ardupilot/ArduCopter/mode_poshold.cpp

642 lines
30 KiB
C++

#include "Copter.h"
#if MODE_POSHOLD_ENABLED == ENABLED
/*
* Init and run calls for PosHold flight mode
* PosHold tries to improve upon regular loiter by mixing the pilot input with the loiter controller
*/
#define POSHOLD_SPEED_0 10 // speed below which it is always safe to switch to loiter
// 400hz loop update rate
#define POSHOLD_BRAKE_TIME_ESTIMATE_MAX (600*4) // max number of cycles the brake will be applied before we switch to loiter
#define POSHOLD_BRAKE_TO_LOITER_TIMER (150*4) // Number of cycles to transition from brake mode to loiter mode. Must be lower than POSHOLD_LOITER_STAB_TIMER
#define POSHOLD_WIND_COMP_START_TIMER (150*4) // Number of cycles to start wind compensation update after loiter is engaged
#define POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER (50*4) // Set it from 100 to 200, the number of centiseconds loiter and manual commands are mixed to make a smooth transition.
#define POSHOLD_SMOOTH_RATE_FACTOR 0.0125f // filter applied to pilot's roll/pitch input as it returns to center. A lower number will cause the roll/pitch to return to zero more slowly if the brake_rate is also low.
#define POSHOLD_WIND_COMP_TIMER_10HZ 40 // counter value used to reduce wind compensation to 10hz
#define LOOP_RATE_FACTOR 4 // used to adapt PosHold params to loop_rate
#define TC_WIND_COMP 0.0025f // Time constant for poshold_update_wind_comp_estimate()
// definitions that are independent of main loop rate
#define POSHOLD_STICK_RELEASE_SMOOTH_ANGLE 1800 // max angle required (in centi-degrees) after which the smooth stick release effect is applied
#define POSHOLD_WIND_COMP_ESTIMATE_SPEED_MAX 10 // wind compensation estimates will only run when velocity is at or below this speed in cm/s
#define POSHOLD_WIND_COMP_LEAN_PCT_MAX 0.6666f // wind compensation no more than 2/3rds of angle max to ensure pilot can always override
// poshold_init - initialise PosHold controller
bool ModePosHold::init(bool ignore_checks)
{
// set vertical speed and acceleration limits
pos_control->set_max_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);
pos_control->set_correction_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);
// initialise the vertical position controller
if (!pos_control->is_active_z()) {
pos_control->init_z_controller();
}
// initialise lean angles to current attitude
pilot_roll = 0.0f;
pilot_pitch = 0.0f;
// compute brake_gain
brake.gain = (15.0f * (float)g.poshold_brake_rate + 95.0f) * 0.01f;
if (copter.ap.land_complete) {
// if landed begin in loiter mode
roll_mode = RPMode::LOITER;
pitch_mode = RPMode::LOITER;
} else {
// if not landed start in pilot override to avoid hard twitch
roll_mode = RPMode::PILOT_OVERRIDE;
pitch_mode = RPMode::PILOT_OVERRIDE;
}
// initialise loiter
loiter_nav->clear_pilot_desired_acceleration();
loiter_nav->init_target();
// initialise wind_comp each time PosHold is switched on
init_wind_comp_estimate();
return true;
}
// poshold_run - runs the PosHold controller
// should be called at 100hz or more
void ModePosHold::run()
{
float controller_to_pilot_roll_mix; // mix of controller and pilot controls. 0 = fully last controller controls, 1 = fully pilot controls
float controller_to_pilot_pitch_mix; // mix of controller and pilot controls. 0 = fully last controller controls, 1 = fully pilot controls
const Vector3f& vel = inertial_nav.get_velocity_neu_cms();
// set vertical speed and acceleration limits
pos_control->set_max_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);
loiter_nav->clear_pilot_desired_acceleration();
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// convert pilot input to lean angles
float target_roll, target_pitch;
get_pilot_desired_lean_angles(target_roll, target_pitch, copter.aparm.angle_max, attitude_control->get_althold_lean_angle_max_cd());
// get pilot's desired yaw rate
float target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->norm_input_dz());
// get pilot desired climb rate (for alt-hold mode and take-off)
