mirror of https://github.com/ArduPilot/ardupilot
1446 lines
39 KiB
Plaintext
1446 lines
39 KiB
Plaintext
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#define THISFIRMWARE "ArduCopter V2.0.44 Beta"
|
|
/*
|
|
ArduCopter Version 2.0 Beta
|
|
Authors: Jason Short
|
|
Based on code and ideas from the Arducopter team: Jose Julio, Randy Mackay, Jani Hirvinen
|
|
Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier
|
|
|
|
|
|
This firmware is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
Special Thanks for Contributors:
|
|
|
|
Hein Hollander :Octo Support
|
|
Dani Saez :V Ocoto Support
|
|
Max Levine :Tri Support, Graphics
|
|
Jose Julio :Stabilization Control laws
|
|
Randy MacKay :Heli Support
|
|
Jani Hiriven :Testing feedback
|
|
Andrew Tridgell :Mavlink Support
|
|
James Goppert :Mavlink Support
|
|
Doug Weibel :Libraries
|
|
Mike Smith :Libraries, Coding support
|
|
HappyKillmore :Mavlink GCS
|
|
Michael Oborne :Mavlink GCS
|
|
Jack Dunkle :Alpha testing
|
|
Christof Schmid :Alpha testing
|
|
Oliver :Piezo support
|
|
Guntars :Arming safety suggestion
|
|
|
|
And much more so PLEASE PM me on DIYDRONES to add your contribution to the List
|
|
|
|
*/
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Header includes
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// AVR runtime
|
|
#include <avr/io.h>
|
|
#include <avr/eeprom.h>
|
|
#include <avr/pgmspace.h>
|
|
#include <math.h>
|
|
|
|
// Libraries
|
|
#include <FastSerial.h>
|
|
#include <AP_Common.h>
|
|
#include <APM_RC.h> // ArduPilot Mega RC Library
|
|
#include <AP_GPS.h> // ArduPilot GPS library
|
|
#include <Wire.h> // Arduino I2C lib
|
|
#include <SPI.h> // Arduino SPI lib
|
|
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library
|
|
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
|
|
#include <APM_BMP085.h> // ArduPilot Mega BMP085 Library
|
|
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
|
|
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
|
|
#include <AP_IMU.h> // ArduPilot Mega IMU Library
|
|
#include <AP_DCM.h> // ArduPilot Mega DCM Library
|
|
#include <APM_PI.h> // PI library
|
|
#include <RC_Channel.h> // RC Channel Library
|
|
#include <AP_RangeFinder.h> // Range finder library
|
|
#include <AP_OpticalFlow.h> // Optical Flow library
|
|
#include <ModeFilter.h>
|
|
#include <GCS_MAVLink.h> // MAVLink GCS definitions
|
|
#include <memcheck.h>
|
|
|
|
// Configuration
|
|
#include "defines.h"
|
|
#include "config.h"
|
|
|
|
// Local modules
|
|
#include "Parameters.h"
|
|
#include "GCS.h"
|
|
#include "HIL.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Serial ports
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Note that FastSerial port buffers are allocated at ::begin time,
|
|
// so there is not much of a penalty to defining ports that we don't
|
|
// use.
|
|
//
|
|
FastSerialPort0(Serial); // FTDI/console
|
|
FastSerialPort1(Serial1); // GPS port
|
|
FastSerialPort3(Serial3); // Telemetry port
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Parameters
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Global parameters are all contained within the 'g' class.
|
|
//
|
|
static Parameters g;
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// prototypes
|
|
static void update_events(void);
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Sensors
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// There are three basic options related to flight sensor selection.
|
|
//
|
|
// - Normal flight mode. Real sensors are used.
|
|
// - HIL Attitude mode. Most sensors are disabled, as the HIL
|
|
// protocol supplies attitude information directly.
|
|
// - HIL Sensors mode. Synthetic sensors are configured that
|
|
// supply data from the simulation.
|
|
//
|
|
|
|
// All GPS access should be through this pointer.
|
|
static GPS *g_gps;
|
|
|
|
// flight modes convenience array
|
|
static AP_Int8 *flight_modes = &g.flight_mode1;
|
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED
|
|
|
|
// real sensors
|
|
AP_ADC_ADS7844 adc;
|
|
APM_BMP085_Class barometer;
|
|
AP_Compass_HMC5843 compass(Parameters::k_param_compass);
|
|
|
|
|
|
// real GPS selection
|
|
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO
|
|
AP_GPS_Auto g_gps_driver(&Serial1, &g_gps);
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA
|
|
AP_GPS_NMEA g_gps_driver(&Serial1);
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
|
|
AP_GPS_SIRF g_gps_driver(&Serial1);
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
|
|
AP_GPS_UBLOX g_gps_driver(&Serial1);
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
|
|
AP_GPS_MTK g_gps_driver(&Serial1);
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16
|
|
AP_GPS_MTK16 g_gps_driver(&Serial1);
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
|
|
AP_GPS_None g_gps_driver(NULL);
|
|
|
|
#else
|
|
#error Unrecognised GPS_PROTOCOL setting.
|
|
#endif // GPS PROTOCOL
|
|
|
|
#elif HIL_MODE == HIL_MODE_SENSORS
|
|
// sensor emulators
|
|
AP_ADC_HIL adc;
|
|
APM_BMP085_HIL_Class barometer;
|
|
AP_Compass_HIL compass;
|
|
AP_GPS_HIL g_gps_driver(NULL);
|
|
|
|
#elif HIL_MODE == HIL_MODE_ATTITUDE
|
|
AP_ADC_HIL adc;
|
|
AP_DCM_HIL dcm;
|
|
AP_GPS_HIL g_gps_driver(NULL);
|
|
AP_Compass_HIL compass; // never used
|
|
AP_IMU_Shim imu; // never used
|
|
#ifdef OPTFLOW_ENABLED
|
|
AP_OpticalFlow_ADNS3080 optflow;
|
|
#endif
|
|
static int32_t gps_base_alt;
|
|
#else
|
|
#error Unrecognised HIL_MODE setting.
