mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-07 00:18:29 -04:00
676d75c391
This makes us look like Rover and Plane in terms of namespacing for the Mode classes, and removes a wart where we #include mode.h in the middle of the Mode class. This was done mechanically for the most part. I've had to remove the convenience reference for ap as part of this.
495 lines
17 KiB
C++
495 lines
17 KiB
C++
#include "Copter.h"
|
|
#include <utility>
|
|
|
|
#if !HAL_MINIMIZE_FEATURES && OPTFLOW == ENABLED
|
|
|
|
/*
|
|
implement FLOWHOLD mode, for position hold using optical flow
|
|
without rangefinder
|
|
*/
|
|
|
|
const AP_Param::GroupInfo ModeFlowHold::var_info[] = {
|
|
// @Param: _XY_P
|
|
// @DisplayName: FlowHold P gain
|
|
// @Description: FlowHold (horizontal) P gain.
|
|
// @Range: 0.1 6.0
|
|
// @Increment: 0.1
|
|
// @User: Advanced
|
|
|
|
// @Param: _XY_I
|
|
// @DisplayName: FlowHold I gain
|
|
// @Description: FlowHold (horizontal) I gain
|
|
// @Range: 0.02 1.00
|
|
// @Increment: 0.01
|
|
// @User: Advanced
|
|
|
|
// @Param: _XY_IMAX
|
|
// @DisplayName: FlowHold Integrator Max
|
|
// @Description: FlowHold (horizontal) integrator maximum
|
|
// @Range: 0 4500
|
|
// @Increment: 10
|
|
// @Units: cdeg
|
|
// @User: Advanced
|
|
|
|
// @Param: _XY_FILT_HZ
|
|
// @DisplayName: FlowHold filter on input to control
|
|
// @Description: FlowHold (horizontal) filter on input to control
|
|
// @Range: 0 100
|
|
// @Units: Hz
|
|
// @User: Advanced
|
|
AP_SUBGROUPINFO(flow_pi_xy, "_XY_", 1, ModeFlowHold, AC_PI_2D),
|
|
|
|
// @Param: _FLOW_MAX
|
|
// @DisplayName: FlowHold Flow Rate Max
|
|
// @Description: Controls maximum apparent flow rate in flowhold
|
|
// @Range: 0.1 2.5
|
|
// @User: Standard
|
|
AP_GROUPINFO("_FLOW_MAX", 2, ModeFlowHold, flow_max, 0.6),
|
|
|
|
// @Param: _FILT_HZ
|
|
// @DisplayName: FlowHold Filter Frequency
|
|
// @Description: Filter frequency for flow data
|
|
// @Range: 1 100
|
|
// @Units: Hz
|
|
// @User: Standard
|
|
AP_GROUPINFO("_FILT_HZ", 3, ModeFlowHold, flow_filter_hz, 5),
|
|
|
|
// @Param: _QUAL_MIN
|
|
// @DisplayName: FlowHold Flow quality minimum
|
|
// @Description: Minimum flow quality to use flow position hold
|
|
// @Range: 0 255
|
|
// @User: Standard
|
|
AP_GROUPINFO("_QUAL_MIN", 4, ModeFlowHold, flow_min_quality, 10),
|
|
|
|
// 5 was FLOW_SPEED
|
|
|
|
// @Param: _BRAKE_RATE
|
|
// @DisplayName: FlowHold Braking rate
|
|
// @Description: Controls deceleration rate on stick release
|
|
// @Range: 1 30
|
|
// @User: Standard
|
|
// @Units: deg/s
|
|
AP_GROUPINFO("_BRAKE_RATE", 6, ModeFlowHold, brake_rate_dps, 8),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
ModeFlowHold::ModeFlowHold(void) : Mode()
|
|
{
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
}
|
|
|
|
#define CONTROL_FLOWHOLD_EARTH_FRAME 0
|
|
|
|
// flowhold_init - initialise flowhold controller
|
|
bool ModeFlowHold::init(bool ignore_checks)
|
|
{
|
|
if (!copter.optflow.enabled() || !copter.optflow.healthy()) {
|
|
return false;
|
|
}
|
|
|
|
// initialize vertical speeds and leash lengths
|
|
copter.pos_control->set_max_speed_z(-get_pilot_speed_dn(), copter.g.pilot_speed_up);
|
|
copter.pos_control->set_max_accel_z(copter.g.pilot_accel_z);
|
|
|
|
// initialise position and desired velocity
|
|
if (!copter.pos_control->is_active_z()) {
|
|
copter.pos_control->set_alt_target_to_current_alt();
|
|