float target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in());
target_climb_rate = constrain_float(target_climb_rate, -get_pilot_speed_dn(), g.pilot_speed_up);
// relax loiter target if we might be landed
if (copter.ap.land_complete_maybe) {
loiter_nav->soften_for_landing();
}
// Pos Hold State Machine Determination
AltHoldModeState poshold_state = get_alt_hold_state(target_climb_rate);
// state machine
switch (poshold_state) {
case AltHold_MotorStopped:
attitude_control->reset_rate_controller_I_terms();
attitude_control->reset_yaw_target_and_rate(false);
pos_control->relax_z_controller(0.0f); // forces throttle output to decay to zero
loiter_nav->clear_pilot_desired_acceleration();
loiter_nav->init_target();
loiter_nav->update(false);
// set poshold state to pilot override
roll_mode = RPMode::PILOT_OVERRIDE;
pitch_mode = RPMode::PILOT_OVERRIDE;
// initialise wind compensation estimate
init_wind_comp_estimate();
break;
case AltHold_Takeoff:
// initiate take-off
if (!takeoff.running()) {
takeoff.start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
}
// get avoidance adjusted climb rate
target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);
// set position controller targets adjusted for pilot input
takeoff.do_pilot_takeoff(target_climb_rate);
// init and update loiter although pilot is controlling lean angles
loiter_nav->clear_pilot_desired_acceleration();
loiter_nav->init_target();
loiter_nav->update(false);
// set poshold state to pilot override
roll_mode = RPMode::PILOT_OVERRIDE;
pitch_mode = RPMode::PILOT_OVERRIDE;
break;
case AltHold_Landed_Ground_Idle:
loiter_nav->clear_pilot_desired_acceleration();
loiter_nav->init_target();
loiter_nav->update(false);
attitude_control->reset_yaw_target_and_rate();
init_wind_comp_estimate();
FALLTHROUGH;
case AltHold_Landed_Pre_Takeoff:
attitude_control->reset_rate_controller_I_terms_smoothly();
pos_control->relax_z_controller(0.0f); // forces throttle output to decay to zero
// set poshold state to pilot override
roll_mode = RPMode::PILOT_OVERRIDE;
pitch_mode = RPMode::PILOT_OVERRIDE;
break;
case AltHold_Flying:
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// get avoidance adjusted climb rate
target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);
// update the vertical offset based on the surface measurement
copter.surface_tracking.update_surface_offset();
// Send the commanded climb rate to the position controller
pos_control->set_pos_target_z_from_climb_rate_cm(target_climb_rate);
break;
}
// poshold specific behaviour to calculate desired roll, pitch angles
// convert inertial nav earth-frame velocities to body-frame
// To-Do: move this to AP_Math (or perhaps we already have a function to do this)
float vel_fw = vel.x*ahrs.cos_yaw() + vel.y*ahrs.sin_yaw();
float vel_right = -vel.x*ahrs.sin_yaw() + vel.y*ahrs.cos_yaw();
// If not in LOITER, retrieve latest wind compensation lean angles related to current yaw
if (roll_mode != RPMode::LOITER || pitch_mode != RPMode::LOITER) {
get_wind_comp_lean_angles(wind_comp_roll, wind_comp_pitch);
}
// Roll state machine
// Each state (aka mode) is responsible for:
// 1. dealing with pilot input
// 2. calculating the final roll output to the attitude controller
// 3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state
switch (roll_mode) {
case RPMode::PILOT_OVERRIDE:
// update pilot desired roll angle using latest radio input
// this filters the input so that it returns to zero no faster than the brake-rate
update_pilot_lean_angle(pilot_roll, target_roll);
// switch to BRAKE mode for next iteration if no pilot input
if (is_zero(target_roll) && (fabsf(pilot_roll) < 2 * g.poshold_brake_rate)) {
// initialise BRAKE mode
roll_mode = RPMode::BRAKE; // Set brake roll mode
brake.roll = 0.0f; // initialise braking angle to zero
brake.angle_max_roll = 0.0f; // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking
brake.timeout_roll = POSHOLD_BRAKE_TIME_ESTIMATE_MAX; // number of cycles the brake will be applied, updated during braking mode.