|
|
#endif // HIL MODE
|
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED
|
|
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK
|
|
GCS_MAVLINK hil(Parameters::k_param_streamrates_port0);
|
|
#elif HIL_PROTOCOL == HIL_PROTOCOL_XPLANE
|
|
HIL_XPLANE hil;
|
|
#endif // HIL PROTOCOL
|
|
#endif // HIL_MODE
|
|
|
|
// We may have a hil object instantiated just for mission planning
|
|
#if HIL_MODE == HIL_MODE_DISABLED && HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && HIL_PORT == 0
|
|
GCS_MAVLINK hil(Parameters::k_param_streamrates_port0);
|
|
#endif
|
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
#if HIL_MODE != HIL_MODE_SENSORS
|
|
// Normal
|
|
AP_IMU_Oilpan imu(&adc, Parameters::k_param_IMU_calibration);
|
|
#else
|
|
// hil imu
|
|
AP_IMU_Shim imu;
|
|
#endif
|
|
// normal dcm
|
|
AP_DCM dcm(&imu, g_gps);
|
|
|
|
#ifdef OPTFLOW_ENABLED
|
|
AP_OpticalFlow_ADNS3080 optflow;
|
|
#endif
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// GCS selection
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK
|
|
GCS_MAVLINK gcs(Parameters::k_param_streamrates_port3);
|
|
#else
|
|
// If we are not using a GCS, we need a stub that does nothing.
|
|
GCS_Class gcs;
|
|
#endif
|
|
|
|
//#include <GCS_SIMPLE.h>
|
|
//GCS_SIMPLE gcs_simple(&Serial);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// SONAR selection
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
ModeFilter sonar_mode_filter;
|
|
|
|
#if SONAR_TYPE == MAX_SONAR_XL
|
|
AP_RangeFinder_MaxsonarXL sonar(&adc, &sonar_mode_filter);//(SONAR_PORT, &adc);
|
|
#else
|
|
#error Unrecognised SONAR_TYPE setting.
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Global variables
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static const char *comma = ",";
|
|
|
|
static const char* flight_mode_strings[] = {
|
|
"STABILIZE",
|
|
"ACRO",
|
|
"ALT_HOLD",
|
|
"AUTO",
|
|
"GUIDED",
|
|
"LOITER",
|
|
"RTL",
|
|
"CIRCLE"};
|
|
|
|
/* Radio values
|
|
Channel assignments
|
|
1 Ailerons (rudder if no ailerons)
|
|
2 Elevator
|
|
3 Throttle
|
|
4 Rudder (if we have ailerons)
|
|
5 Mode - 3 position switch
|
|
6 User assignable
|
|
7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second)
|
|
8 TBD
|
|
*/
|
|
|
|
// test
|
|
//Vector3f accels_rot;
|
|
//float accel_gain = 20;
|
|
|
|
// temp
|
|
int y_actual_speed;
|
|
int y_rate_error;
|
|
|
|
// calc the
|
|
int x_actual_speed;
|
|
int x_rate_error;
|
|
|
|
// Radio
|
|
// -----
|
|
static byte control_mode = STABILIZE;
|
|
static byte old_control_mode = STABILIZE;
|
|
static byte oldSwitchPosition; // for remembering the control mode switch
|
|
static int motor_out[8];
|
|
static bool do_simple = false;
|
|
|
|
// Heli
|
|
// ----
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
static float heli_rollFactor[3], heli_pitchFactor[3]; // only required for 3 swashplate servos
|
|
static int heli_servo_min[3], heli_servo_max[3]; // same here. for yaw servo we use heli_servo4_min/max parameter directly
|
|
static int heli_servo_out[4];
|
|
#endif
|
|
|
|
// Failsafe
|
|
// --------
|
|
static boolean failsafe; // did our throttle dip below the failsafe value?
|
|
static boolean ch3_failsafe;
|
|
static boolean motor_armed;
|
|
static boolean motor_auto_armed; // if true,
|
|
|
|
// PIDs
|
|
// ----
|
|
//int max_stabilize_dampener; //
|
|
//int max_yaw_dampener; //
|
|
static Vector3f omega;
|
|
float tuning_value;
|
|
|
|
// LED output
|
|
// ----------
|
|
static boolean motor_light; // status of the Motor safety
|
|
static boolean GPS_light; // status of the GPS light
|
|
static byte led_mode = NORMAL_LEDS;
|
|
|
|
// GPS variables
|
|
// -------------
|
|
static const float t7 = 10000000.0; // used to scale GPS values for EEPROM storage
|
|
static float scaleLongUp = 1; // used to reverse longitude scaling
|
|
static float scaleLongDown = 1; // used to reverse longitude scaling
|
|
static byte ground_start_count = 10; // have we achieved first lock and set Home?
|
|
static bool did_ground_start = false; // have we ground started after first arming
|
|
|
|
// Location & Navigation
|
|
// ---------------------
|
|
static const float radius_of_earth = 6378100; // meters
|
|
static const float gravity = 9.81; // meters/ sec^2
|
|
//static long nav_bearing; // deg * 100 : 0 to 360 current desired bearing to navigate
|
|
static long target_bearing; // deg * 100 : 0 to 360 location of the plane to the target
|
|
|
|
//static bool xtrack_enabled = false;
|
|
//static long crosstrack_bearing; // deg * 100 : 0 to 360 desired angle of plane to target
|
|
//static long crosstrack_correction; // deg * 100 : 0 to 360 desired angle of plane to target
|
|
|
|
static int climb_rate; // m/s * 100 - For future implementation of controlled ascent/descent by rate
|
|
static byte wp_control; // used to control - navgation or loiter
|
|
|
|
static byte command_must_index; // current command memory location
|
|
static byte command_may_index; // current command memory location
|
|
static byte command_must_ID; // current command ID
|
|
static byte command_may_ID; // current command ID
|
|
static byte wp_verify_byte; // used for tracking state of navigating waypoints
|
|
|
|
static float cos_roll_x = 1;
|
|
static float cos_pitch_x = 1;
|
|
static float cos_yaw_x = 1;
|
|
static float sin_pitch_y, sin_yaw_y, sin_roll_y;
|
|
static long initial_simple_bearing; // used for Simple mode
|
|
static float simple_sin_y, simple_cos_x;
|
|
static float boost; // used to give a little extra to maintain altitude
|
|
|
|
// Acro
|
|
#if CH7_OPTION == CH7_FLIP
|
|
static bool do_flip = false;
|
|
#endif
|
|
|
|
// Airspeed
|
|
// --------
|
|
static int airspeed; // m/s * 100
|
|
|
|
// Location Errors
|
|
// ---------------
|
|
//static long bearing_error; // deg * 100 : 0 to 36000
|
|
static long altitude_error; // meters * 100 we are off in altitude
|
|
static long old_altitude;
|
|
static long yaw_error; // how off are we pointed
|
|
static long long_error, lat_error; // temp for debugging
|
|
|
|
// Battery Sensors
|
|
// ---------------
|
|
static float battery_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage of total battery, initialized above threshold for filter
|
|
static float battery_voltage1 = LOW_VOLTAGE * 1.05; // Battery Voltage of cell 1, initialized above threshold for filter
|
|
static float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2, initialized above threshold for filter
|
|
static float battery_voltage3 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3, initialized above threshold for filter
|
|
static float battery_voltage4 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3 + 4, initialized above threshold for filter
|
|
|
|
static float current_amps;
|
|
static float current_total;
|
|
static bool low_batt = false;
|
|
|
|
// Barometer Sensor variables
