5
0
mirror of https://github.com/ArduPilot/ardupilot synced 2025-01-19 23:28:32 -04:00
ardupilot/ArduCopter/motors_hexa.pde
Olivier ADLER 8b3e9d2df6 Signed-off-by: Olivier ADLER <contact2@nerim.net>
slightly upped motor out values for motor test. Was too low for some ESCs.
2011-09-11 23:32:04 +02:00

218 lines
5.7 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if FRAME_CONFIG == HEXA_FRAME
static void output_motors_armed()
{
int roll_out, pitch_out;
int out_min = g.rc_3.radio_min;
int out_max = g.rc_3.radio_max;
// Throttle is 0 to 1000 only
g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, 1000);
if(g.rc_3.servo_out > 0)
out_min = g.rc_3.radio_min + MINIMUM_THROTTLE;
g.rc_1.calc_pwm();
g.rc_2.calc_pwm();
g.rc_3.calc_pwm();
g.rc_4.calc_pwm();
if(g.frame_orientation == X_FRAME){
roll_out = g.rc_1.pwm_out / 2;
pitch_out = (float)g.rc_2.pwm_out * .866;
//left side
motor_out[CH_2] = g.rc_3.radio_out + g.rc_1.pwm_out; // CCW Middle
motor_out[CH_3] = g.rc_3.radio_out + roll_out + pitch_out; // CW Front
motor_out[CH_8] = g.rc_3.radio_out + roll_out - pitch_out; // CW Back
//right side
motor_out[CH_1] = g.rc_3.radio_out - g.rc_1.pwm_out; // CW Middle
motor_out[CH_7] = g.rc_3.radio_out - roll_out + pitch_out; // CCW Front
motor_out[CH_4] = g.rc_3.radio_out - roll_out - pitch_out; // CCW Back
}else{
roll_out = (float)g.rc_1.pwm_out * .866;
pitch_out = g.rc_2.pwm_out / 2;
//Front side
motor_out[CH_1] = g.rc_3.radio_out + g.rc_2.pwm_out; // CW FRONT
motor_out[CH_7] = g.rc_3.radio_out + roll_out + pitch_out; // CCW FRONT LEFT
motor_out[CH_4] = g.rc_3.radio_out - roll_out + pitch_out; // CCW FRONT RIGHT
//Back side
motor_out[CH_2] = g.rc_3.radio_out - g.rc_2.pwm_out; // CCW BACK
motor_out[CH_3] = g.rc_3.radio_out + roll_out - pitch_out; // CW, BACK LEFT
motor_out[CH_8] = g.rc_3.radio_out - roll_out - pitch_out; // CW BACK RIGHT
}
// Yaw
motor_out[CH_2] += g.rc_4.pwm_out; // CCW
motor_out[CH_7] += g.rc_4.pwm_out; // CCW
motor_out[CH_4] += g.rc_4.pwm_out; // CCW
motor_out[CH_3] -= g.rc_4.pwm_out; // CW
motor_out[CH_1] -= g.rc_4.pwm_out; // CW
motor_out[CH_8] -= g.rc_4.pwm_out; // CW
// Tridge's stability patch
for (int i = CH_1; i<=CH_8; i++) {
if(i == CH_5 || i == CH_6)
break;
if (motor_out[i] > out_max) {
// note that i^1 is the opposite motor
motor_out[i^1] -= motor_out[i] - out_max;
motor_out[i] = out_max;
}
}
// limit output so motors don't stop
motor_out[CH_1] = max(motor_out[CH_1], out_min);
motor_out[CH_2] = max(motor_out[CH_2], out_min);
motor_out[CH_3] = max(motor_out[CH_3], out_min);
motor_out[CH_4] = max(motor_out[CH_4], out_min);
motor_out[CH_7] = max(motor_out[CH_7], out_min);
motor_out[CH_8] = max(motor_out[CH_8], out_min);
#if CUT_MOTORS == ENABLED
// if we are not sending a throttle output, we cut the motors
if(g.rc_3.servo_out == 0){
motor_out[CH_1] = g.rc_3.radio_min;