brake.time_updated_roll = false; // flag the braking time can be re-estimated
}
// final lean angle should be pilot input plus wind compensation
roll = pilot_roll + wind_comp_roll;
break;
case RPMode::BRAKE:
case RPMode::BRAKE_READY_TO_LOITER:
// calculate brake.roll angle to counter-act velocity
update_brake_angle_from_velocity(brake.roll, vel_right);
// update braking time estimate
if (!brake.time_updated_roll) {
// check if brake angle is increasing
if (fabsf(brake.roll) >= brake.angle_max_roll) {
brake.angle_max_roll = fabsf(brake.roll);
} else {
// braking angle has started decreasing so re-estimate braking time
brake.timeout_roll = 1+(uint16_t)(LOOP_RATE_FACTOR*15L*(int32_t)(fabsf(brake.roll))/(10L*(int32_t)g.poshold_brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time.
brake.time_updated_roll = true;
}
}
// if velocity is very low reduce braking time to 0.5seconds
if ((fabsf(vel_right) <= POSHOLD_SPEED_0) && (brake.timeout_roll > 50*LOOP_RATE_FACTOR)) {
brake.timeout_roll = 50*LOOP_RATE_FACTOR;
}
// reduce braking timer
if (brake.timeout_roll > 0) {
brake.timeout_roll--;
} else {
// indicate that we are ready to move to Loiter.
// Loiter will only actually be engaged once both roll_mode and pitch_mode are changed to RPMode::BRAKE_READY_TO_LOITER
// logic for engaging loiter is handled below the roll and pitch mode switch statements
roll_mode = RPMode::BRAKE_READY_TO_LOITER;
}
// final lean angle is braking angle + wind compensation angle
roll = brake.roll + wind_comp_roll;
// check for pilot input
if (!is_zero(target_roll)) {
// init transition to pilot override
roll_controller_to_pilot_override();
}
break;
case RPMode::BRAKE_TO_LOITER:
case RPMode::LOITER:
// these modes are combined roll-pitch modes and are handled below
break;
case RPMode::CONTROLLER_TO_PILOT_OVERRIDE:
// update pilot desired roll angle using latest radio input
// this filters the input so that it returns to zero no faster than the brake-rate
update_pilot_lean_angle(pilot_roll, target_roll);
// count-down loiter to pilot timer
if (controller_to_pilot_timer_roll > 0) {
controller_to_pilot_timer_roll--;
} else {
// when timer runs out switch to full pilot override for next iteration
roll_mode = RPMode::PILOT_OVERRIDE;
}
// calculate controller_to_pilot mix ratio
controller_to_pilot_roll_mix = (float)controller_to_pilot_timer_roll / (float)POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER;
// mix final loiter lean angle and pilot desired lean angles
roll = mix_controls(controller_to_pilot_roll_mix, controller_final_roll, pilot_roll + wind_comp_roll);
break;
}
// Pitch state machine
// Each state (aka mode) is responsible for:
// 1. dealing with pilot input
// 2. calculating the final pitch output to the attitude contpitcher
// 3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state
switch (pitch_mode) {
case RPMode::PILOT_OVERRIDE:
// update pilot desired pitch angle using latest radio input
// this filters the input so that it returns to zero no faster than the brake-rate
update_pilot_lean_angle(pilot_pitch, target_pitch);
// switch to BRAKE mode for next iteration if no pilot input
if (is_zero(target_pitch) && (fabsf(pilot_pitch) < 2 * g.poshold_brake_rate)) {
// initialise BRAKE mode
pitch_mode = RPMode::BRAKE; // set brake pitch mode
brake.pitch = 0.0f; // initialise braking angle to zero
brake.angle_max_pitch = 0.0f; // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking
brake.timeout_pitch = POSHOLD_BRAKE_TIME_ESTIMATE_MAX; // number of cycles the brake will be applied, updated during braking mode.
