_t)0x3F) << 4) | (((uint16_t)recv_frame.data[2] & (uint16_t)0xF0) >> 4);
|
|
const uint16_t w_temp = (((uint16_t)recv_frame.data[2] & (uint16_t)0x0F) << 6) | (((uint16_t)recv_frame.data[3] & (uint16_t)0xFC) >> 2);
|
|
const uint16_t motor_temp = (((uint16_t)recv_frame.data[3] & (uint16_t)0x03) << 8) | ((uint16_t)recv_frame.data[4]);
|
|
const uint16_t temp_max = MAX(u_temp, MAX(v_temp, w_temp));
|
|
|
|
// store response in telemetry array
|
|
uint8_t esc_id = recv_frame.id - MOTOR_DATA2;
|
|
if (esc_id < TOSHIBACAN_MAX_NUM_ESCS) {
|
|
const int16_t esc_temp_deg = temp_max < 100 ? 0 : temp_max / 5 - 20;
|
|
const int16_t motor_temp_deg = motor_temp < 100 ? 0 : motor_temp / 5 - 20;
|
|
_esc_present_bitmask_recent |= ((uint32_t)1 << esc_id);
|
|
|
|
TelemetryData t {
|
|
.temperature_cdeg = int16_t(esc_temp_deg * 100)
|
|
};
|
|
t.motor_temp_cdeg = int16_t(motor_temp_deg * 100);
|
|
update_telem_data(esc_id, t, AP_ESC_Telem_Backend::TelemetryType::MOTOR_TEMPERATURE |
|
|
AP_ESC_Telem_Backend::TelemetryType::TEMPERATURE);
|
|
}
|
|
}
|
|
|
|
// decode cumulative usage data
|
|
if ((recv_frame.id >= MOTOR_DATA3) && (recv_frame.id <= MOTOR_DATA3 + TOSHIBACAN_MAX_NUM_ESCS)) {
|
|
// motor data3 data format is 8 bytes (64 bits)
|
|
// 3 bytes: usage in seconds
|
|
// 2 bytes: number of times rotors started and stopped
|
|
// 3 bytes: reserved
|
|
const uint32_t usage_sec = ((uint32_t)recv_frame.data[0] << 16) | ((uint32_t)recv_frame.data[1] << 8) | (uint32_t)recv_frame.data[2];
|
|
|
|
// store response in telemetry array
|
|
uint8_t esc_id = recv_frame.id - MOTOR_DATA3;
|
|
if (esc_id < TOSHIBACAN_MAX_NUM_ESCS) {
|
|
_esc_present_bitmask_recent |= ((uint32_t)1 << esc_id);
|
|
|
|
TelemetryData t {};
|
|
t.usage_s = usage_sec;
|
|
update_telem_data(esc_id, t, AP_ESC_Telem_Backend::TelemetryType::USAGE);
|
|
}
|
|
}
|
|
#endif // HAL_WITH_ESC_TELEM
|
|
}
|
|
|
|
// update bitmask of escs that replied
|
|
update_esc_present_bitmask();
|
|
}
|
|
|
|
// success!