|
|
// --------------------------
|
|
static long abs_pressure;
|
|
static long ground_pressure;
|
|
static int ground_temperature;
|
|
|
|
// Altitude Sensor variables
|
|
// ----------------------
|
|
static int sonar_alt;
|
|
static int baro_alt;
|
|
//static int baro_alt_offset;
|
|
static byte altitude_sensor = BARO; // used to know which sensor is active, BARO or SONAR
|
|
static int altitude_rate;
|
|
|
|
// flight mode specific
|
|
// --------------------
|
|
static byte yaw_mode;
|
|
static byte roll_pitch_mode;
|
|
static byte throttle_mode;
|
|
|
|
static boolean takeoff_complete; // Flag for using take-off controls
|
|
static boolean land_complete;
|
|
//static int landing_distance; // meters;
|
|
static long old_alt; // used for managing altitude rates
|
|
static int velocity_land;
|
|
static byte yaw_tracking = MAV_ROI_WPNEXT; // no tracking, point at next wp, or at a target
|
|
|
|
// Loiter management
|
|
// -----------------
|
|
static long original_target_bearing; // deg * 100, used to check we are not passing the WP
|
|
static long old_target_bearing; // used to track difference in angle
|
|
|
|
static int loiter_total; // deg : how many times to loiter * 360
|
|
//static int loiter_delta; // deg : how far we just turned
|
|
static int loiter_sum; // deg : how far we have turned around a waypoint
|
|
static long loiter_time; // millis : when we started LOITER mode
|
|
static int loiter_time_max; // millis : how long to stay in LOITER mode
|
|
|
|
|
|
// these are the values for navigation control functions
|
|
// ----------------------------------------------------
|
|
static long nav_roll; // deg * 100 : target roll angle
|
|
static long nav_pitch; // deg * 100 : target pitch angle
|
|
static long nav_yaw; // deg * 100 : target yaw angle
|
|
static long auto_yaw; // deg * 100 : target yaw angle
|
|
static long nav_lat; // for error calcs
|
|
static long nav_lon; // for error calcs
|
|
static int nav_throttle; // 0-1000 for throttle control
|
|
|
|
static long throttle_integrator; // used to integrate throttle output to predict battery life
|
|
static bool invalid_throttle; // used to control when we calculate nav_throttle
|
|
//static bool set_throttle_cruise_flag = false; // used to track the throttle crouse value
|
|
|
|
static long command_yaw_start; // what angle were we to begin with
|
|
static unsigned long command_yaw_start_time; // when did we start turning
|
|
static unsigned int command_yaw_time; // how long we are turning
|
|
static long command_yaw_end; // what angle are we trying to be
|
|
static long command_yaw_delta; // how many degrees will we turn
|
|
static int command_yaw_speed; // how fast to turn
|
|
static byte command_yaw_dir;
|
|
static byte command_yaw_relative;
|
|
|
|
static int auto_level_counter;
|
|
|
|
// Waypoints
|
|
// ---------
|
|
static long wp_distance; // meters - distance between plane and next waypoint
|
|
static long wp_totalDistance; // meters - distance between old and next waypoint
|
|
//static byte next_wp_index; // Current active command index
|
|
|
|
// repeating event control
|
|
// -----------------------
|
|
static byte event_id; // what to do - see defines
|
|
static unsigned long event_timer; // when the event was asked for in ms
|
|
static unsigned int event_delay; // how long to delay the next firing of event in millis
|
|
static int event_repeat; // how many times to fire : 0 = forever, 1 = do once, 2 = do twice
|
|
static int event_value; // per command value, such as PWM for servos
|
|
static int event_undo_value; // the value used to undo commands
|
|
//static byte repeat_forever;
|
|
static byte undo_event; // counter for timing the undo
|
|
|
|
// delay command
|
|
// --------------
|
|
static long condition_value; // used in condition commands (eg delay, change alt, etc.)
|
|
static long condition_start;
|
|
static int condition_rate;
|
|
|
|
// land command
|
|
// ------------
|
|
static long land_start; // when we intiated command in millis()
|
|
static long original_alt; // altitide reference for start of command
|
|
|
|
// 3D Location vectors
|
|
// -------------------
|
|
static struct Location home; // home location
|
|
static struct Location prev_WP; // last waypoint
|
|
static struct Location current_loc; // current location
|
|
static struct Location next_WP; // next waypoint
|
|
static struct Location target_WP; // where do we want to you towards?
|
|
static struct Location simple_WP; //
|
|
static struct Location next_command; // command preloaded
|
|
static struct Location guided_WP; // guided mode waypoint
|
|
static long target_altitude; // used for
|
|
static boolean home_is_set; // Flag for if we have g_gps lock and have set the home location
|
|
static boolean new_location; // flag to tell us if location has been updated
|
|
|
|
// IMU variables
|
|
// -------------
|
|
static float G_Dt = 0.02; // Integration time for the gyros (DCM algorithm)
|
|
|
|
// Performance monitoring
|
|
// ----------------------
|
|
static long perf_mon_timer;
|
|
//static float imu_health; // Metric based on accel gain deweighting
|
|
static int G_Dt_max; // Max main loop cycle time in milliseconds
|
|
static int gps_fix_count;
|
|
static byte gps_watchdog;
|
|
|
|
// System Timers
|
|
// --------------
|
|
static unsigned long fast_loopTimer; // Time in miliseconds of main control loop
|
|
static byte medium_loopCounter; // Counters for branching from main control loop to slower loops
|
|
static uint16_t throttle_timer;
|
|
static float delta_throttle;
|
|
|
|
static unsigned long fiftyhz_loopTimer;
|
|
|
|
static byte slow_loopCounter;
|
|
static int superslow_loopCounter;
|
|
static byte simple_timer; // for limiting the execution of flight mode thingys
|
|
|
|
|
|
static float dTnav; // Delta Time in milliseconds for navigation computations
|
|
static unsigned long nav_loopTimer; // used to track the elapsed ime for GPS nav
|
|
|
|
static byte counter_one_herz;
|
|
static bool GPS_enabled = false;
|
|
static byte loop_step;
|
|
static bool new_radio_frame;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Top-level logic
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void setup() {
|
|
memcheck_init();
|
|
init_ardupilot();
|
|
}
|
|
|
|
void loop()
|
|
{
|
|
long timer = micros();
|
|
// We want this to execute fast
|
|
// ----------------------------
|
|
if ((timer - fast_loopTimer) >= 4000) {
|
|
//PORTK |= B00010000;
|
|
G_Dt = (float)(timer - fast_loopTimer) / 1000000.f; // used by PI Loops
|
|
fast_loopTimer = timer;
|
|
|
|
// Execute the fast loop
|
|
// ---------------------
|
|
fast_loop();
|
|
}
|
|
//PORTK &= B11101111;
|
|
|
|
if ((timer - fiftyhz_loopTimer) >= 20000) {
|
|
fiftyhz_loopTimer = timer;
|
|
//PORTK |= B01000000;
|
|
|
|
// reads all of the necessary trig functions for cameras, throttle, etc.
