ardupilot/libraries/AC_AutoTune/AC_AutoTune_Heli.cpp

1957 lines
87 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
support for autotune of helicopters. Based on original autotune code from ArduCopter, written by Leonard Hall
Converted to a library by Andrew Tridgell, and rewritten to include helicopters by Bill Geyer
*/
#include "AC_AutoTune_Heli.h"
#define AUTOTUNE_HELI_TARGET_ANGLE_RLLPIT_CD 2000 // target roll/pitch angle during AUTOTUNE FeedForward rate test
#define AUTOTUNE_HELI_TARGET_RATE_RLLPIT_CDS 5000 // target roll/pitch rate during AUTOTUNE FeedForward rate test
#define AUTOTUNE_FFI_RATIO_FOR_TESTING 0.5f // I is set 2x smaller than VFF during testing
#define AUTOTUNE_FFI_RATIO_FINAL 0.5f // I is set 0.5x VFF after testing
#define AUTOTUNE_PI_RATIO_FINAL 1.0f // I is set 1x P after testing
#define AUTOTUNE_YAW_PI_RATIO_FINAL 0.1f // I is set 1x P after testing
#define AUTOTUNE_RD_STEP 0.0005f // minimum increment when increasing/decreasing Rate D term
#define AUTOTUNE_RP_STEP 0.005f // minimum increment when increasing/decreasing Rate P term
#define AUTOTUNE_SP_STEP 0.05f // minimum increment when increasing/decreasing Stab P term
#define AUTOTUNE_PI_RATIO_FOR_TESTING 0.1f // I is set 10x smaller than P during testing
#define AUTOTUNE_RD_MAX 0.020f // maximum Rate D value
#define AUTOTUNE_RLPF_MIN 1.0f // minimum Rate Yaw filter value
#define AUTOTUNE_RLPF_MAX 20.0f // maximum Rate Yaw filter value
#define AUTOTUNE_RP_MIN 0.001f // minimum Rate P value
#define AUTOTUNE_RP_MAX 0.3f // maximum Rate P value
#define AUTOTUNE_SP_MAX 10.0f // maximum Stab P value
#define AUTOTUNE_SP_MIN 3.0f // maximum Stab P value
#define AUTOTUNE_RFF_MAX 0.5f // maximum Stab P value
#define AUTOTUNE_RFF_MIN 0.025f // maximum Stab P value
#define AUTOTUNE_D_UP_DOWN_MARGIN 0.2f // The margin below the target that we tune D in
#define AUTOTUNE_SEQ_BITMASK_VFF 1
#define AUTOTUNE_SEQ_BITMASK_RATE_D 2
#define AUTOTUNE_SEQ_BITMASK_ANGLE_P 4
#define AUTOTUNE_SEQ_BITMASK_MAX_GAIN 8
const AP_Param::GroupInfo AC_AutoTune_Heli::var_info[] = {
// @Param: AXES
// @DisplayName: Autotune axis bitmask
// @Description: 1-byte bitmap of axes to autotune
// @Bitmask: 0:Roll,1:Pitch,2:Yaw
// @User: Standard
AP_GROUPINFO("AXES", 1, AC_AutoTune_Heli, axis_bitmask, 7), // AUTOTUNE_AXIS_BITMASK_DEFAULT
// @Param: SEQ
// @DisplayName: AutoTune Sequence Bitmask
// @Description: 2-byte bitmask to select what tuning should be performed. Max gain automatically performed if Rate D is selected. Values: 7:All,1:VFF Only,2:Rate D Only,4:Angle P Only,8:Max Gain Only,3:VFF and Rate D (incl max gain),5:VFF and Angle P,13:VFF max gain and angle P
// @Bitmask: 0:VFF,1:Rate D,2:Angle P,3:Max Gain Only
// @User: Standard
AP_GROUPINFO("SEQ", 2, AC_AutoTune_Heli, seq_bitmask, 5),
// @Param: MIN_FRQ
// @DisplayName: AutoTune minimum sweep frequency
// @Description: Defines the start frequency for sweeps and dwells
// @Range: 10 30
// @User: Standard
AP_GROUPINFO("MIN_FRQ", 3, AC_AutoTune_Heli, min_sweep_freq, 10.0f),
// @Param: MAX_FRQ
// @DisplayName: AutoTune maximum sweep frequency
// @Description: Defines the end frequency for sweeps and dwells
// @Range: 50 120
// @User: Standard
AP_GROUPINFO("MAX_FRQ", 4, AC_AutoTune_Heli, max_sweep_freq, 70.0f),
// @Param: MAX_GN
// @DisplayName: AutoTune maximum response gain
// @Description: Defines the response gain (output/input) to tune
// @Range: 1 2.5
// @User: Standard
AP_GROUPINFO("MAX_GN", 5, AC_AutoTune_Heli, max_resp_gain, 1.4f),
// @Param: VELXY_P
// @DisplayName: AutoTune velocity xy P gain
// @Description: Velocity xy P gain used to hold position during Max Gain, Rate P, and Rate D frequency sweeps
// @Range: 0 1
// @User: Standard
AP_GROUPINFO("VELXY_P", 6, AC_AutoTune_Heli, vel_hold_gain, 0.1f),
AP_GROUPEND
};
// constructor
AC_AutoTune_Heli::AC_AutoTune_Heli()
{
tune_seq[0] = TUNE_COMPLETE;
AP_Param::setup_object_defaults(this, var_info);
}
// initialize tests for each tune type
void AC_AutoTune_Heli::test_init()
{
if ((tune_type == RFF_UP) || (tune_type == RFF_DOWN)) {
rate_ff_test_init();
step_time_limit_ms = 10000;
} else if (tune_type == MAX_GAINS || tune_type == RP_UP || tune_type == RD_UP) {
// initialize start frequency and determine gain function when dwell test is used
if (is_zero(start_freq)) {
if (test_phase[12] > 160.0f && test_phase[12] < 180.0f && tune_type == RP_UP) {
freq_cnt = 12;
curr_test_freq = test_freq[12];
start_freq = curr_test_freq;
stop_freq = curr_test_freq;
} else if (method == 1 && tune_type == RP_UP) {
freq_cnt = 12;
test_freq[12] = sweep.maxgain_freq;
curr_test_freq = test_freq[12];
start_freq = curr_test_freq;
stop_freq = curr_test_freq;
} else if (!is_zero(max_rate_p.freq) && tune_type == RP_UP) {
freq_cnt = 12;
test_freq[12] = max_rate_p.freq;
curr_test_freq = test_freq[12];
start_freq = curr_test_freq;
stop_freq = curr_test_freq;
} else if (tune_type == MAX_GAINS || tune_type == RD_UP) {
start_freq = min_sweep_freq;
stop_freq = max_sweep_freq;
method = 0; //reset the method for rate D and rate P tuning.
} else {
test_freq[0] = 2.0f * 3.14159f * 2.0f;
curr_test_freq = test_freq[0];
start_freq = curr_test_freq;
stop_freq = curr_test_freq;
}
}
if (!is_equal(start_freq,stop_freq)) {
// initialize determine_gain function whenever test is initialized
freqresp_rate.init(AC_AutoTune_FreqResp::InputType::SWEEP);
dwell_test_init(stop_freq);
} else {
// initialize determine_gain function whenever test is initialized
freqresp_rate.init(AC_AutoTune_FreqResp::InputType::DWELL);
dwell_test_init(start_freq);
}
if (!is_zero(start_freq)) {
// 4 seconds is added to allow aircraft to achieve start attitude. Then the time to conduct the dwells is added to it.
step_time_limit_ms = (uint32_t)(4000 + (float)(AUTOTUNE_DWELL_CYCLES + 2) * 1000.0f * M_2PI / start_freq);
}
} else if (tune_type == SP_UP) {
// initialize start frequency when dwell test is used
if (is_zero(start_freq)) {
test_freq[0] = 1.5f * 3.14159f * 2.0f;
curr_test_freq = test_freq[0];
test_accel_max = 0.0f;
start_freq = min_sweep_freq;
stop_freq = max_sweep_freq;
}
if (!is_equal(start_freq,stop_freq)) {
// initialize determine gain function
freqresp_angle.init(AC_AutoTune_FreqResp::InputType::SWEEP);
angle_dwell_test_init(stop_freq);
} else {
// initialize determine gain function
freqresp_angle.init(AC_AutoTune_FreqResp::InputType::DWELL);
angle_dwell_test_init(start_freq);
}
// TODO add time limit for sweep test
if (!is_zero(start_freq)) {
// 1 seconds is added for a little buffer. Then the time to conduct the dwells is added to it.