copter.pos_control->set_desired_velocity_z(copter.inertial_nav.get_velocity_z());
|
|
}
|
|
|
|
flow_filter.set_cutoff_frequency(copter.scheduler.get_loop_rate_hz(), flow_filter_hz.get());
|
|
|
|
quality_filtered = 0;
|
|
flow_pi_xy.reset_I();
|
|
limited = false;
|
|
|
|
flow_pi_xy.set_dt(1.0/copter.scheduler.get_loop_rate_hz());
|
|
|
|
// start with INS height
|
|
last_ins_height = copter.inertial_nav.get_altitude() * 0.01;
|
|
height_offset = 0;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
calculate desired attitude from flow sensor. Called when flow sensor is healthy
|
|
*/
|
|
void ModeFlowHold::flowhold_flow_to_angle(Vector2f &bf_angles, bool stick_input)
|
|
{
|
|
uint32_t now = AP_HAL::millis();
|
|
|
|
// get corrected raw flow rate
|
|
Vector2f raw_flow = copter.optflow.flowRate() - copter.optflow.bodyRate();
|
|
|
|
// limit sensor flow, this prevents oscillation at low altitudes
|
|
raw_flow.x = constrain_float(raw_flow.x, -flow_max, flow_max);
|
|
raw_flow.y = constrain_float(raw_flow.y, -flow_max, flow_max);
|
|
|
|
// filter the flow rate
|
|
Vector2f sensor_flow = flow_filter.apply(raw_flow);
|
|
|
|
// scale by height estimate, limiting it to height_min to height_max
|
|
float ins_height = copter.inertial_nav.get_altitude() * 0.01;
|
|
float height_estimate = ins_height + height_offset;
|
|
|
|
// compensate for height, this converts to (approx) m/s
|
|
sensor_flow *= constrain_float(height_estimate, height_min, height_max);
|
|
|
|
// rotate controller input to earth frame
|
|
Vector2f input_ef = copter.ahrs.rotate_body_to_earth2D(sensor_flow);
|
|
|
|
// run PI controller
|
|
flow_pi_xy.set_input(input_ef);
|
|
|
|
// get earth frame controller attitude in centi-degrees
|
|
Vector2f ef_output;
|
|
|
|
// get P term
|
|
ef_output = flow_pi_xy.get_p();
|
|
|
|
if (stick_input) {
|
|
last_stick_input_ms = now;
|
|
braking = true;
|
|
}
|
|
if (!stick_input && braking) {
|
|
// stop braking if either 3s has passed, or we have slowed below 0.3m/s
|
|
if (now - last_stick_input_ms > 3000 || sensor_flow.length() < 0.3) {
|
|
braking = false;
|
|
#if 0
|
|
printf("braking done at %u vel=%f\n", now - last_stick_input_ms,
|
|
(double)sensor_flow.length());
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (!stick_input && !braking) {
|
|
// get I term
|
|
if (limited) {
|
|
// only allow I term to shrink in length
|
|
xy_I = flow_pi_xy.get_i_shrink();
|
|
} else {
|
|
// normal I term operation
|
|
xy_I = flow_pi_xy.get_pi();
|
|
}
|
|
}
|
|
|
|
if (!stick_input && braking) {
|
|
// calculate brake angle for each axis separately
|
|
for (uint8_t i=0; i<2; i++) {
|
|
float &velocity = sensor_flow[i];
|
|
float abs_vel_cms = fabsf(velocity)*100;
|
|
const float brake_gain = (15.0f * brake_rate_dps.get() + 95.0f) / 100.0f;
|
|
float lean_angle_cd = brake_gain * abs_vel_cms * (1.0f+500.0f/(abs_vel_cms+60.0f));
|
|
if (velocity < 0) {
|
|
lean_angle_cd = -lean_angle_cd;
|
|
}
|
|
bf_angles[i] = lean_angle_cd;
|
|
}
|
|
ef_output.zero();
|
|
}
|
|
|
|
ef_output += xy_I;
|
|
ef_output *= copter.aparm.angle_max;
|
|
|
|
// convert to body frame
|
|
bf_angles += copter.ahrs.rotate_earth_to_body2D(ef_output);
|
|
|
|
// set limited flag to prevent integrator windup
|
|
limited = fabsf(bf_angles.x) > copter.aparm.angle_max || fabsf(bf_angles.y) > copter.aparm.angle_max;
|
|
|
|
// constrain to angle limit
|
|