|
|
update_trig();
|
|
|
|
medium_loop();
|
|
|
|
// Stuff to run at full 50hz, but after the loops
|
|
fifty_hz_loop();
|
|
|
|
counter_one_herz++;
|
|
|
|
if(counter_one_herz == 50){
|
|
super_slow_loop();
|
|
counter_one_herz = 0;
|
|
}
|
|
|
|
if (millis() - perf_mon_timer > 20000) {
|
|
gcs.send_message(MSG_PERF_REPORT);
|
|
|
|
if (g.log_bitmask & MASK_LOG_PM)
|
|
Log_Write_Performance();
|
|
|
|
resetPerfData();
|
|
}
|
|
//PORTK &= B10111111;
|
|
}
|
|
}
|
|
// PORTK |= B01000000;
|
|
// PORTK &= B10111111;
|
|
|
|
// Main loop
|
|
static void fast_loop()
|
|
{
|
|
// try to send any deferred messages if the serial port now has
|
|
// some space available
|
|
gcs.send_message(MSG_RETRY_DEFERRED);
|
|
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && (HIL_MODE != HIL_MODE_DISABLED || HIL_PORT == 0)
|
|
hil.send_message(MSG_RETRY_DEFERRED);
|
|
#endif
|
|
|
|
// Read radio
|
|
// ----------
|
|
read_radio();
|
|
|
|
// IMU DCM Algorithm
|
|
read_AHRS();
|
|
|
|
// Look for slow loop times
|
|
// ------------------------
|
|
//if (delta_ms_fast_loop > G_Dt_max)
|
|
// G_Dt_max = delta_ms_fast_loop;
|
|
|
|
// custom code/exceptions for flight modes
|
|
// ---------------------------------------
|
|
update_yaw_mode();
|
|
update_roll_pitch_mode();
|
|
|
|
// write out the servo PWM values
|
|
// ------------------------------
|
|
set_servos_4();
|
|
}
|
|
|
|
static void medium_loop()
|
|
{
|
|
// This is the start of the medium (10 Hz) loop pieces
|
|
// -----------------------------------------
|
|
switch(medium_loopCounter) {
|
|
|
|
// This case deals with the GPS and Compass
|
|
//-----------------------------------------
|
|
case 0:
|
|
loop_step = 1;
|
|
|
|
medium_loopCounter++;
|
|
|
|
#ifdef OPTFLOW_ENABLED
|
|
if(g.optflow_enabled){
|
|
optflow.read();
|
|
optflow.update_position(dcm.roll, dcm.pitch, cos_yaw_x, sin_yaw_y, current_loc.alt); // updates internal lon and lat with estimation based on optical flow
|
|
|
|
// write to log
|
|
if (g.log_bitmask & MASK_LOG_OPTFLOW){
|
|
Log_Write_Optflow();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if(GPS_enabled){
|
|
update_GPS();
|
|
}
|
|
|
|
//readCommands();
|
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
if(g.compass_enabled){
|
|
compass.read(); // Read magnetometer
|
|
compass.calculate(dcm.get_dcm_matrix()); // Calculate heading
|
|
compass.null_offsets(dcm.get_dcm_matrix());
|
|
}
|
|
#endif
|
|
|
|
// auto_trim, uses an auto_level algorithm
|
|
auto_trim();
|
|
|
|
// record throttle output
|
|
// ------------------------------
|
|
throttle_integrator += g.rc_3.servo_out;
|
|
break;
|
|
|
|
// This case performs some navigation computations
|
|
//------------------------------------------------
|
|
case 1:
|
|
loop_step = 2;
|
|
medium_loopCounter++;
|
|
|
|
// Auto control modes:
|
|
if(g_gps->new_data && g_gps->fix){
|
|
loop_step = 11;
|
|
|
|
// invalidate GPS data
|
|
g_gps->new_data = false;
|
|
|
|
// we are not tracking I term on navigation, so this isn't needed
|
|
dTnav = (float)(millis() - nav_loopTimer)/ 1000.0;
|
|
nav_loopTimer = millis();
|
|
|
|
// calculate the copter's desired bearing and WP distance
|
|
// ------------------------------------------------------
|
|
if(navigate()){
|
|
|
|
// control mode specific updates
|
|
// -----------------------------
|
|
update_navigation();
|
|
|
|
if (g.log_bitmask & MASK_LOG_NTUN)
|
|
Log_Write_Nav_Tuning();
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
// command processing
|
|
//-------------------
|
|
case 2:
|
|
loop_step = 3;
|
|
medium_loopCounter++;
|
|
|
|
// Read altitude from sensors
|
|
// --------------------------
|
|
update_altitude();
|
|
|
|
// invalidate the throttle hold value
|
|
// ----------------------------------
|
|
invalid_throttle = true;
|
|
|
|
// calc boost
|
|
// ----------
|
|
boost = get_angle_boost();
|
|
|
|
break;
|
|
|
|
// This case deals with sending high rate telemetry
|
|
//-------------------------------------------------
|
|
case 3:
|
|
loop_step = 4;
|
|
medium_loopCounter++;
|
|
|
|
// perform next command
|
|
// --------------------
|
|
if(control_mode == AUTO){
|
|
update_commands();
|
|
}
|
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
if(motor_armed){
|
|
if (g.log_bitmask & MASK_LOG_ATTITUDE_MED)
|
|
Log_Write_Attitude();
|
|
|
|
if (g.log_bitmask & MASK_LOG_CTUN)
|
|
Log_Write_Control_Tuning();
|
|
}
|
|
#endif
|
|
|
|
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK
|
|
gcs.data_stream_send(5,45);
|
|
// send all requested output streams with rates requested
|
|