step_time_limit_ms = (uint32_t)(2000 + (float)(AUTOTUNE_DWELL_CYCLES + 7) * 1000.0f * M_2PI / start_freq);
}
} else {
}
start_angles = Vector3f(roll_cd, pitch_cd, desired_yaw_cd); // heli specific
}
// run tests for each tune type
void AC_AutoTune_Heli::test_run(AxisType test_axis, const float dir_sign)
{
if (tune_type == SP_UP) {
angle_dwell_test_run(start_freq, stop_freq, test_gain[freq_cnt], test_phase[freq_cnt]);
} else if ((tune_type == RFF_UP) || (tune_type == RFF_DOWN)) {
rate_ff_test_run(AUTOTUNE_HELI_TARGET_ANGLE_RLLPIT_CD, AUTOTUNE_HELI_TARGET_RATE_RLLPIT_CDS, dir_sign);
} else if (tune_type == RP_UP || tune_type == RD_UP) {
dwell_test_run(1, start_freq, stop_freq, test_gain[freq_cnt], test_phase[freq_cnt]);
} else if (tune_type == MAX_GAINS) {
dwell_test_run(0, start_freq, stop_freq, test_gain[freq_cnt], test_phase[freq_cnt]);
} else if (tune_type == TUNE_COMPLETE) {
return;
} else {
step = UPDATE_GAINS;
}
}
// heli specific gcs announcements
void AC_AutoTune_Heli::do_gcs_announcements()
{
const uint32_t now = AP_HAL::millis();
if (now - announce_time < AUTOTUNE_ANNOUNCE_INTERVAL_MS) {
return;
}
float tune_rp = 0.0f;
float tune_rd = 0.0f;
float tune_rff = 0.0f;
float tune_sp = 0.0f;
float tune_accel = 0.0f;
char axis_char = '?';
switch (axis) {
case ROLL:
tune_rp = tune_roll_rp;
tune_rd = tune_roll_rd;
tune_rff = tune_roll_rff;
tune_sp = tune_roll_sp;
tune_accel = tune_roll_accel;
axis_char = 'R';
break;
case PITCH:
tune_rp = tune_pitch_rp;
tune_rd = tune_pitch_rd;
tune_rff = tune_pitch_rff;
tune_sp = tune_pitch_sp;
tune_accel = tune_pitch_accel;
axis_char = 'P';
break;
case YAW:
tune_rp = tune_yaw_rp;
tune_rd = tune_yaw_rd;
tune_rff = tune_yaw_rff;
tune_sp = tune_yaw_sp;
tune_accel = tune_yaw_accel;
axis_char = 'Y';
break;
}
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: (%c) %s", axis_char, type_string());
send_step_string();
switch (tune_type) {
case RD_UP:
// gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f ph=%f d=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]), (double)(test_phase[freq_cnt]), (double)tune_rd);
break;
case RD_DOWN:
case RP_DOWN:
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: p=%f d=%f", (double)tune_rp, (double)tune_rd);
break;
case RP_UP:
// gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f p=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]), (double)tune_rp);
break;
case RFF_UP:
if (!is_zero(test_rate_filt)) {
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: target=%f rotation=%f command=%f", (double)(test_tgt_rate_filt*57.3f), (double)(test_rate_filt*57.3f), (double)(test_command_filt));
}
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: ff=%f", (double)tune_rff);
break;
case RFF_DOWN:
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: ff=%f", (double)tune_rff);
break;
case SP_DOWN:
case SP_UP:
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: p=%f accel=%f", (double)tune_sp, (double)tune_accel);
break;
case MAX_GAINS:
case TUNE_COMPLETE:
break;
}
// gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: success %u/%u", counter, AUTOTUNE_SUCCESS_COUNT);
announce_time = now;
}
// load_test_gains - load the to-be-tested gains for a single axis
// called by control_attitude() just before it beings testing a gain (i.e. just before it twitches)
void AC_AutoTune_Heli::load_test_gains()
{
switch (axis) {
case ROLL:
if (tune_type == SP_UP) {
attitude_control->get_rate_roll_pid().kI(orig_roll_ri);
} else {
// freeze integrator to hold trim by making i term small during rate controller tuning
attitude_control->get_rate_roll_pid().kI(0.01f * orig_roll_ri);
}
if (tune_type == MAX_GAINS && !is_zero(tune_roll_rff)) {
attitude_control->get_rate_roll_pid().kP(0.0f);
attitude_control->get_rate_roll_pid().kD(0.0f);
} else {
attitude_control->get_rate_roll_pid().kP(tune_roll_rp);
attitude_control->get_rate_roll_pid().kD(tune_roll_rd);
}
attitude_control->get_rate_roll_pid().ff(tune_roll_rff);
attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt);
attitude_control->get_rate_roll_pid().slew_limit(0.0f);
attitude_control->get_angle_roll_p().kP(tune_roll_sp);
break;
case PITCH:
if (tune_type == SP_UP) {
attitude_control->get_rate_pitch_pid().kI(orig_pitch_ri);
} else {
// freeze integrator to hold trim by making i term small during rate controller tuning
attitude_control->get_rate_pitch_pid().kI(0.01f * orig_pitch_ri);
}
if (tune_type == MAX_GAINS && !is_zero(tune_pitch_rff)) {
attitude_control->get_rate_pitch_pid().kP(0.0f);
attitude_control->get_rate_pitch_pid().kD(0.0f);
} else {
attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp);
attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd);
}
attitude_control->get_rate_pitch_pid().ff(tune_pitch_rff);
attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt);
attitude_control->get_rate_pitch_pid().slew_limit(0.0f);
attitude_control->get_angle_pitch_p().kP(tune_pitch_sp);
break;
case YAW:
// freeze integrator to hold trim by making i term small during rate controller tuning
attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp);
attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*0.01f);
attitude_control->get_rate_yaw_pid().kD(tune_yaw_rd);
attitude_control->get_rate_yaw_pid().ff(tune_yaw_rff);
attitude_control->get_rate_yaw_pid().filt_E_hz(tune_yaw_rLPF);
attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt);
attitude_control->get_rate_yaw_pid().slew_limit(0.0f);
attitude_control->get_angle_yaw_p().kP(tune_yaw_sp);
break;
}
}
// save_tuning_gains - save the final tuned gains for each axis
// save discovered gains to eeprom if autotuner is enabled (i.e. switch is in the high position)
void AC_AutoTune_Heli::save_tuning_gains()
{
// see if we successfully completed tuning of at least one axis
if (axes_completed == 0) {
return;
}
if (!attitude_control->get_bf_feedforward()) {
attitude_control->bf_feedforward_save(true);
attitude_control->save_accel_roll_max_cdss(0.0f);
attitude_control->save_accel_pitch_max_cdss(0.0f);
}
// sanity check the rate P values
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_ROLL) && roll_enabled()) {
// rate roll gains
attitude_control->get_rate_roll_pid().kP(tune_roll_rp);
attitude_control->get_rate_roll_pid().kI(tune_roll_rff*AUTOTUNE_FFI_RATIO_FINAL);
attitude_control->get_rate_roll_pid().kD(tune_roll_rd);
attitude_control->get_rate_roll_pid().ff(tune_roll_rff);
attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt);
attitude_control->get_rate_roll_pid().slew_limit(orig_roll_smax);
attitude_control->get_rate_roll_pid().save_gains();
// stabilize roll
attitude_control->get_angle_roll_p().kP(tune_roll_sp);
attitude_control->get_angle_roll_p().save_gains();
// acceleration roll
attitude_control->save_accel_roll_max_cdss(tune_roll_accel);
// resave pids to originals in case the autotune is run again
orig_roll_rp = attitude_control->get_rate_roll_pid().kP();
orig_roll_ri = attitude_control->get_rate_roll_pid().kI();
orig_roll_rd = attitude_control->get_rate_roll_pid().kD();
orig_roll_rff = attitude_control->get_rate_roll_pid().ff();
orig_roll_sp = attitude_control->get_angle_roll_p().kP();
orig_roll_accel = attitude_control->get_accel_roll_max_cdss();
}
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_PITCH) && pitch_enabled()) {
// rate pitch gains
attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp);
attitude_control->get_rate_pitch_pid().kI(tune_pitch_rff*AUTOTUNE_FFI_RATIO_FINAL);
attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd);
attitude_control->get_rate_pitch_pid().ff(tune_pitch_rff);
attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt);
attitude_control->get_rate_pitch_pid().slew_limit(orig_pitch_smax);
attitude_control->get_rate_pitch_pid().save_gains();
// stabilize pitch
attitude_control->get_angle_pitch_p().kP(tune_pitch_sp);
attitude_control->get_angle_pitch_p().save_gains();
// acceleration pitch
attitude_control->save_accel_pitch_max_cdss(tune_pitch_accel);
// resave pids to originals in case the autotune is run again
orig_pitch_rp = attitude_control->get_rate_pitch_pid().kP();
orig_pitch_ri = attitude_control->get_rate_pitch_pid().kI();
orig_pitch_rd = attitude_control->get_rate_pitch_pid().kD();
orig_pitch_rff = attitude_control->get_rate_pitch_pid().ff();
orig_pitch_sp = attitude_control->get_angle_pitch_p().kP();
orig_pitch_accel = attitude_control->get_accel_pitch_max_cdss();
}
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_YAW) && yaw_enabled() && !is_zero(tune_yaw_rp)) {
// rate yaw gains
attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp);
attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL);
attitude_control->get_rate_yaw_pid().kD(tune_yaw_rd);
attitude_control->get_rate_yaw_pid().ff(tune_yaw_rff);
attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt);
attitude_control->get_rate_yaw_pid().slew_limit(orig_yaw_smax);
attitude_control->get_rate_yaw_pid().filt_E_hz(orig_yaw_rLPF);
attitude_control->get_rate_yaw_pid().save_gains();
// stabilize yaw
attitude_control->get_angle_yaw_p().kP(tune_yaw_sp);