bf_angles.x = constrain_float(bf_angles.x, -copter.aparm.angle_max, copter.aparm.angle_max);
|
|
bf_angles.y = constrain_float(bf_angles.y, -copter.aparm.angle_max, copter.aparm.angle_max);
|
|
|
|
if (log_counter++ % 20 == 0) {
|
|
AP::logger().Write("FHLD", "TimeUS,SFx,SFy,Ax,Ay,Qual,Ix,Iy", "Qfffffff",
|
|
AP_HAL::micros64(),
|
|
(double)sensor_flow.x, (double)sensor_flow.y,
|
|
(double)bf_angles.x, (double)bf_angles.y,
|
|
(double)quality_filtered,
|
|
(double)xy_I.x, (double)xy_I.y);
|
|
}
|
|
}
|
|
|
|
// flowhold_run - runs the flowhold controller
|
|
// should be called at 100hz or more
|
|
void ModeFlowHold::run()
|
|
{
|
|
float takeoff_climb_rate = 0.0f;
|
|
|
|
update_height_estimate();
|
|
|
|
// initialize vertical speeds and acceleration
|
|
copter.pos_control->set_max_speed_z(-get_pilot_speed_dn(), copter.g.pilot_speed_up);
|
|
copter.pos_control->set_max_accel_z(copter.g.pilot_accel_z);
|
|
|
|
// apply SIMPLE mode transform to pilot inputs
|
|
update_simple_mode();
|
|
|
|
// check for filter change
|
|
if (!is_equal(flow_filter.get_cutoff_freq(), flow_filter_hz.get())) {
|
|
flow_filter.set_cutoff_frequency(flow_filter_hz.get());
|
|
}
|
|
|
|
// get pilot desired climb rate
|
|
float target_climb_rate = copter.get_pilot_desired_climb_rate(copter.channel_throttle->get_control_in());
|
|
target_climb_rate = constrain_float(target_climb_rate, -get_pilot_speed_dn(), copter.g.pilot_speed_up);
|
|
|
|
// get pilot's desired yaw rate
|
|
float target_yaw_rate = copter.get_pilot_desired_yaw_rate(copter.channel_yaw->get_control_in());
|
|
|
|
// Flow Hold State Machine Determination
|
|
AltHoldModeState flowhold_state = get_alt_hold_state(target_climb_rate);
|
|
|
|
if (copter.optflow.healthy()) {
|
|
const float filter_constant = 0.95;
|
|
quality_filtered = filter_constant * quality_filtered + (1-filter_constant) * copter.optflow.quality();
|
|
} else {
|
|
quality_filtered = 0;
|
|
}
|
|
|
|
// Flow Hold State Machine
|
|
switch (flowhold_state) {
|
|
|
|
case AltHold_MotorStopped:
|
|
|
|
copter.motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN);
|
|
copter.attitude_control->reset_rate_controller_I_terms();
|
|
copter.attitude_control->set_yaw_target_to_current_heading();
|
|
copter.pos_control->relax_alt_hold_controllers(0.0f); // forces throttle output to go to zero
|
|
flow_pi_xy.reset_I();
|
|
break;
|
|
|
|
case AltHold_Takeoff:
|
|
// set motors to full range
|
|
copter.motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
|
|
|
|
// initiate take-off
|
|
if (!takeoff.running()) {
|
|
takeoff.start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
|
|
}
|
|
|
|
// get take-off adjusted pilot and takeoff climb rates
|
|
takeoff.get_climb_rates(target_climb_rate, takeoff_climb_rate);
|
|
|
|
// get avoidance adjusted climb rate
|
|
target_climb_rate = copter.get_avoidance_adjusted_climbrate(target_climb_rate);
|
|
|
|
// call position controller
|
|
copter.pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, copter.G_Dt, false);
|
|
copter.pos_control->add_takeoff_climb_rate(takeoff_climb_rate, copter.G_Dt);
|
|
break;
|
|
|
|
case AltHold_Landed_Ground_Idle:
|
|
attitude_control->reset_rate_controller_I_terms();
|
|
attitude_control->set_yaw_target_to_current_heading();
|
|
// FALLTHROUGH
|
|
|
|
case AltHold_Landed_Pre_Takeoff:
|
|
|
|
pos_control->relax_alt_hold_controllers(0.0f); // forces throttle output to go to zero