// between 5 and 45 Hz
|
|
#else
|
|
gcs.send_message(MSG_ATTITUDE); // Sends attitude data
|
|
#endif
|
|
|
|
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && (HIL_MODE != HIL_MODE_DISABLED || HIL_PORT == 0)
|
|
hil.data_stream_send(5,45);
|
|
#endif
|
|
|
|
if (g.log_bitmask & MASK_LOG_MOTORS)
|
|
Log_Write_Motors();
|
|
|
|
break;
|
|
|
|
// This case controls the slow loop
|
|
//---------------------------------
|
|
case 4:
|
|
loop_step = 5;
|
|
medium_loopCounter = 0;
|
|
|
|
if (g.battery_monitoring != 0){
|
|
read_battery();
|
|
}
|
|
|
|
// Accel trims = hold > 2 seconds
|
|
// Throttle cruise = switch less than 1 second
|
|
// --------------------------------------------
|
|
read_trim_switch();
|
|
|
|
// Check for engine arming
|
|
// -----------------------
|
|
arm_motors();
|
|
|
|
|
|
slow_loop();
|
|
break;
|
|
|
|
default:
|
|
// this is just a catch all
|
|
// ------------------------
|
|
medium_loopCounter = 0;
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
// stuff that happens at 50 hz
|
|
// ---------------------------
|
|
static void fifty_hz_loop()
|
|
{
|
|
// moved to slower loop
|
|
// --------------------
|
|
update_throttle_mode();
|
|
|
|
// Read Sonar
|
|
// ----------
|
|
if(g.sonar_enabled){
|
|
sonar_alt = sonar.read();
|
|
}
|
|
|
|
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && HIL_MODE != HIL_MODE_DISABLED
|
|
// HIL for a copter needs very fast update of the servo values
|
|
hil.send_message(MSG_RADIO_OUT);
|
|
#endif
|
|
|
|
camera_stabilization();
|
|
|
|
# if HIL_MODE == HIL_MODE_DISABLED
|
|
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST)
|
|
Log_Write_Attitude();
|
|
|
|
if (g.log_bitmask & MASK_LOG_RAW)
|
|
Log_Write_Raw();
|
|
#endif
|
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED && HIL_PORT != GCS_PORT
|
|
// kick the HIL to process incoming sensor packets
|
|
hil.update();
|
|
|
|
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK
|
|
hil.data_stream_send(45,1000);
|
|
#else
|
|
hil.send_message(MSG_SERVO_OUT);
|
|
#endif
|
|
#elif HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && HIL_MODE == HIL_MODE_DISABLED && HIL_PORT == 0
|
|
// Case for hil object on port 0 just for mission planning
|
|
hil.update();
|
|
hil.data_stream_send(45,1000);
|
|
#endif
|
|
|
|
// kick the GCS to process uplink data
|
|
gcs.update();
|
|
|
|
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK
|
|
gcs.data_stream_send(45,1000);
|
|
#endif
|
|
|
|
#if FRAME_CONFIG == TRI_FRAME
|
|
// servo Yaw
|
|
g.rc_4.calc_pwm();
|
|
APM_RC.OutputCh(CH_7, g.rc_4.radio_out);
|
|
#endif
|
|
}
|
|
|
|
|
|
static void slow_loop()
|
|
{
|
|
// This is the slow (3 1/3 Hz) loop pieces
|
|
//----------------------------------------
|
|
switch (slow_loopCounter){
|
|
case 0:
|
|
loop_step = 6;
|
|
slow_loopCounter++;
|
|
superslow_loopCounter++;
|
|
|
|
if(superslow_loopCounter > 800){ // every 4 minutes
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
if(g.rc_3.control_in == 0 && g.compass_enabled){
|
|
compass.save_offsets();
|
|
superslow_loopCounter = 0;
|
|
}
|
|
#endif
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
loop_step = 7;
|
|
slow_loopCounter++;
|
|
|
|
// Read 3-position switch on radio
|
|
// -------------------------------
|
|
read_control_switch();
|
|
|
|
// Read main battery voltage if hooked up - does not read the 5v from radio
|
|
// ------------------------------------------------------------------------
|
|
//#if BATTERY_EVENT == 1
|
|
// read_battery();
|
|
//#endif
|
|
|
|
#if AUTO_RESET_LOITER == 1
|
|
if(control_mode == LOITER){
|
|
//if((abs(g.rc_2.control_in) + abs(g.rc_1.control_in)) > 1500){
|
|
// reset LOITER to current position
|
|
//next_WP = current_loc;
|
|
//}
|
|
}
|
|
#endif
|
|
|
|
break;
|
|
|
|
case 2:
|
|
loop_step = 8;
|
|
slow_loopCounter = 0;
|
|
update_events();
|
|
|
|
// blink if we are armed
|
|
update_lights();
|
|
|
|
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK
|
|
gcs.data_stream_send(1,5);
|
|
// send all requested output streams with rates requested
|
|
// between 1 and 5 Hz
|
|
#else
|
|
gcs.send_message(MSG_LOCATION);
|
|
//gcs.send_message(MSG_CPU_LOAD, load*100);
|
|
#endif
|
|
|
|
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && (HIL_MODE != HIL_MODE_DISABLED || HIL_PORT == 0)
|
|
hil.data_stream_send(1,5);
|
|
#endif
|
|
|
|
if(g.radio_tuning > 0)
|
|
tuning();
|
|
|
|
#if MOTOR_LEDS == 1
|
|
update_motor_leds();
|
|
#endif
|
|
|
|
break;
|
|
|
|
default:
|
|
slow_loopCounter = 0;
|
|
break;
|
|
|
|
}
|
|
}
|
|
|
|
// 1Hz loop
|
|