brake.time_updated_pitch = false; // flag the braking time can be re-estimated
}
// final lean angle should be pilot input plus wind compensation
pitch = pilot_pitch + wind_comp_pitch;
break;
case RPMode::BRAKE:
case RPMode::BRAKE_READY_TO_LOITER:
// calculate brake_pitch angle to counter-act velocity
update_brake_angle_from_velocity(brake.pitch, -vel_fw);
// update braking time estimate
if (!brake.time_updated_pitch) {
// check if brake angle is increasing
if (fabsf(brake.pitch) >= brake.angle_max_pitch) {
brake.angle_max_pitch = fabsf(brake.pitch);
} else {
// braking angle has started decreasing so re-estimate braking time
brake.timeout_pitch = 1+(uint16_t)(LOOP_RATE_FACTOR*15L*(int32_t)(fabsf(brake.pitch))/(10L*(int32_t)g.poshold_brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time.
brake.time_updated_pitch = true;
}
}
// if velocity is very low reduce braking time to 0.5seconds
if ((fabsf(vel_fw) <= POSHOLD_SPEED_0) && (brake.timeout_pitch > 50*LOOP_RATE_FACTOR)) {
brake.timeout_pitch = 50*LOOP_RATE_FACTOR;
}
// reduce braking timer
if (brake.timeout_pitch > 0) {
brake.timeout_pitch--;
} else {
// indicate that we are ready to move to Loiter.
// Loiter will only actually be engaged once both pitch_mode and pitch_mode are changed to RPMode::BRAKE_READY_TO_LOITER
// logic for engaging loiter is handled below the pitch and pitch mode switch statements
pitch_mode = RPMode::BRAKE_READY_TO_LOITER;
}
// final lean angle is braking angle + wind compensation angle
pitch = brake.pitch + wind_comp_pitch;
// check for pilot input
if (!is_zero(target_pitch)) {
// init transition to pilot override
pitch_controller_to_pilot_override();
}
break;
case RPMode::BRAKE_TO_LOITER:
case RPMode::LOITER:
// these modes are combined pitch-pitch modes and are handled below
break;
case RPMode::CONTROLLER_TO_PILOT_OVERRIDE:
// update pilot desired pitch angle using latest radio input
// this filters the input so that it returns to zero no faster than the brake-rate
update_pilot_lean_angle(pilot_pitch, target_pitch);
// count-down loiter to pilot timer
if (controller_to_pilot_timer_pitch > 0) {
controller_to_pilot_timer_pitch--;
} else {
// when timer runs out switch to full pilot override for next iteration
pitch_mode = RPMode::PILOT_OVERRIDE;
}
// calculate controller_to_pilot mix ratio
controller_to_pilot_pitch_mix = (float)controller_to_pilot_timer_pitch / (float)POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER;
// mix final loiter lean angle and pilot desired lean angles
pitch = mix_controls(controller_to_pilot_pitch_mix, controller_final_pitch, pilot_pitch + wind_comp_pitch);
break;
}
//
// Shared roll & pitch states (RPMode::BRAKE_TO_LOITER and RPMode::LOITER)
//
// switch into LOITER mode when both roll and pitch are ready
if (roll_mode == RPMode::BRAKE_READY_TO_LOITER && pitch_mode == RPMode::BRAKE_READY_TO_LOITER) {
roll_mode = RPMode::BRAKE_TO_LOITER;
pitch_mode = RPMode::BRAKE_TO_LOITER;
brake.to_loiter_timer = POSHOLD_BRAKE_TO_LOITER_TIMER;
// init loiter controller
loiter_nav->init_target(inertial_nav.get_position_xy_cm());
// set delay to start of wind compensation estimate updates
wind_comp_start_timer = POSHOLD_WIND_COMP_START_TIMER;
}
// roll-mode is used as the combined roll+pitch mode when in BRAKE_TO_LOITER or LOITER modes
if (roll_mode == RPMode::BRAKE_TO_LOITER || roll_mode == RPMode::LOITER) {
