ardupilot/Tools/ArduTracker/system.pde
2011-09-09 11:31:32 +10:00

512 lines
14 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
/*****************************************************************************
The init_ardupilot function processes everything we need for an in - air restart
We will determine later if we are actually on the ground and process a
ground start in that case.
*****************************************************************************/
// Functions called from the top-level menu
extern int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde
extern int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde
extern int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp
// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of print_f that reads from flash memory
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv)
{
Serial.printf_P(PSTR("Commands:\n"
" logs log readback/setup mode\n"
" setup setup mode\n"
" test test mode\n"
"\n"
"Move the slide switch and reset to FLY.\n"
"\n"));
return(0);
}
// Command/function table for the top-level menu.
const struct Menu::command main_menu_commands[] PROGMEM = {
// command function called
// ======= ===============
{"logs", process_logs},
{"setup", setup_mode},
{"test", test_mode},
{"help", main_menu_help}
};
// Create the top-level menu object.
MENU(main_menu, "ArduPilotMega", main_menu_commands);
void init_ardupilot()
{
byte last_log_num;
int last_log_start;
int last_log_end;
// Console serial port
//
// The console port buffers are defined to be sufficiently large to support
// the console's use as a logging device, optionally as the GPS port when
// GPS_PROTOCOL_IMU is selected, and as the telemetry port.
//
// XXX This could be optimised to reduce the buffer sizes in the cases
// where they are not otherwise required.
//
Serial.begin(SERIAL0_BAUD, 128, 128);
// GPS serial port.
//
// Not used if the IMU/X-Plane GPS is in use.
//
// XXX currently the EM406 (SiRF receiver) is nominally configured
// at 57600, however it's not been supported to date. We should
// probably standardise on 38400.
//
// XXX the 128 byte receive buffer may be too small for NMEA, depending
// on the message set configured.
//
#if HIL_MODE != HIL_MODE_DISABLED && HIL_PORT == 1 // TODO: figure out a better way to do this
// Steal gps port for hardware in the loop
Serial1.begin(115200, 128, 128);
#else
// standard gps running
Serial1.begin(38400, 128, 16);
#endif
// Telemetry port.
//
// Not used if telemetry is going to the console.
//
// XXX for unidirectional protocols, we could (should) minimize
// the receive buffer, and the transmit buffer could also be
// shrunk for protocols that don't send large messages.
//
Serial3.begin(SERIAL3_BAUD, 128, 128);
Serial.printf_P(PSTR("\n\n"
"Init ArduPilotMega (unstable development version)\n\n"
"Firmware Version: %d freeRAM: %lu\n"),
FIRMWARE_VERSION, freeRAM());
// !!! Check firmware version before loading any
// data from EEPROM !!!
if (FIRMWARE_VERSION != get(PARAM_FIRMWARE_VER))
{
Serial.printf_P(PSTR("\n\n"
"Firmware Mismatch! ROM Firmware Version: %d\n"
"\nA factory reset is being performed."),get(PARAM_FIRMWARE_VER));
// If firmware mismatches a factory reset is forced
param_reset_defaults();
}
APM_RC.Init(); // APM Radio initialization
//read_EEPROM_startup(); // Read critical config information to start
#if HIL_MODE != HIL_MODE_ATTITUDE
adc.Init(); // APM ADC library initialization
pitot.Init(); // APM Abs Pressure sensor initialization
compass.init(); // I2C initialization
#endif
DataFlash.Init(); // DataFlash log initialization
gps.init(); // GPS Initialization
// init the GCS
#if GCS_PORT == 3
gcs.init(&Serial3);
#else
gcs.init(&Serial);
#endif
// init the HIL
#if HIL_MODE != HIL_MODE_DISABLED
#if HIL_PORT == 3
hil.init(&Serial3);
#elif HIL_PORT == 1
hil.init(&Serial1);
#else
hil.init(&Serial);
#endif
#endif
APM_RC.OutputCh(CH_ROLL, radio_trim(CH_ROLL)); // Initialization of servo outputs
APM_RC.OutputCh(CH_PITCH, radio_trim(CH_PITCH));
APM_RC.OutputCh(CH_THROTTLE, radio_trim(CH_THROTTLE));
APM_RC.OutputCh(CH_RUDDER, radio_trim(CH_RUDDER));
pinMode(C_LED_PIN, OUTPUT); // GPS status LED
pinMode(A_LED_PIN, OUTPUT); // GPS status LED
pinMode(B_LED_PIN, OUTPUT); // GPS status LED
pinMode(SLIDE_SWITCH_PIN, INPUT); // To enter interactive mode
pinMode(PUSHBUTTON_PIN, INPUT); // unused
DDRL |= B00000100; // Set Port L, pin 2 to output for the relay
// If the switch is in 'menu' mode, run the main menu.
//
// Since we can't be sure that the setup or test mode won't leave
// the system in an odd state, we don't let the user exit the top
// menu; they must reset in order to fly.