static void super_slow_loop()
|
|
{
|
|
loop_step = 9;
|
|
if (g.log_bitmask & MASK_LOG_CUR)
|
|
Log_Write_Current();
|
|
|
|
gcs.send_message(MSG_HEARTBEAT);
|
|
|
|
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && (HIL_MODE != HIL_MODE_DISABLED || HIL_PORT == 0)
|
|
hil.send_message(MSG_HEARTBEAT);
|
|
#endif
|
|
}
|
|
|
|
static void update_GPS(void)
|
|
{
|
|
loop_step = 10;
|
|
g_gps->update();
|
|
update_GPS_light();
|
|
|
|
//current_loc.lng = 377697000; // Lon * 10 * *7
|
|
//current_loc.lat = -1224318000; // Lat * 10 * *7
|
|
//current_loc.alt = 100; // alt * 10 * *7
|
|
//return;
|
|
if(gps_watchdog < 10){
|
|
gps_watchdog++;
|
|
}else{
|
|
// we have lost GPS signal for a moment. Reduce our error to avoid flyaways
|
|
nav_roll >>= 1;
|
|
nav_pitch >>= 1;
|
|
}
|
|
|
|
if (g_gps->new_data && g_gps->fix) {
|
|
gps_watchdog = 0;
|
|
|
|
// XXX We should be sending GPS data off one of the regular loops so that we send
|
|
// no-GPS-fix data too
|
|
#if GCS_PROTOCOL != GCS_PROTOCOL_MAVLINK
|
|
gcs.send_message(MSG_LOCATION);
|
|
#endif
|
|
|
|
// for performance
|
|
// ---------------
|
|
gps_fix_count++;
|
|
|
|
if(ground_start_count > 1){
|
|
ground_start_count--;
|
|
|
|
} else if (ground_start_count == 1) {
|
|
|
|
// We countdown N number of good GPS fixes
|
|
// so that the altitude is more accurate
|
|
// -------------------------------------
|
|
if (current_loc.lat == 0) {
|
|
SendDebugln("!! bad loc");
|
|
ground_start_count = 5;
|
|
|
|
}else{
|
|
//Serial.printf("init Home!");
|
|
|
|
// reset our nav loop timer
|
|
//nav_loopTimer = millis();
|
|
init_home();
|
|
|
|
// init altitude
|
|
// commented out because we aren't using absolute altitude
|
|
// current_loc.alt = home.alt;
|
|
ground_start_count = 0;
|
|
}
|
|
}
|
|
|
|
current_loc.lng = g_gps->longitude; // Lon * 10 * *7
|
|
current_loc.lat = g_gps->latitude; // Lat * 10 * *7
|
|
|
|
if (g.log_bitmask & MASK_LOG_GPS){
|
|
Log_Write_GPS();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void update_yaw_mode(void)
|
|
{
|
|
switch(yaw_mode){
|
|
case YAW_ACRO:
|
|
g.rc_4.servo_out = get_rate_yaw(g.rc_4.control_in);
|
|
return;
|
|
break;
|
|
|
|
case YAW_HOLD:
|
|
// calcualte new nav_yaw offset
|
|
if (control_mode <= STABILIZE){
|
|
nav_yaw = get_nav_yaw_offset(g.rc_4.control_in, g.rc_3.control_in);
|
|
}else{
|
|
nav_yaw = get_nav_yaw_offset(g.rc_4.control_in, 1);
|
|
}
|
|
break;
|
|
|
|
case YAW_LOOK_AT_HOME:
|
|
// copter will always point at home
|
|
if(home_is_set){
|
|
nav_yaw = point_at_home_yaw();
|
|
} else {
|
|
nav_yaw = 0;
|
|
}
|
|
break;
|
|
|
|
case YAW_AUTO:
|
|
nav_yaw += constrain(wrap_180(auto_yaw - nav_yaw), -20, 20);
|
|
nav_yaw = wrap_360(nav_yaw);
|
|
break;
|
|
}
|
|
|
|
// Yaw control
|
|
g.rc_4.servo_out = get_stabilize_yaw(nav_yaw);
|
|
|
|
//Serial.printf("4: %d\n",g.rc_4.servo_out);
|
|
}
|
|
|
|
void update_roll_pitch_mode(void)
|
|
{
|
|
#if CH7_OPTION == CH7_FLIP
|
|
if (do_flip){
|
|
roll_flip();
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
int control_roll = 0, control_pitch = 0;
|
|
|
|
//read_radio();
|
|
|
|
if(do_simple && new_radio_frame){
|
|
new_radio_frame = false;
|
|
simple_timer++;
|
|
|
|
int delta = wrap_360(dcm.yaw_sensor - initial_simple_bearing)/100;
|
|
|
|
if (simple_timer == 1){
|
|
// roll
|
|
simple_cos_x = sin(radians(90 - delta));
|
|
|
|
}else if (simple_timer > 2){
|
|
// pitch
|
|
simple_sin_y = cos(radians(90 - delta));
|
|
simple_timer = 0;
|
|
}
|
|
|
|
// Rotate input by the initial bearing
|
|
control_roll = g.rc_1.control_in * simple_cos_x + g.rc_2.control_in * simple_sin_y;
|
|
control_pitch = -(g.rc_1.control_in * simple_sin_y - g.rc_2.control_in * simple_cos_x);
|
|
|
|
g.rc_1.control_in = control_roll;
|
|
g.rc_2.control_in = control_pitch;
|
|
}
|
|
|
|
|
|
switch(roll_pitch_mode){
|
|
case ROLL_PITCH_ACRO:
|
|
// Roll control
|
|
g.rc_1.servo_out = get_rate_roll(g.rc_1.control_in);
|
|
|
|
// Pitch control
|
|
g.rc_2.servo_out = get_rate_pitch(g.rc_2.control_in);
|
|
break;
|
|
|
|
case ROLL_PITCH_STABLE:
|
|
g.rc_1.servo_out = get_stabilize_roll(g.rc_1.control_in);
|
|
g.rc_2.servo_out = get_stabilize_pitch(g.rc_2.control_in);
|
|
break;
|
|
|
|
case ROLL_PITCH_AUTO:
|
|
// mix in user control with Nav control
|
|
control_roll = g.rc_1.control_mix(nav_roll);
|
|
control_pitch = g.rc_2.control_mix(nav_pitch);
|
|
g.rc_1.servo_out = get_stabilize_roll(control_roll);
|
|
g.rc_2.servo_out = get_stabilize_pitch(control_pitch);
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
// 50 hz update rate, not 250
|
|
void update_throttle_mode(void)