|
|
send_stage = 0;
|
|
|
|
// record success so we don't send this frame again
|
|
update_count_sent = update_count_buffered;
|
|
}
|
|
}
|
|
|
|
// write frame on CAN bus
|
|
bool AP_ToshibaCAN::write_frame(AP_HAL::CANFrame &out_frame, uint64_t timeout)
|
|
{
|
|
// wait for space in buffer to send command
|
|
|
|
bool read_select = false;
|
|
bool write_select = true;
|
|
bool ret;
|
|
do {
|
|
ret = _can_iface->select(read_select, write_select, &out_frame, timeout);
|
|
if (!ret || !write_select) {
|
|
// delay if no space is available to send
|
|
hal.scheduler->delay_microseconds(50);
|
|
}
|
|
} while (!ret || !write_select);
|
|
|
|
// send frame and return success
|
|
return (_can_iface->send(out_frame, timeout, AP_HAL::CANIface::AbortOnError) == 1);
|
|
}
|
|
|
|
// read frame on CAN bus, returns true on success
|
|
bool AP_ToshibaCAN::read_frame(AP_HAL::CANFrame &recv_frame, uint64_t timeout)
|
|
{
|
|
// wait for space in buffer to read
|
|
bool read_select = true;
|
|
bool write_select = false;
|
|
int ret = _can_iface->select(read_select, write_select, nullptr, timeout);
|
|
if (!ret || !read_select) {
|
|
// return false if no data is available to read
|
|
return false;
|
|
}
|
|
uint64_t time;
|
|
AP_HAL::CANIface::CanIOFlags flags {};
|
|
|
|
// read frame and return success
|
|
return (_can_iface->receive(recv_frame, time, flags) == 1);
|
|
}
|
|
|
|
// update esc_present_bitmask
|
|
void AP_ToshibaCAN::update_esc_present_bitmask()
|
|
{
|
|
// recently detected escs are immediately considered present
|
|
_esc_present_bitmask |= _esc_present_bitmask_recent;
|
|
|
|
// escs that don't respond disappear in 1 to 2 seconds
|
|
// set the _esc_present_bitmask to the "recent" bitmask and
|
|
// clear the "recent" bitmask every second
|
|
uint32_t now_ms = AP_HAL::native_millis();
|
|
if (now_ms - _esc_present_update_ms > 1000) {
|
|
_esc_present_bitmask = _esc_present_bitmask_recent;
|
|
_esc_present_bitmask_recent = 0;
|
|
_esc_present_update_ms = now_ms;
|
|
}
|
|
}
|
|
|
|
// called from SRV_Channels
|
|
void AP_ToshibaCAN::update()
|
|
{
|
|
// take semaphore and update outputs
|
|
{
|
|
WITH_SEMAPHORE(_rc_out_sem);
|
|
const bool armed = hal.util->get_soft_armed();
|
|
for (uint8_t i = 0; i < MIN(TOSHIBACAN_MAX_NUM_ESCS, 16); i++) {
|
|
const SRV_Channel *c = SRV_Channels::srv_channel(i);
|
|
if (!armed || (c == nullptr)) {
|
|
_scaled_output[i] = 0;
|
|
} else {
|
|
const uint16_t pwm_out = c->get_output_pwm();
|
|
if (pwm_out <= 1000) {
|
|
_scaled_output[i] = 0;
|
|
} else if (pwm_out >= 2000) {
|
|
_scaled_output[i] = TOSHIBACAN_OUTPUT_MAX;
|
|
} else {
|
|
_scaled_output[i] = TOSHIBACAN_OUTPUT_MIN + (pwm_out - 1000) * 0.001f * (TOSHIBACAN_OUTPUT_MAX - TOSHIBACAN_OUTPUT_MIN);
|
|
}
|
|
}
|
|
}
|
|
update_count++;
|
|
}
|
|
}
|
|
|
|
// helper function to create motor_request_data_cmd_t
|
|
AP_ToshibaCAN::motor_request_data_cmd_t AP_ToshibaCAN::get_motor_request_data_cmd(uint8_t request_id) const
|
|
{
|
|
motor_request_data_cmd_t req_data_cmd = {};
|
|
req_data_cmd.motor1 = request_id;
|
|
req_data_cmd.motor2 = request_id;
|
|
req_data_cmd.motor3 = request_id;
|
|
req_data_cmd.motor4 = request_id;
|
|
req_data_cmd.motor5 = request_id;
|
|
req_data_cmd.motor6 = request_id;
|
|
req_data_cmd.motor7 = request_id;
|
|
req_data_cmd.motor8 = request_id;
|
|
req_data_cmd.motor9 = request_id;
|
|
req_data_cmd.motor10 = request_id;
|
|
req_data_cmd.motor11 = request_id;
|
|
req_data_cmd.motor12 = request_id;
|
|
return req_data_cmd;
|
|
}
|
|
|
|
#endif // HAL_NUM_CAN_IFACES
|