attitude_control->get_angle_yaw_p().save_gains();
// acceleration yaw
attitude_control->save_accel_yaw_max_cdss(tune_yaw_accel);
// resave pids to originals in case the autotune is run again
orig_yaw_rp = attitude_control->get_rate_yaw_pid().kP();
orig_yaw_ri = attitude_control->get_rate_yaw_pid().kI();
orig_yaw_rd = attitude_control->get_rate_yaw_pid().kD();
orig_yaw_rff = attitude_control->get_rate_yaw_pid().ff();
orig_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz();
orig_yaw_sp = attitude_control->get_angle_yaw_p().kP();
orig_yaw_accel = attitude_control->get_accel_yaw_max_cdss();
}
// update GCS and log save gains event
update_gcs(AUTOTUNE_MESSAGE_SAVED_GAINS);
AP::logger().Write_Event(LogEvent::AUTOTUNE_SAVEDGAINS);
reset();
}
void AC_AutoTune_Heli::rate_ff_test_init()
{
ff_test_phase = 0;
rotation_rate_filt.reset(0);
rotation_rate_filt.set_cutoff_frequency(5.0f);
command_filt.reset(0);
command_filt.set_cutoff_frequency(5.0f);
target_rate_filt.reset(0);
target_rate_filt.set_cutoff_frequency(5.0f);
test_command_filt = 0.0f;
test_rate_filt = 0.0f;
test_tgt_rate_filt = 0.0f;
filt_target_rate = 0.0f;
settle_time = 200;
phase_out_time = 500;
}
void AC_AutoTune_Heli::rate_ff_test_run(float max_angle_cd, float target_rate_cds, float dir_sign)
{
float gyro_reading = 0.0f;
float command_reading =0.0f;
float tgt_rate_reading = 0.0f;
const uint32_t now = AP_HAL::millis();
// TODO make filter leak dependent on dt
const float filt_alpha = 0.0123f;
target_rate_cds = dir_sign * target_rate_cds;
switch (axis) {
case ROLL:
gyro_reading = ahrs_view->get_gyro().x;
command_reading = motors->get_roll();
tgt_rate_reading = attitude_control->rate_bf_targets().x;
if (settle_time > 0) {
settle_time--;
trim_command_reading = motors->get_roll();
rate_request_cds = gyro_reading;
} else if (((ahrs_view->roll_sensor <= max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->roll_sensor >= -max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 0) {
rate_request_cds += (target_rate_cds - rate_request_cds) * filt_alpha;
attitude_control->input_rate_bf_roll_pitch_yaw(rate_request_cds, 0.0f, 0.0f);
} else if (((ahrs_view->roll_sensor > max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->roll_sensor < -max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 0) {
ff_test_phase = 1;
rate_request_cds += (-target_rate_cds - rate_request_cds) * filt_alpha;
attitude_control->input_rate_bf_roll_pitch_yaw(rate_request_cds, 0.0f, 0.0f);
attitude_control->rate_bf_roll_target(rate_request_cds);
} else if (((ahrs_view->roll_sensor >= -max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->roll_sensor <= max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
rate_request_cds += (-target_rate_cds - rate_request_cds) * filt_alpha;
attitude_control->input_rate_bf_roll_pitch_yaw(rate_request_cds, 0.0f, 0.0f);
attitude_control->rate_bf_roll_target(rate_request_cds);
} else if (((ahrs_view->roll_sensor < -max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->roll_sensor > max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
ff_test_phase = 2;
angle_request_cd = attitude_control->get_att_target_euler_cd().x;
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(angle_request_cd, start_angles.y, 0.0f);
} else if (ff_test_phase == 2 ) {
angle_request_cd += (start_angles.x - angle_request_cd) * filt_alpha;
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(angle_request_cd, start_angles.y, 0.0f);
phase_out_time--;
}
break;
case PITCH:
gyro_reading = ahrs_view->get_gyro().y;
command_reading = motors->get_pitch();
tgt_rate_reading = attitude_control->rate_bf_targets().y;
if (settle_time > 0) {
settle_time--;
trim_command_reading = motors->get_pitch();
rate_request_cds = gyro_reading;
} else if (((ahrs_view->pitch_sensor <= max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->pitch_sensor >= -max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 0) {
rate_request_cds += (target_rate_cds - rate_request_cds) * filt_alpha;
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, rate_request_cds, 0.0f);
} else if (((ahrs_view->pitch_sensor > max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->pitch_sensor < -max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 0) {
ff_test_phase = 1;
rate_request_cds += (-target_rate_cds - rate_request_cds) * filt_alpha;
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, rate_request_cds, 0.0f);
attitude_control->rate_bf_pitch_target(rate_request_cds);
} else if (((ahrs_view->pitch_sensor >= -max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->pitch_sensor <= max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
rate_request_cds += (-target_rate_cds - rate_request_cds) * filt_alpha;
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, rate_request_cds, 0.0f);
attitude_control->rate_bf_pitch_target(rate_request_cds);
} else if (((ahrs_view->pitch_sensor < -max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->pitch_sensor > max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
ff_test_phase = 2;
angle_request_cd = attitude_control->get_att_target_euler_cd().y;
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(start_angles.x, angle_request_cd, 0.0f);
} else if (ff_test_phase == 2 ) {
angle_request_cd += (start_angles.x - angle_request_cd) * filt_alpha;
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(start_angles.x, angle_request_cd, 0.0f);
phase_out_time--;
}
break;
case YAW:
gyro_reading = ahrs_view->get_gyro().z;
command_reading = motors->get_yaw();
tgt_rate_reading = attitude_control->rate_bf_targets().z;
if (settle_time > 0) {
settle_time--;
trim_command_reading = motors->get_yaw();
trim_heading = ahrs_view->yaw_sensor;
} else if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) <= 2.0f * max_angle_cd && is_positive(dir_sign))
|| (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) >= -2.0f * max_angle_cd && !is_positive(dir_sign)))
&& ff_test_phase == 0) {
rate_request_cds += (target_rate_cds - rate_request_cds) * filt_alpha;
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, rate_request_cds);
} else if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) > 2.0f * max_angle_cd && is_positive(dir_sign))
|| (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) < -2.0f * max_angle_cd && !is_positive(dir_sign)))
&& ff_test_phase == 0) {
ff_test_phase = 1;
rate_request_cds += (-target_rate_cds - rate_request_cds) * filt_alpha;
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, rate_request_cds);
attitude_control->rate_bf_yaw_target(rate_request_cds);
} else if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) >= -2.0f * max_angle_cd && is_positive(dir_sign))
|| (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) <= 2.0f * max_angle_cd && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
rate_request_cds += (-target_rate_cds - rate_request_cds) * filt_alpha;
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, rate_request_cds);
attitude_control->rate_bf_yaw_target(rate_request_cds);
} else if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) < -2.0f * max_angle_cd && is_positive(dir_sign))
|| (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) > 2.0f * max_angle_cd && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
ff_test_phase = 2;
angle_request_cd = attitude_control->get_att_target_euler_cd().z;
attitude_control->input_euler_angle_roll_pitch_yaw(start_angles.x, start_angles.y, angle_request_cd, false);
} else if (ff_test_phase == 2 ) {
angle_request_cd += wrap_180_cd(trim_heading - angle_request_cd) * filt_alpha;
attitude_control->input_euler_angle_roll_pitch_yaw(start_angles.x, start_angles.y, angle_request_cd, false);
}
break;
}
rotation_rate = rotation_rate_filt.apply(gyro_reading,
AP::scheduler().get_loop_period_s());
command_out = command_filt.apply((command_reading - trim_command_reading),
AP::scheduler().get_loop_period_s());
filt_target_rate = target_rate_filt.apply(tgt_rate_reading,
AP::scheduler().get_loop_period_s());
// record steady state rate and motor command
switch (axis) {
case ROLL:
if (((ahrs_view->roll_sensor >= -max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->roll_sensor <= max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
test_rate_filt = rotation_rate;
test_command_filt = command_out;
test_tgt_rate_filt = filt_target_rate;
}
break;
case PITCH:
if (((ahrs_view->pitch_sensor >= -max_angle_cd + start_angle && is_positive(dir_sign))
|| (ahrs_view->pitch_sensor <= max_angle_cd + start_angle && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
test_rate_filt = rotation_rate;
test_command_filt = command_out;
test_tgt_rate_filt = filt_target_rate;
}
break;
case YAW:
if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) >= -2.0f * max_angle_cd && is_positive(dir_sign))
|| (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) <= 2.0f * max_angle_cd && !is_positive(dir_sign)))
&& ff_test_phase == 1 ) {
test_rate_filt = rotation_rate;
test_command_filt = command_out;
test_tgt_rate_filt = filt_target_rate;
}
break;
}