|
|
{
|
|
switch(throttle_mode){
|
|
case THROTTLE_MANUAL:
|
|
if (g.rc_3.control_in > 0){
|
|
g.rc_3.servo_out = g.rc_3.control_in + boost;
|
|
}else{
|
|
g.rc_3.servo_out = 0;
|
|
}
|
|
break;
|
|
|
|
case THROTTLE_HOLD:
|
|
// allow interactive changing of atitude
|
|
adjust_altitude();
|
|
// fall through
|
|
|
|
case THROTTLE_AUTO:
|
|
// 10hz, don't run up i term
|
|
if(invalid_throttle && motor_auto_armed == true){
|
|
// how far off are we
|
|
altitude_error = get_altitude_error();
|
|
|
|
// get the AP throttle
|
|
nav_throttle = get_nav_throttle(altitude_error, 200); //150 = target speed of 1.5m/s
|
|
|
|
// clear the new data flag
|
|
invalid_throttle = false;
|
|
}
|
|
|
|
// apply throttle control at 200 hz
|
|
g.rc_3.servo_out = g.throttle_cruise + nav_throttle + boost;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// called after a GPS read
|
|
static void update_navigation()
|
|
{
|
|
// wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS
|
|
// ------------------------------------------------------------------------
|
|
switch(control_mode){
|
|
case AUTO:
|
|
verify_commands();
|
|
// note: wp_control is handled by commands_logic
|
|
|
|
// calculates desired Yaw
|
|
update_auto_yaw();
|
|
|
|
// calculates the desired Roll and Pitch
|
|
update_nav_wp();
|
|
break;
|
|
|
|
case GUIDED:
|
|
wp_control = WP_MODE;
|
|
|
|
update_auto_yaw();
|
|
update_nav_wp();
|
|
break;
|
|
|
|
case RTL:
|
|
if(wp_distance > 4){
|
|
// calculates desired Yaw
|
|
// XXX this is an experiment
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
update_auto_yaw();
|
|
#endif
|
|
|
|
wp_control = WP_MODE;
|
|
}else{
|
|
// lets just jump to Loiter Mode after RTL
|
|
set_mode(LOITER);
|
|
//xtrack_enabled = false;
|
|
}
|
|
|
|
// calculates the desired Roll and Pitch
|
|
update_nav_wp();
|
|
break;
|
|
|
|
// switch passthrough to LOITER
|
|
case LOITER:
|
|
wp_control = LOITER_MODE;
|
|
|
|
// calculates the desired Roll and Pitch
|
|
update_nav_wp();
|
|
break;
|
|
|
|
case CIRCLE:
|
|
yaw_tracking = MAV_ROI_WPNEXT;
|
|
wp_control = CIRCLE_MODE;
|
|
|
|
// calculates desired Yaw
|
|
update_auto_yaw();
|
|
update_nav_wp();
|
|
break;
|
|
|
|
}
|
|
}
|
|
|
|
static void read_AHRS(void)
|
|
{
|
|
// Perform IMU calculations and get attitude info
|
|
//-----------------------------------------------
|
|
#if HIL_MODE == HIL_MODE_SENSORS
|
|
// update hil before dcm update
|
|
hil.update();
|
|
#endif
|
|
|
|
dcm.update_DCM_fast();
|
|
omega = dcm.get_gyro();
|
|
}
|
|
|
|
static void update_trig(void){
|
|
Vector2f yawvector;
|
|
Matrix3f temp = dcm.get_dcm_matrix();
|
|
|
|
yawvector.x = temp.a.x; // sin
|
|
yawvector.y = temp.b.x; // cos
|
|
yawvector.normalize();
|
|
|
|
|
|
sin_pitch_y = -temp.c.x;
|
|
cos_pitch_x = sqrt(1 - (temp.c.x * temp.c.x));
|
|
|
|
cos_roll_x = temp.c.z / cos_pitch_x;
|
|
sin_roll_y = temp.c.y / cos_pitch_x;
|
|
|
|
cos_yaw_x = yawvector.y; // 0 x = north
|
|
sin_yaw_y = yawvector.x; // 1 y
|
|
|
|
//flat:
|
|
// 0 ° = cp: 1.00, sp: 0.00, cr: 1.00, sr: 0.00, cy: 0.00, sy: 1.00,
|
|
// 90° = cp: 1.00, sp: 0.00, cr: 1.00, sr: 0.00, cy: 1.00, sy: 0.00,
|
|
// 180 = cp: 1.00, sp: 0.10, cr: 1.00, sr: -0.01, cy: 0.00, sy: -1.00,
|
|
// 270 = cp: 1.00, sp: 0.10, cr: 1.00, sr: -0.01, cy: -1.00, sy: 0.00,
|
|
|
|
|
|
//Vector3f accel_filt = imu.get_accel_filtered();
|
|
//accels_rot = dcm.get_dcm_matrix() * imu.get_accel_filtered();
|
|
}
|
|
|
|
// updated at 10hz
|
|
static void update_altitude()
|
|
{
|
|
altitude_sensor = BARO;
|
|
|
|
#if HIL_MODE == HIL_MODE_ATTITUDE
|
|
current_loc.alt = g_gps->altitude - gps_base_alt;
|
|
return;
|
|
#else
|
|
|
|
if(g.sonar_enabled){
|
|
// filter out offset
|
|
float scale;
|
|
|
|
// read barometer
|
|
baro_alt = read_barometer();
|
|
|
|
if(baro_alt < 1000){
|
|
|
|
#if SONAR_TILT_CORRECTION == 1
|
|
// correct alt for angle of the sonar
|
|
float temp = cos_pitch_x * cos_roll_x;
|
|
temp = max(temp, 0.707);
|
|
sonar_alt = (float)sonar_alt * temp;
|
|
#endif
|
|
|
|
scale = (sonar_alt - 400) / 200;
|
|
scale = constrain(scale, 0, 1);
|
|
current_loc.alt = ((float)sonar_alt * (1.0 - scale)) + ((float)baro_alt * scale) + home.alt;
|
|
}else{
|
|
current_loc.alt = baro_alt + home.alt;
|
|
}
|
|
|
|
}else{
|
|
baro_alt = read_barometer();
|
|
// no sonar altitude
|
|
current_loc.alt = baro_alt + home.alt;
|
|
}
|
|
|
|
altitude_rate = (current_loc.alt - old_altitude) * 10; // 10 hz timer
|
|
old_altitude = current_loc.alt;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
adjust_altitude()
|
|
{
|
|