// force pitch mode to be same as roll_mode just to keep it consistent (it's not actually used in these states)
pitch_mode = roll_mode;
// handle combined roll+pitch mode
switch (roll_mode) {
case RPMode::BRAKE_TO_LOITER: {
// reduce brake_to_loiter timer
if (brake.to_loiter_timer > 0) {
brake.to_loiter_timer--;
} else {
// progress to full loiter on next iteration
roll_mode = RPMode::LOITER;
pitch_mode = RPMode::LOITER;
}
// mix of brake and loiter controls. 0 = fully brake
// controls, 1 = fully loiter controls
const float brake_to_loiter_mix = (float)brake.to_loiter_timer / (float)POSHOLD_BRAKE_TO_LOITER_TIMER;
// calculate brake.roll and pitch angles to counter-act velocity
update_brake_angle_from_velocity(brake.roll, vel_right);
update_brake_angle_from_velocity(brake.pitch, -vel_fw);
// run loiter controller
loiter_nav->update(false);
// calculate final roll and pitch output by mixing loiter and brake controls
roll = mix_controls(brake_to_loiter_mix, brake.roll + wind_comp_roll, loiter_nav->get_roll());
pitch = mix_controls(brake_to_loiter_mix, brake.pitch + wind_comp_pitch, loiter_nav->get_pitch());
// check for pilot input
if (!is_zero(target_roll) || !is_zero(target_pitch)) {
// if roll input switch to pilot override for roll
if (!is_zero(target_roll)) {
// init transition to pilot override
roll_controller_to_pilot_override();
// switch pitch-mode to brake (but ready to go back to loiter anytime)
// no need to reset brake.pitch here as wind comp has not been updated since last brake.pitch computation
pitch_mode = RPMode::BRAKE_READY_TO_LOITER;
}
// if pitch input switch to pilot override for pitch
if (!is_zero(target_pitch)) {
// init transition to pilot override
pitch_controller_to_pilot_override();
if (is_zero(target_roll)) {
// switch roll-mode to brake (but ready to go back to loiter anytime)
// no need to reset brake.roll here as wind comp has not been updated since last brake.roll computation
roll_mode = RPMode::BRAKE_READY_TO_LOITER;
}
}
}
break;
}
case RPMode::LOITER:
// run loiter controller
loiter_nav->update(false);
// set roll angle based on loiter controller outputs
roll = loiter_nav->get_roll();
pitch = loiter_nav->get_pitch();
// update wind compensation estimate
update_wind_comp_estimate();
// check for pilot input
if (!is_zero(target_roll) || !is_zero(target_pitch)) {
// if roll input switch to pilot override for roll
if (!is_zero(target_roll)) {
// init transition to pilot override
roll_controller_to_pilot_override();
// switch pitch-mode to brake (but ready to go back to loiter anytime)
pitch_mode = RPMode::BRAKE_READY_TO_LOITER;
// reset brake.pitch because wind_comp is now different and should give the compensation of the whole previous loiter angle
brake.pitch = 0.0f;
}
// if pitch input switch to pilot override for pitch
if (!is_zero(target_pitch)) {
// init transition to pilot override
pitch_controller_to_pilot_override();
// if roll not overriden switch roll-mode to brake (but be ready to go back to loiter any time)
if (is_zero(target_roll)) {
roll_mode = RPMode::BRAKE_READY_TO_LOITER;
brake.roll = 0.0f;
}
// if roll not overridden switch roll-mode to brake (but be ready to go back to loiter any time)
}
}
break;
default:
// do nothing for uncombined roll and pitch modes
break;
}
}
// constrain target pitch/roll angles
float angle_max = copter.aparm.angle_max;