|
|
break;
|
|
|
|
case AltHold_Flying:
|
|
copter.motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
|
|
|
|
// adjust climb rate using rangefinder
|
|
target_climb_rate = copter.get_surface_tracking_climb_rate(target_climb_rate);
|
|
|
|
// get avoidance adjusted climb rate
|
|
target_climb_rate = copter.get_avoidance_adjusted_climbrate(target_climb_rate);
|
|
|
|
copter.pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
|
|
break;
|
|
}
|
|
|
|
// flowhold attitude target calculations
|
|
Vector2f bf_angles;
|
|
|
|
// calculate alt-hold angles
|
|
int16_t roll_in = copter.channel_roll->get_control_in();
|
|
int16_t pitch_in = copter.channel_pitch->get_control_in();
|
|
float angle_max = copter.attitude_control->get_althold_lean_angle_max();
|
|
get_pilot_desired_lean_angles(bf_angles.x, bf_angles.y, angle_max, attitude_control->get_althold_lean_angle_max());
|
|
|
|
if (quality_filtered >= flow_min_quality &&
|
|
AP_HAL::millis() - copter.arm_time_ms > 3000) {
|
|
// don't use for first 3s when we are just taking off
|
|
Vector2f flow_angles;
|
|
|
|
flowhold_flow_to_angle(flow_angles, (roll_in != 0) || (pitch_in != 0));
|
|
flow_angles.x = constrain_float(flow_angles.x, -angle_max/2, angle_max/2);
|
|
flow_angles.y = constrain_float(flow_angles.y, -angle_max/2, angle_max/2);
|
|
bf_angles += flow_angles;
|
|
}
|
|
bf_angles.x = constrain_float(bf_angles.x, -angle_max, angle_max);
|
|
bf_angles.y = constrain_float(bf_angles.y, -angle_max, angle_max);
|
|
|
|
#if AC_AVOID_ENABLED == ENABLED
|
|
// apply avoidance
|
|
copter.avoid.adjust_roll_pitch(bf_angles.x, bf_angles.y, copter.aparm.angle_max);
|
|
#endif
|
|
|
|
// call attitude controller
|
|
copter.attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(bf_angles.x, bf_angles.y, target_yaw_rate);
|
|
|
|
// call z-axis position controller
|
|
pos_control->update_z_controller();
|
|
}
|
|
|
|
/*
|
|
update height estimate using integrated accelerometer ratio with optical flow
|
|
*/
|
|
void ModeFlowHold::update_height_estimate(void)
|
|
{
|
|
float ins_height = copter.inertial_nav.get_altitude() * 0.01;
|
|
|
|
#if 1
|
|
// assume on ground when disarmed, or if we have only just started spooling the motors up
|
|
if (!hal.util->get_soft_armed() ||
|
|
copter.motors->get_desired_spool_state() != AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED ||
|
|
AP_HAL::millis() - copter.arm_time_ms < 1500) {
|
|
height_offset = -ins_height;
|
|
last_ins_height = ins_height;
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// get delta velocity in body frame
|
|
Vector3f delta_vel;
|
|
if (!copter.ins.get_delta_velocity(delta_vel)) {
|
|
return;
|
|
}
|
|
|
|
// integrate delta velocity in earth frame
|
|
const Matrix3f &rotMat = copter.ahrs.get_rotation_body_to_ned();
|
|
delta_vel = rotMat * delta_vel;
|
|
delta_velocity_ne.x += delta_vel.x;
|
|
delta_velocity_ne.y += delta_vel.y;
|
|
|
|
if (!copter.optflow.healthy()) {
|
|
// can't update height model with no flow sensor
|
|
last_flow_ms = AP_HAL::millis();
|
|
delta_velocity_ne.zero();
|
|
return;
|
|
}
|
|
|
|
if (last_flow_ms == 0) {
|
|
// just starting up
|
|
last_flow_ms = copter.optflow.last_update();
|
|
delta_velocity_ne.zero();
|
|
height_offset = 0;
|
|
return;
|
|
}
|
|
|
|
if (copter.optflow.last_update() == last_flow_ms) {
|
|
// no new flow data
|
|
return;
|
|
}
|
|
|
|