if (now - step_start_time_ms >= step_time_limit_ms || (ff_test_phase == 2 && phase_out_time == 0)) {
// we have passed the maximum stop time
step = UPDATE_GAINS;
rate_request_cds = 0.0f;
angle_request_cd = 0.0f;
}
}
void AC_AutoTune_Heli::dwell_test_init(float filt_freq)
{
rotation_rate_filt.reset(0);
rotation_rate_filt.set_cutoff_frequency(filt_freq);
command_filt.reset(0);
command_filt.set_cutoff_frequency(filt_freq);
target_rate_filt.reset(0);
target_rate_filt.set_cutoff_frequency(filt_freq);
filt_target_rate = 0.0f;
dwell_start_time_ms = 0.0f;
settle_time = 200;
if (!is_equal(start_freq, stop_freq)) {
sweep.ph180_freq = 0.0f;
sweep.ph180_gain = 0.0f;
sweep.ph180_phase = 0.0f;
sweep.ph270_freq = 0.0f;
sweep.ph270_gain = 0.0f;
sweep.ph270_phase = 0.0f;
sweep.maxgain_gain = 0.0f;
sweep.maxgain_freq = 0.0f;
sweep.maxgain_phase = 0.0f;
sweep.progress = 0;
curr_test_gain = 0.0f;
curr_test_phase = 0.0f;
}
// save the trim output from PID controller
float ff_term = 0.0f;
float p_term = 0.0f;
switch (axis) {
case ROLL:
trim_meas_rate = ahrs_view->get_gyro().x;
ff_term = attitude_control->get_rate_roll_pid().get_ff();
p_term = attitude_control->get_rate_roll_pid().get_p();
break;
case PITCH:
trim_meas_rate = ahrs_view->get_gyro().y;
ff_term = attitude_control->get_rate_pitch_pid().get_ff();
p_term = attitude_control->get_rate_pitch_pid().get_p();
break;
case YAW:
trim_meas_rate = ahrs_view->get_gyro().z;
ff_term = attitude_control->get_rate_yaw_pid().get_ff();
p_term = attitude_control->get_rate_yaw_pid().get_p();
break;
}
trim_pff_out = ff_term + p_term;
}
void AC_AutoTune_Heli::dwell_test_run(uint8_t freq_resp_input, float start_frq, float stop_frq, float &dwell_gain, float &dwell_phase)
{
float gyro_reading = 0.0f;
float command_reading = 0.0f;
float tgt_rate_reading = 0.0f;
float tgt_attitude = 2.5f * 0.01745f;
const uint32_t now = AP_HAL::millis();
float target_rate_cds;
float sweep_time_ms = 23000;
const float att_hold_gain = 4.5f;
Vector3f attitude_cd;
float dwell_freq = start_frq;
float cycle_time_ms = 0;
if (!is_zero(dwell_freq)) {
cycle_time_ms = 1000.0f * 2.0f * M_PI / dwell_freq;
}
const float alpha = calc_lowpass_alpha_dt(0.0025f, 0.2f * start_frq);
attitude_cd = Vector3f((float)ahrs_view->roll_sensor, (float)ahrs_view->pitch_sensor, (float)ahrs_view->yaw_sensor);
Vector3f velocity_ned, velocity_bf;
if (ahrs_view->get_velocity_NED(velocity_ned)) {
velocity_bf.x = velocity_ned.x * ahrs_view->cos_yaw() + velocity_ned.y * ahrs_view->sin_yaw();
velocity_bf.y = -velocity_ned.x * ahrs_view->sin_yaw() + velocity_ned.y * ahrs_view->cos_yaw();
}
// keep controller from requesting too high of a rate
float target_rate_mag_cds = dwell_freq * tgt_attitude * 5730.0f;
if (target_rate_mag_cds > 5000.0f) {
target_rate_mag_cds = 5000.0f;
}
if (settle_time == 0) {
// give gentler start for the dwell
if ((float)(now - dwell_start_time_ms) < 0.5f * cycle_time_ms) {
target_rate_cds = -0.5f * target_rate_mag_cds * sinf(dwell_freq * (now - dwell_start_time_ms) * 0.001);
} else {
if (is_equal(start_frq,stop_frq)) {
target_rate_cds = - target_rate_mag_cds * cosf(dwell_freq * (now - dwell_start_time_ms - 0.25f * cycle_time_ms) * 0.001);
} else {
target_rate_cds = waveform((now - dwell_start_time_ms - 0.5f * cycle_time_ms) * 0.001, (sweep_time_ms - 0.5f * cycle_time_ms) * 0.001f, target_rate_mag_cds, start_frq, stop_frq);
dwell_freq = waveform_freq_rads;
}
}
filt_attitude_cd.x += alpha * (attitude_cd.x - filt_attitude_cd.x);
filt_attitude_cd.y += alpha * (attitude_cd.y - filt_attitude_cd.y);
filt_attitude_cd.z += alpha * wrap_180_cd(attitude_cd.z - filt_attitude_cd.z);
filt_att_fdbk_from_velxy_cd.x += alpha * (-5730.0f * vel_hold_gain * velocity_bf.y - filt_att_fdbk_from_velxy_cd.x);
filt_att_fdbk_from_velxy_cd.y += alpha * (5730.0f * vel_hold_gain * velocity_bf.x - filt_att_fdbk_from_velxy_cd.y);
} else {
target_rate_cds = 0.0f;
settle_time--;
dwell_start_time_ms = now;
trim_command = command_out;
filt_attitude_cd = attitude_cd;
trim_attitude_cd = attitude_cd;
filt_att_fdbk_from_velxy_cd = Vector2f(0.0f,0.0f);
}
// limit rate correction for position hold
Vector3f trim_rate_cds;
trim_rate_cds.x = att_hold_gain * ((trim_attitude_cd.x + filt_att_fdbk_from_velxy_cd.x) - filt_attitude_cd.x);
trim_rate_cds.y = att_hold_gain * ((trim_attitude_cd.y + filt_att_fdbk_from_velxy_cd.y) - filt_attitude_cd.y);
trim_rate_cds.z = att_hold_gain * wrap_180_cd(trim_attitude_cd.z - filt_attitude_cd.z);
trim_rate_cds.x = constrain_float(trim_rate_cds.x, -15000.0f, 15000.0f);
trim_rate_cds.y = constrain_float(trim_rate_cds.y, -15000.0f, 15000.0f);
trim_rate_cds.z = constrain_float(trim_rate_cds.z, -15000.0f, 15000.0f);
switch (axis) {
case ROLL:
gyro_reading = ahrs_view->get_gyro().x;
command_reading = motors->get_roll();
tgt_rate_reading = attitude_control->rate_bf_targets().x;
if (settle_time == 0) {
float ff_rate_contr = 0.0f;
if (tune_roll_rff > 0.0f) {
ff_rate_contr = 5730.0f * trim_command / tune_roll_rff;
}
trim_rate_cds.x += ff_rate_contr;
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, trim_rate_cds.y, 0.0f);
attitude_control->rate_bf_roll_target(target_rate_cds + trim_rate_cds.x);
} else {
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f);
if (!is_zero(attitude_control->get_rate_roll_pid().ff() + attitude_control->get_rate_roll_pid().kP())) {
float trim_tgt_rate_cds = 5730.0f * (trim_pff_out + trim_meas_rate * attitude_control->get_rate_roll_pid().kP()) / (attitude_control->get_rate_roll_pid().ff() + attitude_control->get_rate_roll_pid().kP());
attitude_control->rate_bf_roll_target(trim_tgt_rate_cds);
}
}
break;
case PITCH:
gyro_reading = ahrs_view->get_gyro().y;
command_reading = motors->get_pitch();
tgt_rate_reading = attitude_control->rate_bf_targets().y;
if (settle_time == 0) {
float ff_rate_contr = 0.0f;
if (tune_pitch_rff > 0.0f) {
ff_rate_contr = 5730.0f * trim_command / tune_pitch_rff;
}
trim_rate_cds.y += ff_rate_contr;
attitude_control->input_rate_bf_roll_pitch_yaw(trim_rate_cds.x, 0.0f, 0.0f);
attitude_control->rate_bf_pitch_target(target_rate_cds + trim_rate_cds.y);
} else {
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f);
if (!is_zero(attitude_control->get_rate_pitch_pid().ff() + attitude_control->get_rate_pitch_pid().kP())) {
float trim_tgt_rate_cds = 5730.0f * (trim_pff_out + trim_meas_rate * attitude_control->get_rate_pitch_pid().kP()) / (attitude_control->get_rate_pitch_pid().ff() + attitude_control->get_rate_pitch_pid().kP());
attitude_control->rate_bf_pitch_target(trim_tgt_rate_cds);
}
}
break;
case YAW:
gyro_reading = ahrs_view->get_gyro().z;
command_reading = motors->get_yaw();
tgt_rate_reading = attitude_control->rate_bf_targets().z;
if (settle_time == 0) {
float rp_rate_contr = 0.0f;
if (tune_yaw_rp > 0.0f) {
rp_rate_contr = 5730.0f * trim_command / tune_yaw_rp;
}
trim_rate_cds.z += rp_rate_contr;
attitude_control->input_rate_bf_roll_pitch_yaw(trim_rate_cds.x, trim_rate_cds.y, 0.0f);
attitude_control->rate_bf_yaw_target(target_rate_cds + trim_rate_cds.z);
} else {
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f);
if (!is_zero(attitude_control->get_rate_yaw_pid().ff() + attitude_control->get_rate_yaw_pid().kP())) {
float trim_tgt_rate_cds = 5730.0f * (trim_pff_out + trim_meas_rate * attitude_control->get_rate_yaw_pid().kP()) / (attitude_control->get_rate_yaw_pid().ff() + attitude_control->get_rate_yaw_pid().kP());
attitude_control->rate_bf_yaw_target(trim_tgt_rate_cds);
}
}
break;
}
if (settle_time == 0) {
filt_command_reading += alpha * (command_reading - filt_command_reading);
filt_gyro_reading += alpha * (gyro_reading - filt_gyro_reading);
filt_tgt_rate_reading += alpha * (tgt_rate_reading - filt_tgt_rate_reading);
} else {
filt_command_reading = command_reading;
filt_gyro_reading = gyro_reading;
filt_tgt_rate_reading = tgt_rate_reading;
}
// looks at gain and phase of input rate to output rate
rotation_rate = rotation_rate_filt.apply((gyro_reading - filt_gyro_reading),
AP::scheduler().get_loop_period_s());
filt_target_rate = target_rate_filt.apply((tgt_rate_reading - filt_tgt_rate_reading),
AP::scheduler().get_loop_period_s());
command_out = command_filt.apply((command_reading - filt_command_reading),
AP::scheduler().get_loop_period_s());
// wait for dwell to start before determining gain and phase or just start if sweep
if ((float)(now - dwell_start_time_ms) > 6.25f * cycle_time_ms || (!is_equal(start_frq,stop_frq) && settle_time == 0)) {
if (freq_resp_input == 1) {
freqresp_rate.update_rate(filt_target_rate,rotation_rate, dwell_freq);
} else {
freqresp_rate.update_rate(command_out,rotation_rate, dwell_freq);
}
if (freqresp_rate.is_cycle_complete()) {
if (!is_equal(start_frq,stop_frq)) {
curr_test_freq = freqresp_rate.get_freq();
curr_test_gain = freqresp_rate.get_gain();
curr_test_phase = freqresp_rate.get_phase();
// reset cycle_complete to allow indication of next cycle
freqresp_rate.reset_cycle_complete();
// log sweep data
Log_AutoTuneSweep();
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f phase=%f", (double)(curr_test_freq), (double)(curr_test_gain), (double)(curr_test_phase));