roll = constrain_float(roll, -angle_max, angle_max);
pitch = constrain_float(pitch, -angle_max, angle_max);
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(roll, pitch, target_yaw_rate);
// run the vertical position controller and set output throttle
pos_control->update_z_controller();
}
// poshold_update_pilot_lean_angle - update the pilot's filtered lean angle with the latest raw input received
void ModePosHold::update_pilot_lean_angle(float &lean_angle_filtered, float &lean_angle_raw)
{
// if raw input is large or reversing the vehicle's lean angle immediately set the fitlered angle to the new raw angle
if ((lean_angle_filtered > 0 && lean_angle_raw < 0) || (lean_angle_filtered < 0 && lean_angle_raw > 0) || (fabsf(lean_angle_raw) > POSHOLD_STICK_RELEASE_SMOOTH_ANGLE)) {
lean_angle_filtered = lean_angle_raw;
} else {
// lean_angle_raw must be pulling lean_angle_filtered towards zero, smooth the decrease
if (lean_angle_filtered > 0) {
// reduce the filtered lean angle at 5% or the brake rate (whichever is faster).
lean_angle_filtered -= MAX(lean_angle_filtered * POSHOLD_SMOOTH_RATE_FACTOR, MAX(1.0f, g.poshold_brake_rate/(float)LOOP_RATE_FACTOR));
// do not let the filtered angle fall below the pilot's input lean angle.
// the above line pulls the filtered angle down and the below line acts as a catch
lean_angle_filtered = MAX(lean_angle_filtered, lean_angle_raw);
}else{
lean_angle_filtered += MAX(-lean_angle_filtered * POSHOLD_SMOOTH_RATE_FACTOR, MAX(1.0f, g.poshold_brake_rate/(float)LOOP_RATE_FACTOR));
lean_angle_filtered = MIN(lean_angle_filtered, lean_angle_raw);
}
}
}
// mix_controls - mixes two controls based on the mix_ratio
// mix_ratio of 1 = use first_control completely, 0 = use second_control completely, 0.5 = mix evenly
float ModePosHold::mix_controls(float mix_ratio, float first_control, float second_control)
{
mix_ratio = constrain_float(mix_ratio, 0.0f, 1.0f);
return mix_ratio * first_control + (1.0f - mix_ratio) * second_control;
}
// update_brake_angle_from_velocity - updates the brake_angle based on the vehicle's velocity and brake_gain
// brake_angle is slewed with the wpnav.poshold_brake_rate and constrained by the wpnav.poshold_braking_angle_max
// velocity is assumed to be in the same direction as lean angle so for pitch you should provide the velocity backwards (i.e. -ve forward velocity)
void ModePosHold::update_brake_angle_from_velocity(float &brake_angle, float velocity)
{
float lean_angle;
float brake_rate = g.poshold_brake_rate;
brake_rate /= (float)LOOP_RATE_FACTOR;
if (brake_rate <= 1.0f) {
brake_rate = 1.0f;
}
// calculate velocity-only based lean angle
if (velocity >= 0) {
lean_angle = -brake.gain * velocity * (1.0f + 500.0f / (velocity + 60.0f));
} else {
lean_angle = -brake.gain * velocity * (1.0f + 500.0f / (-velocity + 60.0f));
}
// do not let lean_angle be too far from brake_angle
brake_angle = constrain_float(lean_angle, brake_angle - brake_rate, brake_angle + brake_rate);
// constrain final brake_angle
brake_angle = constrain_float(brake_angle, -(float)g.poshold_brake_angle_max, (float)g.poshold_brake_angle_max);
}
// initialise wind compensation estimate back to zero
void ModePosHold::init_wind_comp_estimate()
{
wind_comp_ef.zero();
wind_comp_timer = 0;
wind_comp_roll = 0.0f;
wind_comp_pitch = 0.0f;
}
// update_wind_comp_estimate - updates wind compensation estimate