motor_out[CH_2] = g.rc_3.radio_min;
motor_out[CH_3] = g.rc_3.radio_min;
motor_out[CH_4] = g.rc_3.radio_min;
motor_out[CH_7] = g.rc_3.radio_min;
motor_out[CH_8] = g.rc_3.radio_min;
}
#endif
APM_RC.OutputCh(CH_1, motor_out[CH_1]);
APM_RC.OutputCh(CH_2, motor_out[CH_2]);
APM_RC.OutputCh(CH_3, motor_out[CH_3]);
APM_RC.OutputCh(CH_4, motor_out[CH_4]);
APM_RC.OutputCh(CH_7, motor_out[CH_7]);
APM_RC.OutputCh(CH_8, motor_out[CH_8]);
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out6_Out7();
APM_RC.Force_Out2_Out3();
}
static void output_motors_disarmed()
{
if(g.rc_3.control_in > 0){
// we have pushed up the throttle
// remove safety
motor_auto_armed = true;
}
// fill the motor_out[] array for HIL use
for (unsigned char i = 0; i < 8; i++) {
motor_out[i] = g.rc_3.radio_min;
}
// Send commands to motors
APM_RC.OutputCh(CH_1, g.rc_3.radio_min);
APM_RC.OutputCh(CH_2, g.rc_3.radio_min);
APM_RC.OutputCh(CH_3, g.rc_3.radio_min);
APM_RC.OutputCh(CH_4, g.rc_3.radio_min);
APM_RC.OutputCh(CH_7, g.rc_3.radio_min);
APM_RC.OutputCh(CH_8, g.rc_3.radio_min);
}
static void output_motor_test()
{
motor_out[CH_1] = g.rc_3.radio_min;
motor_out[CH_2] = g.rc_3.radio_min;
motor_out[CH_3] = g.rc_3.radio_min;
motor_out[CH_4] = g.rc_3.radio_min;
motor_out[CH_7] = g.rc_3.radio_min;
motor_out[CH_8] = g.rc_3.radio_min;
if(g.frame_orientation == X_FRAME){
// 31
// 24
if(g.rc_1.control_in > 3000){ // right
motor_out[CH_1] += 100;
}
if(g.rc_1.control_in < -3000){ // left
motor_out[CH_2] += 100;
}
if(g.rc_2.control_in > 3000){ // back
motor_out[CH_8] += 100;
motor_out[CH_4] += 100;
}
if(g.rc_2.control_in < -3000){ // front
motor_out[CH_7] += 100;
motor_out[CH_3] += 100;
}
}else{
// 3
// 2 1
// 4
if(g.rc_1.control_in > 3000){ // right
motor_out[CH_4] += 100;
motor_out[CH_8] += 100;
}
if(g.rc_1.control_in < -3000){ // left
motor_out[CH_7] += 100;
motor_out[CH_3] += 100;
}
if(g.rc_2.control_in > 3000){ // back
motor_out[CH_2] += 100;
}
if(g.rc_2.control_in < -3000){ // front
motor_out[CH_1] += 100;
}
}
APM_RC.OutputCh(CH_1, motor_out[CH_1]);
APM_RC.OutputCh(CH_2, motor_out[CH_2]);
APM_RC.OutputCh(CH_3, motor_out[CH_3]);
APM_RC.OutputCh(CH_4, motor_out[CH_4]);
APM_RC.OutputCh(CH_7, motor_out[CH_7]);
APM_RC.OutputCh(CH_8, motor_out[CH_8]);
}
/*
APM_RC.OutputCh(CH_2, g.rc_3.radio_min);
APM_RC.OutputCh(CH_3, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(CH_3, g.rc_3.radio_min);
APM_RC.OutputCh(CH_7, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(CH_7, g.rc_3.radio_min);
APM_RC.OutputCh(CH_1, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(CH_1, g.rc_3.radio_min);
APM_RC.OutputCh(CH_4, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(CH_4, g.rc_3.radio_min);
APM_RC.OutputCh(CH_8, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(CH_8, g.rc_3.radio_min);
APM_RC.OutputCh(CH_2, g.rc_3.radio_min + 100);
delay(1000);
}
*/
#endif