//
if (digitalRead(SLIDE_SWITCH_PIN) == 0) {
digitalWrite(A_LED_PIN,HIGH); // turn on setup-mode LED
Serial.printf_P(PSTR("\n"
"Entering interactive setup mode...\n"
"\n"
"If using the Arduino Serial Monitor, ensure Line Ending is set to Carriage Return.\n"
"Type 'help' to list commands, 'exit' to leave a submenu.\n"
"Visit the 'setup' menu for first-time configuration.\n"));
for (;;) {
Serial.printf_P(PSTR("\n"
"Move the slide switch and reset to FLY.\n"
"\n"));
main_menu.run();
}
}
if(get(PARAM_LOG_BITMASK) > 0){
// Here we will check on the length of the last log
// We don't want to create a bunch of little logs due to powering on and off
// XXX: TODO implement for new struct
//last_log_num = eeprom_read_byte((uint8_t *) EE_LAST_LOG_NUM);
//last_log_start = eeprom_read_word((uint16_t *) (EE_LOG_1_START+(last_log_num - 1) * 0x02));
//last_log_end = eeprom_read_word((uint16_t *) EE_LAST_LOG_PAGE);
if(last_log_num == 0) {
// The log space is empty. Start a write session on page 1
DataFlash.StartWrite(1);
eeprom_write_byte((uint8_t *) EE_LAST_LOG_NUM, (1));
eeprom_write_word((uint16_t *) EE_LOG_1_START, (1));
} else if (last_log_end <= last_log_start + 10) {
// The last log is small. We consider it junk. Overwrite it.
DataFlash.StartWrite(last_log_start);
} else {
// The last log is valid. Start a new log
if(last_log_num >= 19) {
Serial.println("Number of log files exceeds max. Log 19 will be overwritten.");
last_log_num --;
}
DataFlash.StartWrite(last_log_end + 1);
eeprom_write_byte((uint8_t *) EE_LAST_LOG_NUM, (last_log_num + 1));
eeprom_write_word((uint16_t *) (EE_LOG_1_START+(last_log_num)*0x02), (last_log_end + 1));
}
}
// read in the flight switches
update_servo_switches();
if(DEBUG_SUBSYSTEM > 0){
debug_subsystem();
} else if (ENABLE_AIR_START == 1) {
// Perform an air start and get back to flying
gcs.send_text(SEVERITY_LOW,"<init_ardupilot> AIR START");
// Get necessary data from EEPROM
//----------------
//read_EEPROM_airstart_critical();
#if HIL_MODE != HIL_MODE_ATTITUDE
imu.load_gyro_eeprom();
imu.load_accel_eeprom();
#endif
// This delay is important for the APM_RC library to work.
// We need some time for the comm between the 328 and 1280 to be established.
int old_pulse = 0;
while (millis()<=1000 && (abs(old_pulse - APM_RC.InputCh(get(PARAM_FLIGHT_MODE_CH))) > 5 ||
APM_RC.InputCh(get(PARAM_FLIGHT_MODE_CH)) == 1000 ||
APM_RC.InputCh(get(PARAM_FLIGHT_MODE_CH)) == 1200)) {
old_pulse = APM_RC.InputCh(get(PARAM_FLIGHT_MODE_CH));
delay(25);
}
if (get(PARAM_LOG_BITMASK) & MASK_LOG_CMD)
Log_Write_Startup(TYPE_AIRSTART_MSG);
reload_commands(); // Get set to resume AUTO from where we left off
}else {
startup_ground();
if (get(PARAM_LOG_BITMASK) & MASK_LOG_CMD)
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
}
// set the correct flight mode
// ---------------------------
reset_control_switch();
}
//********************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//********************************************************************************
void startup_ground(void)
{
gcs.send_text(SEVERITY_LOW,"<startup_ground> GROUND START");
#if(GROUND_START_DELAY > 0)
gcs.send_text(SEVERITY_LOW,"<startup_ground> With Delay");
delay(GROUND_START_DELAY * 1000);
#endif
// Output waypoints for confirmation
// --------------------------------
for(int i = 1; i < get(PARAM_WP_TOTAL) + 1; i++) {
gcs.send_message(MSG_COMMAND_LIST, i);
}
// Makes the servos wiggle
// step 1 = 1 wiggle
// -----------------------
demo_servos(1);
//IMU ground start
//------------------------
//
startup_IMU_ground();
// read the radio to set trims
// ---------------------------
trim_radio();
#if HIL_MODE != HIL_MODE_ATTITUDE
# if AIRSPEED_SENSOR == ENABLED
// initialize airspeed sensor
// --------------------------
zero_airspeed();
gcs.send_text(SEVERITY_LOW,"<startup_ground> zero airspeed calibrated");
# else
gcs.send_text(SEVERITY_LOW,"<startup_ground> NO airspeed");
# endif
#endif
// Save the settings for in-air restart
// ------------------------------------
//save_EEPROM_groundstart();
// initialize commands
// -------------------
init_commands();
// Makes the servos wiggle - 3 times signals ready to fly
// -----------------------
demo_servos(3);
gcs.send_text(SEVERITY_LOW,"\n\n Ready to FLY.");
}
void set_mode(byte mode)
{
if(control_mode == mode){
// don't switch modes if we are already in the correct mode.