} else {
dwell_gain = freqresp_rate.get_gain();
dwell_phase = freqresp_rate.get_phase();
}
}
}
// set sweep data if a frequency sweep is being conducted
if (!is_equal(start_frq,stop_frq) && (float)(now - dwell_start_time_ms) > 2.5f * cycle_time_ms) {
// track sweep phase to prevent capturing 180 deg and 270 deg data after phase has wrapped.
if (curr_test_phase > 180.0f && sweep.progress == 0) {
sweep.progress = 1;
} else if (curr_test_phase > 270.0f && sweep.progress == 1) {
sweep.progress = 2;
}
if (curr_test_phase <= 160.0f && curr_test_phase >= 150.0f && sweep.progress == 0) {
sweep.ph180_freq = curr_test_freq;
sweep.ph180_gain = curr_test_gain;
sweep.ph180_phase = curr_test_phase;
}
if (curr_test_phase <= 250.0f && curr_test_phase >= 240.0f && sweep.progress == 1) {
sweep.ph270_freq = curr_test_freq;
sweep.ph270_gain = curr_test_gain;
sweep.ph270_phase = curr_test_phase;
}
if (curr_test_gain > sweep.maxgain_gain) {
sweep.maxgain_gain = curr_test_gain;
sweep.maxgain_freq = curr_test_freq;
sweep.maxgain_phase = curr_test_phase;
}
if (now - step_start_time_ms >= sweep_time_ms + 200) {
// we have passed the maximum stop time
step = UPDATE_GAINS;
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: max_freq=%f max_gain=%f", (double)(sweep.maxgain_freq), (double)(sweep.maxgain_gain));
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: ph180_freq=%f ph180_gain=%f", (double)(sweep.ph180_freq), (double)(sweep.ph180_gain));
}
} else {
if (now - step_start_time_ms >= step_time_limit_ms || freqresp_rate.is_cycle_complete()) {
// we have passed the maximum stop time
step = UPDATE_GAINS;
}
}
}
void AC_AutoTune_Heli::angle_dwell_test_init(float filt_freq)
{
rotation_rate_filt.set_cutoff_frequency(filt_freq);
command_filt.set_cutoff_frequency(filt_freq);
target_rate_filt.set_cutoff_frequency(filt_freq);
dwell_start_time_ms = 0.0f;
settle_time = 200;
switch (axis) {
case ROLL:
rotation_rate_filt.reset(((float)ahrs_view->roll_sensor) / 5730.0f);
command_filt.reset(motors->get_roll());
target_rate_filt.reset(((float)attitude_control->get_att_target_euler_cd().x) / 5730.0f);
rotation_rate = ((float)ahrs_view->roll_sensor) / 5730.0f;
command_out = motors->get_roll();
filt_target_rate = ((float)attitude_control->get_att_target_euler_cd().x) / 5730.0f;
break;
case PITCH:
rotation_rate_filt.reset(((float)ahrs_view->pitch_sensor) / 5730.0f);
command_filt.reset(motors->get_pitch());
target_rate_filt.reset(((float)attitude_control->get_att_target_euler_cd().y) / 5730.0f);
rotation_rate = ((float)ahrs_view->pitch_sensor) / 5730.0f;
command_out = motors->get_pitch();
filt_target_rate = ((float)attitude_control->get_att_target_euler_cd().y) / 5730.0f;
break;
case YAW:
// yaw angle will be centered on zero by removing trim heading
rotation_rate_filt.reset(0.0f);
command_filt.reset(motors->get_yaw());
target_rate_filt.reset(0.0f);
rotation_rate = 0.0f;
command_out = motors->get_yaw();
filt_target_rate = 0.0f;
break;
}
if (!is_equal(start_freq, stop_freq)) {
sweep.ph180_freq = 0.0f;
sweep.ph180_gain = 0.0f;
sweep.ph180_phase = 0.0f;
sweep.ph270_freq = 0.0f;
sweep.ph270_gain = 0.0f;
sweep.ph270_phase = 0.0f;
sweep.maxgain_gain = 0.0f;
sweep.maxgain_freq = 0.0f;
sweep.maxgain_phase = 0.0f;
curr_test_gain = 0.0f;
curr_test_phase = 0.0f;
}
}
void AC_AutoTune_Heli::angle_dwell_test_run(float start_frq, float stop_frq, float &dwell_gain, float &dwell_phase)
{
float gyro_reading = 0.0f;
float command_reading = 0.0f;
float tgt_rate_reading = 0.0f;
float tgt_attitude = 5.0f * 0.01745f;
const uint32_t now = AP_HAL::millis();
float target_angle_cd;
float sweep_time_ms = 23000;
float dwell_freq = start_frq;
const float alpha = calc_lowpass_alpha_dt(0.0025f, 0.2f * start_frq);
// adjust target attitude based on input_tc so amplitude decrease with increased frequency is minimized
const float freq_co = 1.0f / attitude_control->get_input_tc();
const float added_ampl = (safe_sqrt(powf(dwell_freq,2.0) + powf(freq_co,2.0)) / freq_co) - 1.0f;
tgt_attitude = constrain_float(0.08725f * (1.0f + 0.2f * added_ampl), 0.08725f, 0.5235f);
float cycle_time_ms = 0;
if (!is_zero(dwell_freq)) {
cycle_time_ms = 1000.0f * 6.28f / dwell_freq;
}
// body frame calculation of velocity
Vector3f velocity_ned, velocity_bf;
if (ahrs_view->get_velocity_NED(velocity_ned)) {
velocity_bf.x = velocity_ned.x * ahrs_view->cos_yaw() + velocity_ned.y * ahrs_view->sin_yaw();
velocity_bf.y = -velocity_ned.x * ahrs_view->sin_yaw() + velocity_ned.y * ahrs_view->cos_yaw();
}
if (settle_time == 0) {
// give gentler start for the dwell
if ((float)(now - dwell_start_time_ms) < 0.5f * cycle_time_ms) {
target_angle_cd = 0.5f * tgt_attitude * 5730.0f * (cosf(dwell_freq * (now - dwell_start_time_ms) * 0.001) - 1.0f);
} else {
if (is_equal(start_frq,stop_frq)) {
target_angle_cd = -tgt_attitude * 5730.0f * sinf(dwell_freq * (now - dwell_start_time_ms - 0.25f * cycle_time_ms) * 0.001);
} else {
target_angle_cd = -waveform((now - dwell_start_time_ms - 0.25f * cycle_time_ms) * 0.001, (sweep_time_ms - 0.25f * cycle_time_ms) * 0.001f, tgt_attitude * 5730.0f, start_frq, stop_frq);
dwell_freq = waveform_freq_rads;
}
}
filt_att_fdbk_from_velxy_cd.x += alpha * (-5730.0f * vel_hold_gain * velocity_bf.y - filt_att_fdbk_from_velxy_cd.x);
filt_att_fdbk_from_velxy_cd.y += alpha * (5730.0f * vel_hold_gain * velocity_bf.x - filt_att_fdbk_from_velxy_cd.y);
filt_att_fdbk_from_velxy_cd.x = constrain_float(filt_att_fdbk_from_velxy_cd.x, -2000.0f, 2000.0f);
filt_att_fdbk_from_velxy_cd.y = constrain_float(filt_att_fdbk_from_velxy_cd.y, -2000.0f, 2000.0f);
} else {
target_angle_cd = 0.0f;
trim_yaw_tgt_reading = (float)attitude_control->get_att_target_euler_cd().z;
trim_yaw_heading_reading = (float)ahrs_view->yaw_sensor;
settle_time--;
dwell_start_time_ms = now;
filt_att_fdbk_from_velxy_cd = Vector2f(0.0f,0.0f);
}
switch (axis) {
case ROLL:
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_angle_cd + filt_att_fdbk_from_velxy_cd.x, filt_att_fdbk_from_velxy_cd.y, 0.0f);
command_reading = motors->get_roll();
tgt_rate_reading = ((float)attitude_control->get_att_target_euler_cd().x) / 5730.0f;
gyro_reading = ((float)ahrs_view->roll_sensor) / 5730.0f;
break;
case PITCH:
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(filt_att_fdbk_from_velxy_cd.x, target_angle_cd + filt_att_fdbk_from_velxy_cd.y, 0.0f);
command_reading = motors->get_pitch();
tgt_rate_reading = ((float)attitude_control->get_att_target_euler_cd().y) / 5730.0f;
gyro_reading = ((float)ahrs_view->pitch_sensor) / 5730.0f;
break;
case YAW:
command_reading = motors->get_yaw();
tgt_rate_reading = (wrap_180_cd((float)attitude_control->get_att_target_euler_cd().z - trim_yaw_tgt_reading)) / 5730.0f;
gyro_reading = (wrap_180_cd((float)ahrs_view->yaw_sensor - trim_yaw_heading_reading)) / 5730.0f;
attitude_control->input_euler_angle_roll_pitch_yaw(filt_att_fdbk_from_velxy_cd.x, filt_att_fdbk_from_velxy_cd.y, wrap_180_cd(trim_yaw_tgt_reading + target_angle_cd), false);
break;
}
if (settle_time == 0) {
filt_command_reading += alpha * (command_reading - filt_command_reading);
filt_gyro_reading += alpha * (gyro_reading - filt_gyro_reading);
filt_tgt_rate_reading += alpha * (tgt_rate_reading - filt_tgt_rate_reading);
} else {
filt_command_reading = command_reading;
filt_gyro_reading = gyro_reading;
filt_tgt_rate_reading = tgt_rate_reading;
}
// looks at gain and phase of input rate to output rate
rotation_rate = rotation_rate_filt.apply((gyro_reading - filt_gyro_reading),
AP::scheduler().get_loop_period_s());
filt_target_rate = target_rate_filt.apply((tgt_rate_reading - filt_tgt_rate_reading),
AP::scheduler().get_loop_period_s());
command_out = command_filt.apply((command_reading - filt_command_reading),
AP::scheduler().get_loop_period_s());
// wait for dwell to start before determining gain and phase
if ((float)(now - dwell_start_time_ms) > 6.25f * cycle_time_ms || (!is_equal(start_frq,stop_frq) && settle_time == 0)) {
freqresp_angle.update_angle(command_out, filt_target_rate, rotation_rate, dwell_freq);
if (freqresp_angle.is_cycle_complete()) {
if (!is_equal(start_frq,stop_frq)) {
curr_test_freq = freqresp_angle.get_freq();
curr_test_gain = freqresp_angle.get_gain();
curr_test_phase = freqresp_angle.get_phase();
test_accel_max = freqresp_angle.get_accel_max();
// reset cycle_complete to allow indication of next cycle
freqresp_angle.reset_cycle_complete();
// log sweep data
Log_AutoTuneSweep();
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f phase=%f", (double)(curr_test_freq), (double)(curr_test_gain), (double)(curr_test_phase));
} else {
dwell_gain = freqresp_angle.get_gain();
dwell_phase = freqresp_angle.get_phase();
test_accel_max = freqresp_angle.get_accel_max();
}
}
}
// set sweep data if a frequency sweep is being conducted
if (!is_equal(start_frq,stop_frq)) {
if (curr_test_phase <= 160.0f && curr_test_phase >= 150.0f) {
sweep.ph180_freq = curr_test_freq;
sweep.ph180_gain = curr_test_gain;
sweep.ph180_phase = curr_test_phase;
}
if (curr_test_phase <= 250.0f && curr_test_phase >= 240.0f) {
