ardupilot/libraries/SITL/SIM_BalanceBot.cpp

165 lines
4.9 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Balance Bot simulator class
*/
#include "SIM_BalanceBot.h"
#include <stdio.h>
extern const AP_HAL::HAL& hal;
namespace SITL {
BalanceBot::BalanceBot(const char *home_str, const char *frame_str) :
Aircraft(home_str, frame_str),
max_speed(4),
max_accel(14),
skid_turn_rate(140), // degrees/sec
skid_steering(true)
{
dcm.from_euler(0,0,0); // initial yaw, pitch and roll in radians
printf("Balance Bot Simulation Started\n");
}
/*
return yaw rate in degrees/second given steering_angle
*/
float BalanceBot::calc_yaw_rate(float steering)
{
return steering * skid_turn_rate;
}
/*
update the Balance Bot simulation by one time step
*/
/*
* WIP!
* The balance bot is physically modeled as an inverted pendulum(rod) on a cart
* Further details can be found here:
* 1) http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum&section=SystemModeling
* 2) http://journals.sagepub.com/doi/pdf/10.5772/63933
*/
void BalanceBot::update(const struct sitl_input &input)
{
const float length = 1.0f; //m length of body
const float mass_cart = 1.0f; // kg
const float mass_rod = 1.0f; //kg
// maximum force the motors can apply to the cart
const float max_force = 50.0f; //N
//Moment of Inertia of the rod
const float I_rod = (mass_rod*4*length*length)/12.0f; //kg.m^2
// air resistance
const float damping_constant = 0.7; // N-s/m
// balance bot uses skid steering
const float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
const float motor2 = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
const float steering = motor1 - motor2;
const float throttle = 0.5 * (motor1 + motor2);
// how much time has passed?
const float delta_time = frame_time_us * 1.0e-6f;
// yaw rate in degrees/s
const float yaw_rate = calc_yaw_rate(steering);
// target speed with current throttle
const float target_speed = throttle * max_speed;
//input force to the cart
// a very crude model! Needs remodeling!
const float force_on_body = ((target_speed - velocity_vf_x) / max_speed) * max_force; //N
// obtain roll, pitch, yaw from dcm
float r, p, y;
dcm.to_euler(&r, &p, &y);
float theta = p; //radians
float ang_vel = gyro.y; //radians/s
//vehicle frame x acceleration
const float accel_vf_x = (force_on_body - (damping_constant*velocity_vf_x) - mass_rod*length*ang_vel*ang_vel*sin(theta)
+ (3.0f/4.0f)*mass_rod*GRAVITY_MSS*sin(theta)*cos(theta))
/ (mass_cart + mass_rod - (3.0f/4.0f)*mass_rod*cos(theta)*cos(theta));
const float angular_accel_bf_y = mass_rod*length*(GRAVITY_MSS*sin(theta) + accel_vf_x*cos(theta))
/(I_rod + mass_rod*length*length);
// update theta and angular velocity
ang_vel += angular_accel_bf_y * delta_time;
theta += ang_vel * delta_time;
theta = fmod(theta, radians(360));
// update x velocity in vehicle frame
velocity_vf_x += accel_vf_x * delta_time;
gyro = Vector3f(0, ang_vel, radians(yaw_rate));
// update attitude
dcm.rotate(gyro * delta_time);
dcm.normalize();
// accel in body frame due to motor
accel_body = Vector3f(accel_vf_x*cos(theta), 0, -accel_vf_x*sin(theta));
// add in accel due to direction change
accel_body.y += radians(yaw_rate) * velocity_vf_x;
// now in earth frame
Vector3f accel_earth = dcm * accel_body;
accel_earth += Vector3f(0, 0, GRAVITY_MSS);
// we are on the ground, so our vertical accel is zero
accel_earth.z = 0;
if (!hal.util->get_soft_armed()) {
// reset to vertical when not armed for faster testing
accel_earth.zero();
velocity_ef.zero();
dcm.identity();
gyro.zero();
velocity_vf_x =0;
}
// work out acceleration as seen by the accelerometers. It sees the kinematic
// acceleration (ie. real movement), plus gravity
accel_body += dcm.transposed() * (Vector3f(0, 0, -GRAVITY_MSS));
// new velocity vector
velocity_ef += accel_earth * delta_time;
// new position vector
position += (velocity_ef * delta_time);
// neglect roll
dcm.to_euler(&r, &p, &y);
dcm.from_euler(0.0f, p, y);
use_smoothing = true;
// update lat/lon/altitude
update_position();
time_advance();
// update magnetic field
update_mag_field_bf();
}
}// namespace SITL