// convert delta velocity back to body frame to match the flow sensor
|
|
Vector2f delta_vel_bf = copter.ahrs.rotate_earth_to_body2D(delta_velocity_ne);
|
|
|
|
// and convert to an rate equivalent, to be comparable to flow
|
|
Vector2f delta_vel_rate(-delta_vel_bf.y, delta_vel_bf.x);
|
|
|
|
// get body flow rate in radians per second
|
|
Vector2f flow_rate_rps = copter.optflow.flowRate() - copter.optflow.bodyRate();
|
|
|
|
uint32_t dt_ms = copter.optflow.last_update() - last_flow_ms;
|
|
if (dt_ms > 500) {
|
|
// too long between updates, ignore
|
|
last_flow_ms = copter.optflow.last_update();
|
|
delta_velocity_ne.zero();
|
|
last_flow_rate_rps = flow_rate_rps;
|
|
last_ins_height = ins_height;
|
|
height_offset = 0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
basic equation is:
|
|
height_m = delta_velocity_mps / delta_flowrate_rps;
|
|
*/
|
|
|
|
// get delta_flowrate_rps
|
|
Vector2f delta_flowrate = flow_rate_rps - last_flow_rate_rps;
|
|
last_flow_rate_rps = flow_rate_rps;
|
|
last_flow_ms = copter.optflow.last_update();
|
|
|
|
/*
|
|
update height estimate
|
|
*/
|
|
const float min_velocity_change = 0.04;
|
|
const float min_flow_change = 0.04;
|
|
const float height_delta_max = 0.25;
|
|
|
|
/*
|
|
for each axis update the height estimate
|
|
*/
|
|
float delta_height = 0;
|
|
uint8_t total_weight = 0;
|
|
float height_estimate = ins_height + height_offset;
|
|
|
|
for (uint8_t i=0; i<2; i++) {
|
|
// only use height estimates when we have significant delta-velocity and significant delta-flow
|
|
float abs_flow = fabsf(delta_flowrate[i]);
|
|
if (abs_flow < min_flow_change ||
|
|
fabsf(delta_vel_rate[i]) < min_velocity_change) {
|
|
continue;
|
|
}
|
|
// get instantaneous height estimate
|
|
float height = delta_vel_rate[i] / delta_flowrate[i];
|
|
if (height <= 0) {
|
|
// discard negative heights
|
|
continue;
|
|
}
|
|
delta_height += (height - height_estimate) * abs_flow;
|
|
total_weight += abs_flow;
|
|
}
|
|
if (total_weight > 0) {
|
|
delta_height /= total_weight;
|
|
}
|
|
|
|
if (delta_height < 0) {
|
|
// bias towards lower heights, as we'd rather have too low
|
|
// gain than have oscillation. This also compensates a bit for
|
|
// the discard of negative heights above
|
|
delta_height *= 2;
|
|
}
|
|
|
|
// don't update height by more than height_delta_max, this is a simple way of rejecting noise
|
|
float new_offset = height_offset + constrain_float(delta_height, -height_delta_max, height_delta_max);
|
|
|
|
// apply a simple filter
|
|
height_offset = 0.8 * height_offset + 0.2 * new_offset;
|
|
|
|
if (ins_height + height_offset < height_min) {
|
|
// height estimate is never allowed below the minimum
|
|
height_offset = height_min - ins_height;
|
|
}
|
|
|
|
// new height estimate for logging
|
|
height_estimate = ins_height + height_offset;
|
|
|
|
AP::logger().Write("FHXY", "TimeUS,DFx,DFy,DVx,DVy,Hest,DH,Hofs,InsH,LastInsH,DTms", "QfffffffffI",
|
|
AP_HAL::micros64(),
|
|
(double)delta_flowrate.x,
|
|
(double)delta_flowrate.y,
|
|
(double)delta_vel_rate.x,
|
|
(double)delta_vel_rate.y,
|
|
(double)height_estimate,
|
|
(double)delta_height,
|
|
(double)height_offset,
|
|
(double)ins_height,
|
|
(double)last_ins_height,
|
|
dt_ms);
|
|
gcs().send_named_float("HEST", height_estimate);
|
|
delta_velocity_ne.zero();
|
|
last_ins_height = ins_height;
|
|
}
|
|
|
|
#endif // OPTFLOW == ENABLED
|