return;
}
if(get(PARAM_TRIM_AUTO) > 0 || control_mode == MANUAL)
trim_control_surfaces();
control_mode = mode;
crash_timer = 0;
switch(control_mode)
{
case MANUAL:
break;
case STABILIZE:
break;
case FLY_BY_WIRE_A:
break;
case FLY_BY_WIRE_B:
break;
case AUTO:
update_auto();
break;
case RTL:
return_to_launch();
break;
case LOITER:
loiter_at_location();
break;
case TAKEOFF:
break;
case LAND:
break;
default:
return_to_launch();
break;
}
// output control mode to the ground station
gcs.send_message(MSG_MODE_CHANGE);
if (get(PARAM_LOG_BITMASK) & MASK_LOG_MODE)
Log_Write_Mode(control_mode);
}
void set_failsafe(boolean mode)
{
// only act on changes
// -------------------
if(failsafe != mode){
// store the value so we don't trip the gate twice
// -----------------------------------------------
failsafe = mode;
if (failsafe == false){
// We're back in radio contact
// ---------------------------
// re-read the switch so we can return to our preferred mode
reset_control_switch();
// Reset control integrators
// ---------------------
reset_I();
}else{
// We've lost radio contact
// ------------------------
// nothing to do right now
}
// Let the user know what's up so they can override the behavior
// -------------------------------------------------------------
failsafe_event();
}
}
void startup_IMU_ground(void)
{
#if HIL_MODE != HIL_MODE_ATTITUDE
uint16_t store = 0;
int flashcount = 0;
SendDebugln("<startup_IMU_ground> Warming up ADC...");
delay(500);
// Makes the servos wiggle twice - about to begin IMU calibration - HOLD LEVEL AND STILL!!
// -----------------------
demo_servos(2);
SendDebugln("<startup_IMU_ground> Beginning IMU calibration; do not move plane");
delay(1000);
imu.init_accel();
imu.init_gyro();
# if HIL_MODE == HIL_MODE_SENSORS
hil.update(); // look for inbound hil packets for initialization
# endif
pitot.Read(); // Get initial data from absolute pressure sensor
abs_press_gnd = pitot.Press;
ground_temperature = pitot.Temp;
delay(20);
// ***********
for(int i = 0; i < 200; i++){ // We take some readings...
# if HIL_MODE == HIL_MODE_SENSORS
hil.update(); // look for inbound hil packets
# endif
pitot.Read(); // Get initial data from absolute pressure sensor
abs_press_gnd = (abs_press_gnd * 9l + pitot.Press) / 10l;
ground_temperature = (ground_temperature * 9 + pitot.Temp) / 10;
delay(20);
if(flashcount == 5) {
digitalWrite(C_LED_PIN, LOW);
digitalWrite(A_LED_PIN, HIGH);
digitalWrite(B_LED_PIN, LOW);
}
if(flashcount >= 10) {
flashcount = 0;
digitalWrite(C_LED_PIN, HIGH);
digitalWrite(A_LED_PIN, LOW);
digitalWrite(B_LED_PIN, HIGH);
}
flashcount++;
}
SendDebugln(" <startup_IMU_ground> Calibration complete.");
#endif // HIL_MODE_ATTITUDE
digitalWrite(B_LED_PIN, HIGH); // Set LED B high to indicate IMU ready
digitalWrite(A_LED_PIN, LOW);
digitalWrite(C_LED_PIN, LOW);
}
void update_GPS_light(void)
{
// GPS LED on if we have a fix or Blink GPS LED if we are receiving data
// ---------------------------------------------------------------------
switch (gps.status()) {
case(2):
digitalWrite(C_LED_PIN, HIGH); //Turn LED C on when gps has valid fix.
break;
case(1):
if (gps.valid_read == true){
GPS_light = !GPS_light; // Toggle light on and off to indicate gps messages being received, but no GPS fix lock
if (GPS_light){
digitalWrite(C_LED_PIN, LOW);
} else {
digitalWrite(C_LED_PIN, HIGH);
}
gps.valid_read = false;
}
break;
default:
digitalWrite(C_LED_PIN, LOW);
break;
}
}
void resetPerfData(void) {
mainLoop_count = 0;
G_Dt_max = 0;
gyro_sat_count = 0;
adc_constraints = 0;
renorm_sqrt_count = 0;
renorm_blowup_count = 0;
gps_fix_count = 0;
perf_mon_timer = millis();
}
/*
* This function gets the current value of the heap and stack pointers.
* The stack pointer starts at the top of RAM and grows downwards. The heap pointer
* starts just above the static variables etc. and grows upwards. SP should always
* be larger than HP or you'll be in big trouble! The smaller the gap, the more
* careful you need to be. Julian Gall 6 - Feb - 2009.
*/
unsigned long freeRAM() {
uint8_t * heapptr, * stackptr;
stackptr = (uint8_t *)malloc(4); // use stackptr temporarily
heapptr = stackptr; // save value of heap pointer
free(stackptr); // free up the memory again (sets stackptr to 0)
stackptr = (uint8_t *)(SP); // save value of stack pointer
return stackptr - heapptr;
}