sweep.ph270_freq = curr_test_freq;
sweep.ph270_gain = curr_test_gain;
sweep.ph270_phase = curr_test_phase;
}
if (curr_test_gain > sweep.maxgain_gain) {
sweep.maxgain_gain = curr_test_gain;
sweep.maxgain_freq = curr_test_freq;
sweep.maxgain_phase = curr_test_phase;
}
if (now - step_start_time_ms >= sweep_time_ms + 200) {
// we have passed the maximum stop time
step = UPDATE_GAINS;
}
} else {
if (now - step_start_time_ms >= step_time_limit_ms || freqresp_angle.is_cycle_complete()) {
// we have passed the maximum stop time
step = UPDATE_GAINS;
}
}
}
// init_test - initialises the test
float AC_AutoTune_Heli::waveform(float time, float time_record, float waveform_magnitude, float wMin, float wMax)
{
float time_fade_in = 0.0f; // Time to reach maximum amplitude of chirp
float time_fade_out = 0.1 * time_record; // Time to reach zero amplitude after chirp finishes
float time_const_freq = 0.0f;
float window;
float output;
float B = logf(wMax / wMin);
if (time <= 0.0f) {
window = 0.0f;
} else if (time <= time_fade_in) {
window = 0.5 - 0.5 * cosf(M_PI * time / time_fade_in);
} else if (time <= time_record - time_fade_out) {
window = 1.0;
} else if (time <= time_record) {
window = 0.5 - 0.5 * cosf(M_PI * (time - (time_record - time_fade_out)) / time_fade_out + M_PI);
} else {
window = 0.0;
}
if (time <= 0.0f) {
waveform_freq_rads = wMin;
output = 0.0f;
} else if (time <= time_const_freq) {
waveform_freq_rads = wMin;
output = window * waveform_magnitude * sinf(wMin * time - wMin * time_const_freq);
} else if (time <= time_record) {
waveform_freq_rads = wMin * expf(B * (time - time_const_freq) / (time_record - time_const_freq));
output = window * waveform_magnitude * sinf((wMin * (time_record - time_const_freq) / B) * (expf(B * (time - time_const_freq) / (time_record - time_const_freq)) - 1));
} else {
waveform_freq_rads = wMax;
output = 0.0f;
}
return output;
}
// update gains for the rate p up tune type
void AC_AutoTune_Heli::updating_rate_p_up_all(AxisType test_axis)
{
float p_gain = 0.0f;
switch (test_axis) {
case ROLL:
p_gain = tune_roll_rp;
break;
case PITCH:
p_gain = tune_pitch_rp;
break;
case YAW:
p_gain = tune_yaw_rp;
break;
}
// announce results of dwell and update
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f ph=%f rate_p=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]), (double)(test_phase[freq_cnt]), (double)(p_gain));
switch (test_axis) {
case ROLL:
updating_rate_p_up(tune_roll_rp, test_freq, test_gain, test_phase, freq_cnt, max_rate_p);
break;
case PITCH:
updating_rate_p_up(tune_pitch_rp, test_freq, test_gain, test_phase, freq_cnt, max_rate_p);
break;
case YAW:
updating_rate_p_up(tune_yaw_rp, test_freq, test_gain, test_phase, freq_cnt, max_rate_p);
break;
}
}
// update gains for the rate d up tune type
void AC_AutoTune_Heli::updating_rate_d_up_all(AxisType test_axis)
{
float d_gain = 0.0f;
switch (test_axis) {
case ROLL:
d_gain = tune_roll_rd;
break;
case PITCH:
d_gain = tune_pitch_rd;
break;
case YAW:
d_gain = tune_yaw_rd;
break;
}
// announce results of dwell and update
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f ph=%f rate_d=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]), (double)(test_phase[freq_cnt]), (double)(d_gain));
switch (test_axis) {
case ROLL:
updating_rate_d_up(tune_roll_rd, test_freq, test_gain, test_phase, freq_cnt, max_rate_d);
break;
case PITCH:
updating_rate_d_up(tune_pitch_rd, test_freq, test_gain, test_phase, freq_cnt, max_rate_d);
break;
case YAW:
updating_rate_d_up(tune_yaw_rd, test_freq, test_gain, test_phase, freq_cnt, max_rate_d);
break;
}
}
// update gains for the rate ff up tune type
void AC_AutoTune_Heli::updating_rate_ff_up_all(AxisType test_axis)
{
switch (test_axis) {
case ROLL:
updating_rate_ff_up(tune_roll_rff, test_tgt_rate_filt*5730.0f, test_rate_filt*5730.0f, test_command_filt);
break;
case PITCH:
updating_rate_ff_up(tune_pitch_rff, test_tgt_rate_filt*5730.0f, test_rate_filt*5730.0f, test_command_filt);
break;
case YAW:
updating_rate_ff_up(tune_yaw_rff, test_tgt_rate_filt*5730.0f, test_rate_filt*5730.0f, test_command_filt);
// TODO make FF updating routine determine when to set rff gain to zero based on A/C response
if (tune_yaw_rff <= AUTOTUNE_RFF_MIN && counter == AUTOTUNE_SUCCESS_COUNT) {
tune_yaw_rff = 0.0f;
}
break;
}
}
// update gains for the angle p up tune type
void AC_AutoTune_Heli::updating_angle_p_up_all(AxisType test_axis)
{
// announce results of dwell and update
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]));
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: phase=%f accel=%f", (double)(test_phase[freq_cnt]), (double)(test_accel_max));
switch (test_axis) {
case ROLL:
updating_angle_p_up(tune_roll_sp, test_freq, test_gain, test_phase, freq_cnt);
break;
case PITCH:
updating_angle_p_up(tune_pitch_sp, test_freq, test_gain, test_phase, freq_cnt);
break;
case YAW:
updating_angle_p_up(tune_yaw_sp, test_freq, test_gain, test_phase, freq_cnt);
break;
}
}
// update gains for the max gain tune type
void AC_AutoTune_Heli::updating_max_gains_all(AxisType test_axis)
{
// announce results of dwell and update
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f ph=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]), (double)(test_phase[freq_cnt]));
switch (test_axis) {
case ROLL:
updating_max_gains(&test_freq[0], &test_gain[0], &test_phase[0], freq_cnt, max_rate_p, max_rate_d, tune_roll_rp, tune_roll_rd);
break;
case PITCH:
updating_max_gains(&test_freq[0], &test_gain[0], &test_phase[0], freq_cnt, max_rate_p, max_rate_d, tune_pitch_rp, tune_pitch_rd);
break;
case YAW:
updating_max_gains(&test_freq[0], &test_gain[0], &test_phase[0], freq_cnt, max_rate_p, max_rate_d, tune_yaw_rp, tune_yaw_rd);
// rate P and rate D can be non zero for yaw and need to be included in the max allowed gain
if (!is_zero(max_rate_p.max_allowed) && counter == AUTOTUNE_SUCCESS_COUNT) {
max_rate_p.max_allowed += tune_yaw_rp;
}
if (!is_zero(max_rate_d.max_allowed) && counter == AUTOTUNE_SUCCESS_COUNT) {
max_rate_d.max_allowed += tune_yaw_rd;
}
break;
}
}
// updating_rate_ff_up - adjust FF to ensure the target is reached
// FF is adjusted until rate requested is acheived
void AC_AutoTune_Heli::updating_rate_ff_up(float &tune_ff, float rate_target, float meas_rate, float meas_command)
{
if (ff_up_first_iter) {
if (!is_zero(meas_rate)) {
tune_ff = 5730.0f * meas_command / meas_rate;
}
tune_ff = constrain_float(tune_ff, AUTOTUNE_RFF_MIN, AUTOTUNE_RFF_MAX);
ff_up_first_iter = false;
} else if (is_positive(rate_target * meas_rate) && fabsf(meas_rate) < 1.05f * fabsf(rate_target) &&
fabsf(meas_rate) > 0.95f * fabsf(rate_target)) {
if (!first_dir_complete) {
first_dir_rff = tune_ff;
first_dir_complete = true;
positive_direction = !positive_direction;
} else {
counter = AUTOTUNE_SUCCESS_COUNT;
tune_ff = 0.95f * 0.5 * (tune_ff + first_dir_rff);
tune_ff = constrain_float(tune_ff, AUTOTUNE_RFF_MIN, AUTOTUNE_RFF_MAX);
ff_up_first_iter = true;
first_dir_complete = false;
}
} else if (is_positive(rate_target * meas_rate) && fabsf(meas_rate) > 1.05f * fabsf(rate_target)) {
tune_ff = 0.98f * tune_ff;
if (tune_ff <= AUTOTUNE_RFF_MIN) {
tune_ff = AUTOTUNE_RFF_MIN;
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
ff_up_first_iter = true;
first_dir_complete = false;
}
} else if (is_positive(rate_target * meas_rate) && fabsf(meas_rate) < 0.95f * fabsf(rate_target)) {
tune_ff = 1.02f * tune_ff;
if (tune_ff >= AUTOTUNE_RFF_MAX) {
tune_ff = AUTOTUNE_RFF_MAX;
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
ff_up_first_iter = true;
first_dir_complete = false;
}
} else {
if (!is_zero(meas_rate)) {
tune_ff = 5730.0f * meas_command / meas_rate;
}
tune_ff = constrain_float(tune_ff, AUTOTUNE_RFF_MIN, AUTOTUNE_RFF_MAX);
}
}
// updating_rate_p_up - uses maximum allowable gain determined from max_gain test to determine rate p gain that does not exceed exceed max response gain
void AC_AutoTune_Heli::updating_rate_p_up(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_p)
{
float test_freq_incr = 0.25f * 3.14159f * 2.0f;
if (frq_cnt < 12 && is_equal(start_freq,stop_freq)) {
if (frq_cnt == 0) {
tune_p = max_gain_p.max_allowed * 0.10f;
freq_cnt_max = 0;
} else if (phase[frq_cnt] <= 180.0f && !is_zero(phase[frq_cnt])) {
rp_prev_good_frq_cnt = frq_cnt;
} else if (frq_cnt > 1 && phase[frq_cnt] > phase[frq_cnt-1] + 360.0f && !is_zero(phase[frq_cnt])) {
if (phase[frq_cnt] - 360.0f < 180.0f) {
rp_prev_good_frq_cnt = frq_cnt;
}
} else if (frq_cnt > 1 && phase[frq_cnt] > 300.0f && !is_zero(phase[frq_cnt])) {
frq_cnt = 11;
}
frq_cnt++;
if (frq_cnt == 12) {
freq[frq_cnt] = freq[rp_prev_good_frq_cnt];
curr_test_freq = freq[frq_cnt];
} else {
freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr;
curr_test_freq = freq[frq_cnt];
}
} else if (is_equal(start_freq,stop_freq) && method == 2) {
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: cnt=%f freq=%f gain=%f phase=%f", (double)(frq_cnt), (double)(curr_test_freq), (double)(gain[frq_cnt]), (double)(phase[frq_cnt]));
if (is_zero(tune_p)) {
tune_p = 0.05f * max_gain_p.max_allowed;