// should be called at the maximum loop rate when loiter is engaged
void ModePosHold::update_wind_comp_estimate()
{
// check wind estimate start has not been delayed
if (wind_comp_start_timer > 0) {
wind_comp_start_timer--;
return;
}
// check horizontal velocity is low
if (inertial_nav.get_speed_xy_cms() > POSHOLD_WIND_COMP_ESTIMATE_SPEED_MAX) {
return;
}
// get position controller accel target
const Vector3f& accel_target = pos_control->get_accel_target_cmss();
// update wind compensation in earth-frame lean angles
if (is_zero(wind_comp_ef.x)) {
// if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction
wind_comp_ef.x = accel_target.x;
} else {
// low pass filter the position controller's lean angle output
wind_comp_ef.x = (1.0f-TC_WIND_COMP)*wind_comp_ef.x + TC_WIND_COMP*accel_target.x;
}
if (is_zero(wind_comp_ef.y)) {
// if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction
wind_comp_ef.y = accel_target.y;
} else {
// low pass filter the position controller's lean angle output
wind_comp_ef.y = (1.0f-TC_WIND_COMP)*wind_comp_ef.y + TC_WIND_COMP*accel_target.y;
}
// limit acceleration
const float accel_lim_cmss = tanf(radians(POSHOLD_WIND_COMP_LEAN_PCT_MAX * copter.aparm.angle_max * 0.01f)) * 981.0f;
const float wind_comp_ef_len = wind_comp_ef.length();
if (!is_zero(accel_lim_cmss) && (wind_comp_ef_len > accel_lim_cmss)) {
wind_comp_ef *= accel_lim_cmss / wind_comp_ef_len;
}
}
// get_wind_comp_lean_angles - retrieve wind compensation angles in body frame roll and pitch angles
// should be called at the maximum loop rate
void ModePosHold::get_wind_comp_lean_angles(float &roll_angle, float &pitch_angle)
{
// reduce rate to 10hz
wind_comp_timer++;
if (wind_comp_timer < POSHOLD_WIND_COMP_TIMER_10HZ) {
return;
}
wind_comp_timer = 0;
// convert earth frame desired accelerations to body frame roll and pitch lean angles
roll_angle = atanf((-wind_comp_ef.x*ahrs.sin_yaw() + wind_comp_ef.y*ahrs.cos_yaw())/(GRAVITY_MSS*100))*(18000.0f/M_PI);
pitch_angle = atanf(-(wind_comp_ef.x*ahrs.cos_yaw() + wind_comp_ef.y*ahrs.sin_yaw())/(GRAVITY_MSS*100))*(18000.0f/M_PI);
}
// roll_controller_to_pilot_override - initialises transition from a controller submode (brake or loiter) to a pilot override on roll axis
void ModePosHold::roll_controller_to_pilot_override()
{
roll_mode = RPMode::CONTROLLER_TO_PILOT_OVERRIDE;
controller_to_pilot_timer_roll = POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER;
// initialise pilot_roll to 0, wind_comp will be updated to compensate and poshold_update_pilot_lean_angle function shall not smooth this transition at next iteration. so 0 is the right value
pilot_roll = 0.0f;
// store final controller output for mixing with pilot input
controller_final_roll = roll;
}
// pitch_controller_to_pilot_override - initialises transition from a controller submode (brake or loiter) to a pilot override on roll axis
void ModePosHold::pitch_controller_to_pilot_override()
{
pitch_mode = RPMode::CONTROLLER_TO_PILOT_OVERRIDE;
controller_to_pilot_timer_pitch = POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER;
// initialise pilot_pitch to 0, wind_comp will be updated to compensate and update_pilot_lean_angle function shall not smooth this transition at next iteration. so 0 is the right value
pilot_pitch = 0.0f;
// store final loiter outputs for mixing with pilot input
controller_final_pitch = pitch;
}
#endif