if(g.rc_3.control_in <= 200){
|
|
next_WP.alt -= 1; // 1 meter per second
|
|
next_WP.alt = max(next_WP.alt, (current_loc.alt - 400)); // don't go less than 4 meters below current location
|
|
next_WP.alt = max(next_WP.alt, 100); // don't go less than 1 meter
|
|
}else if (g.rc_3.control_in > 700){
|
|
next_WP.alt += 1; // 1 meter per second
|
|
next_WP.alt = min(next_WP.alt, (current_loc.alt + 400)); // don't go more than 4 meters below current location
|
|
}
|
|
}
|
|
|
|
static void tuning(){
|
|
tuning_value = (float)g.rc_6.control_in / 1000.0;
|
|
|
|
switch(g.radio_tuning){
|
|
case CH6_STABILIZE_KP:
|
|
g.rc_6.set_range(0,8000); // 0 to 8
|
|
g.pi_stabilize_roll.kP(tuning_value);
|
|
g.pi_stabilize_pitch.kP(tuning_value);
|
|
break;
|
|
|
|
case CH6_STABILIZE_KI:
|
|
g.rc_6.set_range(0,300); // 0 to .3
|
|
tuning_value = (float)g.rc_6.control_in / 1000.0;
|
|
g.pi_stabilize_roll.kI(tuning_value);
|
|
g.pi_stabilize_pitch.kI(tuning_value);
|
|
break;
|
|
|
|
case CH6_RATE_KP:
|
|
g.rc_6.set_range(0,300); // 0 to .3
|
|
g.pi_rate_roll.kP(tuning_value);
|
|
g.pi_rate_pitch.kP(tuning_value);
|
|
break;
|
|
|
|
case CH6_RATE_KI:
|
|
g.rc_6.set_range(0,300); // 0 to .3
|
|
g.pi_rate_roll.kI(tuning_value);
|
|
g.pi_rate_pitch.kI(tuning_value);
|
|
break;
|
|
|
|
case CH6_YAW_KP:
|
|
g.rc_6.set_range(0,1000);
|
|
g.pi_stabilize_yaw.kP(tuning_value);
|
|
break;
|
|
|
|
case CH6_YAW_RATE_KP:
|
|
g.rc_6.set_range(0,1000);
|
|
g.pi_rate_yaw.kP(tuning_value);
|
|
break;
|
|
|
|
case CH6_THROTTLE_KP:
|
|
g.rc_6.set_range(0,1000);
|
|
g.pi_throttle.kP(tuning_value);
|
|
break;
|
|
|
|
case CH6_TOP_BOTTOM_RATIO:
|
|
g.rc_6.set_range(800,1000); // .8 to 1
|
|
g.top_bottom_ratio = tuning_value;
|
|
break;
|
|
|
|
case CH6_RELAY:
|
|
g.rc_6.set_range(0,1000);
|
|
if (g.rc_6.control_in > 525) relay_on();
|
|
if (g.rc_6.control_in < 475) relay_off();
|
|
break;
|
|
|
|
case CH6_TRAVERSE_SPEED:
|
|
g.rc_6.set_range(0,1000);
|
|
g.waypoint_speed_max = g.rc_6.control_in;
|
|
break;
|
|
|
|
case CH6_NAV_P:
|
|
g.rc_6.set_range(0,6000);
|
|
g.pi_nav_lat.kP(tuning_value);
|
|
g.pi_nav_lon.kP(tuning_value);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void update_nav_wp()
|
|
{
|
|
if(wp_control == LOITER_MODE){
|
|
|
|
// calc a pitch to the target
|
|
calc_location_error(&next_WP);
|
|
|
|
// use error as the desired rate towards the target
|
|
calc_nav_rate(long_error, lat_error, g.waypoint_speed_max, 0);
|
|
|
|
// rotate pitch and roll to the copter frame of reference
|
|
calc_nav_pitch_roll();
|
|
|
|
}else if(wp_control == CIRCLE_MODE){
|
|
|
|
// check if we have missed the WP
|
|
int loiter_delta = (target_bearing - old_target_bearing)/100;
|
|
|
|
// reset the old value
|
|
old_target_bearing = target_bearing;
|
|
|
|
// wrap values
|
|
if (loiter_delta > 180) loiter_delta -= 360;
|
|
if (loiter_delta < -180) loiter_delta += 360;
|
|
|
|
// sum the angle around the WP
|
|
loiter_sum += abs(loiter_delta);
|
|
|
|
|
|
// creat a virtual waypoint that circles the next_WP
|
|
// Count the degrees we have circulated the WP
|
|
int circle_angle = wrap_360(target_bearing + 3000 + 18000) / 100;
|
|
|
|
target_WP.lng = next_WP.lng + (g.loiter_radius * cos(radians(90 - circle_angle)));
|
|
target_WP.lat = next_WP.lat + (g.loiter_radius * sin(radians(90 - circle_angle)));
|
|
|
|
// calc the lat and long error to the target
|
|
calc_location_error(&target_WP);
|
|
|
|
// use error as the desired rate towards the target
|
|
// nav_lon, nav_lat is calculated
|
|
calc_nav_rate(long_error, lat_error, 200, 0);
|
|
|
|
// rotate pitch and roll to the copter frame of reference
|
|
calc_nav_pitch_roll();
|
|
|
|
} else {
|
|
// for long journey's reset the wind resopnse
|
|
// it assumes we are standing still.
|
|
g.pi_loiter_lat.reset_I();
|
|
g.pi_loiter_lat.reset_I();
|
|
|
|
// calc the lat and long error to the target
|
|
calc_location_error(&next_WP);
|
|
|
|
// use error as the desired rate towards the target
|
|
calc_nav_rate(long_error, lat_error, g.waypoint_speed_max, 100);
|
|
|
|
// rotate pitch and roll to the copter frame of reference
|
|
calc_nav_pitch_roll();
|
|
}
|
|
}
|
|
|
|
static void update_auto_yaw()
|
|
{
|
|
// this tracks a location so the copter is always pointing towards it.
|
|
if(yaw_tracking == MAV_ROI_LOCATION){
|
|
auto_yaw = get_bearing(¤t_loc, &target_WP);
|
|
|
|
}else if(yaw_tracking == MAV_ROI_WPNEXT){
|
|
auto_yaw = target_bearing;
|
|
}
|
|
// MAV_ROI_NONE = basic Yaw hold
|
|
}
|
|
|
|
static long point_at_home_yaw()
|
|
{
|
|
return get_bearing(¤t_loc, &home);
|
|
}
|
|
|
|
|