} else if (phase[frq_cnt] > 180.0f) {
curr_test_freq = curr_test_freq - 0.5 * test_freq_incr;
freq[frq_cnt] = curr_test_freq;
} else if (phase[frq_cnt] < 160.0f) {
curr_test_freq = curr_test_freq + 0.5 * test_freq_incr;
freq[frq_cnt] = curr_test_freq;
} else if (phase[frq_cnt] <= 180.0f && phase[frq_cnt] >= 160.0f) {
if (gain[frq_cnt] < max_resp_gain && tune_p < 0.6f * max_gain_p.max_allowed) {
tune_p += 0.05f * max_gain_p.max_allowed;
} else {
counter = AUTOTUNE_SUCCESS_COUNT;
// reset curr_test_freq and frq_cnt for next test
curr_test_freq = freq[0];
frq_cnt = 0;
tune_p -= 0.05f * max_gain_p.max_allowed;
tune_p = constrain_float(tune_p,0.0f,0.6f * max_gain_p.max_allowed);
// rp_prev_gain = 0.0f;
}
}
// rp_prev_gain = gain[frq_cnt];
} else if (is_equal(start_freq,stop_freq) && method == 1) {
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: cnt=%f freq=%f gain=%f phase=%f", (double)(frq_cnt), (double)(curr_test_freq), (double)(gain[frq_cnt]), (double)(phase[frq_cnt]));
if (is_zero(tune_p)) {
tune_p = 0.05f * max_gain_p.max_allowed;
rp_prev_gain = gain[frq_cnt];
} else if ((gain[frq_cnt] < rp_prev_gain || is_zero(rp_prev_gain)) && tune_p < 0.6f * max_gain_p.max_allowed) {
tune_p += 0.05f * max_gain_p.max_allowed;
rp_prev_gain = gain[frq_cnt];
} else {
counter = AUTOTUNE_SUCCESS_COUNT;
// reset curr_test_freq and frq_cnt for next test
curr_test_freq = freq[0];
frq_cnt = 0;
rp_prev_gain = 0.0f;
tune_p -= 0.05f * max_gain_p.max_allowed;
tune_p = constrain_float(tune_p,0.0f,0.6f * max_gain_p.max_allowed);
}
}
if (counter == AUTOTUNE_SUCCESS_COUNT) {
start_freq = 0.0f; //initializes next test that uses dwell test
} else {
start_freq = curr_test_freq;
stop_freq = curr_test_freq;
}
}
// updating_rate_d_up - uses maximum allowable gain determined from max_gain test to determine rate d gain where the response gain is at a minimum
void AC_AutoTune_Heli::updating_rate_d_up(float &tune_d, float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_d)
{
float test_freq_incr = 0.25f * 3.14159f * 2.0f;
if (!is_equal(start_freq,stop_freq)) {
frq_cnt = 12;
if (sweep.maxgain_freq > sweep.ph180_freq) {
// freq[frq_cnt] = sweep.maxgain_freq - 0.5f * test_freq_incr;
freq[frq_cnt] = sweep.ph180_freq - 0.5f * test_freq_incr;
freq_cnt_max = frq_cnt;
// method = 1;
method = 2;
} else if (!is_zero(sweep.ph180_freq)) {
freq[frq_cnt] = sweep.ph180_freq - 0.5f * test_freq_incr;
// using 180 phase as max gain to start
freq_cnt_max = frq_cnt;
method = 2;
} else {
freq[frq_cnt] = 4.0f * M_PI;
method = 0;
}
curr_test_freq = freq[frq_cnt];
}
if (frq_cnt < 12 && is_equal(start_freq,stop_freq)) {
if (frq_cnt == 0) {
tune_d = max_gain_d.max_allowed * 0.25f;
freq_cnt_max = 0;
} else if (phase[frq_cnt] <= 180.0f && !is_zero(phase[frq_cnt])) {
rd_prev_good_frq_cnt = frq_cnt;
} else if (frq_cnt > 1 && phase[frq_cnt] > phase[frq_cnt-1] + 360.0f && !is_zero(phase[frq_cnt])) {
if (phase[frq_cnt] - 360.0f < 180.0f) {
rd_prev_good_frq_cnt = frq_cnt;
}
} else if (frq_cnt > 1 && phase[frq_cnt] > 300.0f && !is_zero(phase[frq_cnt])) {
frq_cnt = 11;
}
frq_cnt++;
if (frq_cnt == 12) {
freq[frq_cnt] = freq[rd_prev_good_frq_cnt];
curr_test_freq = freq[frq_cnt];
method = 2;
} else {
freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr;
curr_test_freq = freq[frq_cnt];
}
} else if (is_equal(start_freq,stop_freq) && method == 2) {
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: cnt=%f freq=%f gain=%f phase=%f", (double)(frq_cnt), (double)(curr_test_freq), (double)(gain[frq_cnt]), (double)(phase[frq_cnt]));
if (is_zero(tune_d)) {
tune_d = 0.05f * max_gain_d.max_allowed;
rd_prev_gain = gain[frq_cnt];
} else if (phase[frq_cnt] > 180.0f) {
curr_test_freq = curr_test_freq - 0.5 * test_freq_incr;
freq[frq_cnt] = curr_test_freq;
} else if (phase[frq_cnt] < 160.0f) {
curr_test_freq = curr_test_freq + 0.5 * test_freq_incr;
freq[frq_cnt] = curr_test_freq;
} else if (phase[frq_cnt] <= 180.0f && phase[frq_cnt] >= 160.0f) {
if ((gain[frq_cnt] < rd_prev_gain || is_zero(rd_prev_gain)) && tune_d < 0.6f * max_gain_d.max_allowed) {
tune_d += 0.05f * max_gain_d.max_allowed;
rd_prev_gain = gain[frq_cnt];
} else {
counter = AUTOTUNE_SUCCESS_COUNT;
// reset curr_test_freq and frq_cnt for next test
curr_test_freq = freq[0];
frq_cnt = 0;
rd_prev_gain = 0.0f;
tune_d -= 0.05f * max_gain_d.max_allowed;
tune_d = constrain_float(tune_d,0.0f,0.6f * max_gain_d.max_allowed);
}
}
} else if (is_equal(start_freq,stop_freq) && method == 1) {
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: cnt=%f freq=%f gain=%f phase=%f", (double)(frq_cnt), (double)(curr_test_freq), (double)(gain[frq_cnt]), (double)(phase[frq_cnt]));
if (is_zero(tune_d)) {
tune_d = 0.05f * max_gain_d.max_allowed;
rd_prev_gain = gain[frq_cnt];
} else if ((gain[frq_cnt] < rd_prev_gain || is_zero(rd_prev_gain)) && tune_d < 0.6f * max_gain_d.max_allowed) {
tune_d += 0.05f * max_gain_d.max_allowed;
rd_prev_gain = gain[frq_cnt];
} else {
counter = AUTOTUNE_SUCCESS_COUNT;
// reset curr_test_freq and frq_cnt for next test
curr_test_freq = freq[0];
frq_cnt = 0;
rd_prev_gain = 0.0f;
tune_d -= 0.05f * max_gain_d.max_allowed;
tune_d = constrain_float(tune_d,0.0f,0.6f * max_gain_d.max_allowed);
}
}
if (counter == AUTOTUNE_SUCCESS_COUNT) {
start_freq = 0.0f; //initializes next test that uses dwell test
} else {
start_freq = curr_test_freq;
stop_freq = curr_test_freq;
}
}
// updating_angle_p_up - determines maximum angle p gain for pitch and roll
void AC_AutoTune_Heli::updating_angle_p_up(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt)
{
float test_freq_incr = 0.5f * 3.14159f * 2.0f;
float gain_incr = 0.5f;
if (!is_equal(start_freq,stop_freq)) {
frq_cnt = 12;
if (!is_zero(sweep.ph180_freq)) {
// freq[frq_cnt] = sweep.ph180_freq - 0.5f * test_freq_incr;
freq[frq_cnt] = sweep.maxgain_freq - 0.5f * test_freq_incr;
// using 180 phase as max gain to start
freq_cnt_max = frq_cnt;
} else {
freq[frq_cnt] = 4.0f * M_PI;
}
curr_test_freq = freq[frq_cnt];
}
if (freq_cnt < 12 && is_equal(start_freq,stop_freq)) {
if (freq_cnt == 0) {
freq_cnt_max = 0;
} else if (gain[freq_cnt] > max_resp_gain && tune_p > AUTOTUNE_SP_MIN) {
// exceeded max response gain already, reduce tuning gain to remain under max response gain
tune_p -= gain_incr;
// force counter to stay on frequency
freq_cnt -= 1;
} else if (gain[freq_cnt] > max_resp_gain && tune_p <= AUTOTUNE_SP_MIN) {
// exceeded max response gain at the minimum allowable tuning gain. terminate testing.
tune_p = AUTOTUNE_SP_MIN;
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
curr_test_freq = freq[0];
freq_cnt = 0;
} else if (gain[freq_cnt] > gain[freq_cnt_max]) {
freq_cnt_max = freq_cnt;
phase_max = phase[freq_cnt];
sp_prev_gain = gain[freq_cnt];
} else if (gain[freq_cnt] > 0.0f && gain[freq_cnt] < 0.5f) {
// must be past peak, continue on to determine angle p
freq_cnt = 11;
}
freq_cnt++;
if (freq_cnt == 12) {
freq[freq_cnt] = freq[freq_cnt_max];
curr_test_freq = freq[freq_cnt];
} else {
freq[freq_cnt] = freq[freq_cnt-1] + test_freq_incr;
curr_test_freq = freq[freq_cnt];
}
}
// once finished with sweep of frequencies, cnt = 12 is used to then tune for max response gain
if (freq_cnt >= 12 && is_equal(start_freq,stop_freq)) {
if (gain[freq_cnt] < max_resp_gain && tune_p < AUTOTUNE_SP_MAX && !find_peak) {
// keep increasing tuning gain unless phase changes or max response gain is acheived
if (phase[freq_cnt]-phase_max > 20.0f && phase[freq_cnt] < 210.0f) {
freq[freq_cnt] += 0.5 * test_freq_incr;
find_peak = true;
} else {
tune_p += gain_incr;
freq[freq_cnt] = freq[freq_cnt_max];
if (tune_p >= AUTOTUNE_SP_MAX) {
tune_p = AUTOTUNE_SP_MAX;
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
curr_test_freq = freq[0];
freq_cnt = 0;
}
}
curr_test_freq = freq[freq_cnt];
sp_prev_gain = gain[freq_cnt];
} else if (gain[freq_cnt] > 1.1f * max_resp_gain && tune_p > AUTOTUNE_SP_MIN && !find_peak) {
tune_p -= gain_incr;
} else if (find_peak) {
// find the frequency where the response gain is maximum
if (gain[freq_cnt] > sp_prev_gain) {
freq[freq_cnt] += 0.5 * test_freq_incr;
} else {
find_peak = false;
phase_max = phase[freq_cnt];
}
curr_test_freq = freq[freq_cnt];
sp_prev_gain = gain[freq_cnt];
} else {
// adjust tuning gain so max response gain is not exceeded
if (sp_prev_gain < max_resp_gain && gain[freq_cnt] > max_resp_gain) {
float adj_factor = (max_resp_gain - gain[freq_cnt]) / (gain[freq_cnt] - sp_prev_gain);
tune_p = tune_p + gain_incr * adj_factor;
}
counter = AUTOTUNE_SUCCESS_COUNT;
// reset curr_test_freq and freq_cnt for next test
curr_test_freq = freq[0];
freq_cnt = 0;
}
}
if (counter == AUTOTUNE_SUCCESS_COUNT) {
start_freq = 0.0f; //initializes next test that uses dwell test
} else {
start_freq = curr_test_freq;
stop_freq = curr_test_freq;
}
}
// updating_angle_p_up_yaw - determines maximum angle p gain for yaw
void AC_AutoTune_Heli::updating_angle_p_up_yaw(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt)
{
float test_freq_incr = 0.5f * 3.14159f * 2.0f;
if (frq_cnt < 12) {
if (frq_cnt == 0) {
freq_cnt_max = 0;
} else if (phase[frq_cnt] <= 180.0f && !is_zero(phase[frq_cnt])) {
sp_prev_good_frq_cnt = frq_cnt;
} else if (frq_cnt > 1 && phase[frq_cnt] > phase[frq_cnt-1] + 360.0f && !is_zero(phase[frq_cnt])) {
if (phase[frq_cnt] - 360.0f < 180.0f) {
sp_prev_good_frq_cnt = frq_cnt;
}
} else if (frq_cnt > 1 && phase[frq_cnt] > 300.0f && !is_zero(phase[frq_cnt])) {
frq_cnt = 11;
}
frq_cnt++;
if (frq_cnt == 12) {
freq[frq_cnt] = freq[sp_prev_good_frq_cnt];
curr_test_freq = freq[frq_cnt];
} else {
freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr;
curr_test_freq = freq[frq_cnt];
}
}
// once finished with sweep of frequencies, cnt = 12 is used to then tune for max response gain
if (freq_cnt >= 12) {
if (gain[frq_cnt] < max_resp_gain && phase[frq_cnt] <= 180.0f && phase[frq_cnt] >= 160.0f && tune_p < AUTOTUNE_SP_MAX) {
tune_p += 0.5f;
if (tune_p >= AUTOTUNE_SP_MAX) {
tune_p = AUTOTUNE_SP_MAX;
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
curr_test_freq = freq[0];
freq_cnt = 0;
}
} else if (gain[frq_cnt] < max_resp_gain && phase[frq_cnt] > 180.0f) {
curr_test_freq = curr_test_freq - 0.5 * test_freq_incr;
freq[frq_cnt] = curr_test_freq;
} else if (gain[frq_cnt] < max_resp_gain && phase[frq_cnt] < 160.0f) {
curr_test_freq = curr_test_freq + 0.5 * test_freq_incr;
freq[frq_cnt] = curr_test_freq;
} else {
counter = AUTOTUNE_SUCCESS_COUNT;
// reset curr_test_freq and frq_cnt for next test
curr_test_freq = freq[0];
frq_cnt = 0;
}
// guard against frequency getting too high or too low
if (curr_test_freq > 50.24f || curr_test_freq < 3.14f) {
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
curr_test_freq = freq[0];
freq_cnt = 0;
}
}
if (counter == AUTOTUNE_SUCCESS_COUNT) {
start_freq = 0.0f; //initializes next test that uses dwell test
} else {
start_freq = curr_test_freq;
stop_freq = curr_test_freq;
}
}
// updating_max_gains: use dwells at increasing frequency to determine gain at which instability will occur
void AC_AutoTune_Heli::updating_max_gains(float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_p, max_gain_data &max_gain_d, float &tune_p, float &tune_d)
{
float test_freq_incr = 1.0f * M_PI * 2.0f;
if (!is_equal(start_freq,stop_freq)) {
frq_cnt = 2;
if (!is_zero(sweep.ph180_freq)) {
freq[frq_cnt] = sweep.ph180_freq - 0.5f * test_freq_incr;
} else {
freq[frq_cnt] = 4.0f * M_PI;
}
curr_test_freq = freq[frq_cnt];
start_freq = curr_test_freq;
stop_freq = curr_test_freq;
} else if (frq_cnt < 12 && is_equal(start_freq,stop_freq)) {
if (frq_cnt > 2 && phase[frq_cnt] > 161.0f && phase[frq_cnt] < 270.0f &&
!find_middle && !found_max_p) {
find_middle = true;
} else if (find_middle && !found_max_p) {
if (phase[frq_cnt] > 161.0f) {
// interpolate between frq_cnt-2 and frq_cnt
max_gain_p.freq = linear_interpolate(freq[frq_cnt-2],freq[frq_cnt],161.0f,phase[frq_cnt-2],phase[frq_cnt]);
max_gain_p.gain = linear_interpolate(gain[frq_cnt-2],gain[frq_cnt],161.0f,phase[frq_cnt-2],phase[frq_cnt]);
} else {
// interpolate between frq_cnt-1 and frq_cnt
max_gain_p.freq = linear_interpolate(freq[frq_cnt],freq[frq_cnt-1],161.0f,phase[frq_cnt],phase[frq_cnt-1]);
max_gain_p.gain = linear_interpolate(gain[frq_cnt],gain[frq_cnt-1],161.0f,phase[frq_cnt],phase[frq_cnt-1]);
}
max_gain_p.phase = 161.0f;
max_gain_p.max_allowed = powf(10.0f,-1 * (log10f(max_gain_p.gain) * 20.0f + 2.42) / 20.0f);
// limit max gain allowed to be no more than 2x the max p gain limit to keep initial gains bounded
max_gain_p.max_allowed = constrain_float(max_gain_p.max_allowed, 0.0f, 2.0f * AUTOTUNE_RP_MAX);
found_max_p = true;
find_middle = false;
if (!is_zero(sweep.ph270_freq)) {
// set freq cnt back to reinitialize process
frq_cnt = 1; // set to 1 because it will be incremented
// set frequency back at least one test_freq_incr as it will be added
freq[1] = sweep.ph270_freq - 1.5f * test_freq_incr;
}
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Max rate P freq=%f gain=%f ph=%f rate_p=%f", (double)(max_gain_p.freq), (double)(max_gain_p.gain), (double)(max_gain_p.phase), (double)(max_gain_p.max_allowed));
}
if (frq_cnt > 2 && phase[frq_cnt] > 251.0f && phase[frq_cnt] < 360.0f &&
!find_middle && !found_max_d && found_max_p) {
find_middle = true;
} else if (find_middle && found_max_p && !found_max_d) {
if (phase[frq_cnt] > 251.0f) {
// interpolate between frq_cnt-2 and frq_cnt
max_gain_d.freq = linear_interpolate(freq[frq_cnt-2],freq[frq_cnt],251.0f,phase[frq_cnt-2],phase[frq_cnt]);
max_gain_d.gain = linear_interpolate(gain[frq_cnt-2],gain[frq_cnt],251.0f,phase[frq_cnt-2],phase[frq_cnt]);
} else {
// interpolate between frq_cnt-1 and frq_cnt
max_gain_d.freq = linear_interpolate(freq[frq_cnt],freq[frq_cnt-1],251.0f,phase[frq_cnt],phase[frq_cnt-1]);
max_gain_d.gain = linear_interpolate(gain[frq_cnt],gain[frq_cnt-1],251.0f,phase[frq_cnt],phase[frq_cnt-1]);
}
max_gain_d.phase = 251.0f;
max_gain_d.max_allowed = powf(10.0f,-1 * (log10f(max_gain_d.freq * max_gain_d.gain) * 20.0f + 2.42) / 20.0f);
// limit max gain allowed to be no more than 2x the max d gain limit to keep initial gains bounded
max_gain_d.max_allowed = constrain_float(max_gain_d.max_allowed, 0.0f, 2.0f * AUTOTUNE_RD_MAX);
found_max_d = true;
find_middle = false;
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Max Rate D freq=%f gain=%f ph=%f rate_d=%f", (double)(max_gain_d.freq), (double)(max_gain_d.gain), (double)(max_gain_d.phase), (double)(max_gain_d.max_allowed));
}
// stop progression in frequency.
if ((frq_cnt > 1 && phase[frq_cnt] > 330.0f && !is_zero(phase[frq_cnt])) || found_max_d) {
frq_cnt = 11;
}
frq_cnt++;
if (frq_cnt == 12) {
counter = AUTOTUNE_SUCCESS_COUNT;
// reset variables for next test
curr_test_freq = freq[0];
frq_cnt = 0;
found_max_p = false;
found_max_d = false;
find_middle = false;
// tune_p = 0.35f * max_gain_p.max_allowed;
// tune_d = 0.25f * max_gain_d.max_allowed;
start_freq = 0.0f; //initializes next test that uses dwell test
} else {
if (frq_cnt == 3 && phase[2] >= 161.0f && !found_max_p) {
// phase greater than 161 deg won't allow max p to be found
// reset freq cnt to 2 and lower dwell freq to push phase below 161 deg
frq_cnt = 2;
freq[frq_cnt] = freq[frq_cnt] - 0.5f * test_freq_incr;
} else if (frq_cnt == 3 && phase[2] >= 251.0f && !found_max_d) {
// phase greater than 161 deg won't allow max p to be found
// reset freq cnt to 2 and lower dwell freq to push phase below 161 deg
frq_cnt = 2;
freq[frq_cnt] = freq[frq_cnt] - 0.5f * test_freq_incr;
} else if (find_middle) {
freq[frq_cnt] = freq[frq_cnt-1] - 0.5f * test_freq_incr;
} else {
freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr;
}
curr_test_freq = freq[frq_cnt];
start_freq = curr_test_freq;
stop_freq = curr_test_freq;
}
}
}
// log autotune summary data
void AC_AutoTune_Heli::Log_AutoTune()
{
switch (axis) {
case ROLL:
Log_Write_AutoTune(axis, tune_type, test_freq[freq_cnt], test_gain[freq_cnt], test_phase[freq_cnt], tune_roll_rff, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max);
break;
case PITCH:
Log_Write_AutoTune(axis, tune_type, test_freq[freq_cnt], test_gain[freq_cnt], test_phase[freq_cnt], tune_pitch_rff, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max);
break;
case YAW:
Log_Write_AutoTune(axis, tune_type, test_freq[freq_cnt], test_gain[freq_cnt], test_phase[freq_cnt], tune_yaw_rff, tune_yaw_rp, tune_yaw_rd, tune_yaw_sp, test_accel_max);
break;
}
// }
}
// log autotune time history results for command, angular rate, and attitude
void AC_AutoTune_Heli::Log_AutoTuneDetails()
{
if (tune_type == SP_UP) {
Log_Write_AutoTuneDetails(command_out, 0.0f, 0.0f, filt_target_rate, rotation_rate);
} else {
Log_Write_AutoTuneDetails(command_out, filt_target_rate, rotation_rate, 0.0f, 0.0f);
}
}
// log autotune frequency response data
void AC_AutoTune_Heli::Log_AutoTuneSweep()
{
Log_Write_AutoTuneSweep(curr_test_freq, curr_test_gain, curr_test_phase);
}
// @LoggerMessage: ATNH
// @Description: Heli AutoTune
// @Vehicles: Copter
// @Field: TimeUS: Time since system startup
// @Field: Axis: which axis is currently being tuned
// @Field: TuneStep: step in autotune process
// @Field: Freq: target dwell frequency
// @Field: Gain: measured gain of dwell
// @Field: Phase: measured phase of dwell
// @Field: RFF: new rate gain FF term
// @Field: RP: new rate gain P term
// @Field: RD: new rate gain D term
// @Field: SP: new angle P term
// @Field: ACC: new max accel term
// Write an Autotune summary data packet
void AC_AutoTune_Heli::Log_Write_AutoTune(uint8_t _axis, uint8_t tune_step, float dwell_freq, float meas_gain, float meas_phase, float new_gain_rff, float new_gain_rp, float new_gain_rd, float new_gain_sp, float max_accel)
{
AP::logger().Write(
"ATNH",
"TimeUS,Axis,TuneStep,Freq,Gain,Phase,RFF,RP,RD,SP,ACC",
"s--E-d-----",
"F--000-----",
"QBBffffffff",
AP_HAL::micros64(),
axis,
tune_step,
dwell_freq,
meas_gain,
meas_phase,
new_gain_rff,
new_gain_rp,
new_gain_rd,
new_gain_sp,
max_accel);
}
// Write an Autotune detailed data packet
void AC_AutoTune_Heli::Log_Write_AutoTuneDetails(float motor_cmd, float tgt_rate_rads, float rate_rads, float tgt_ang_rad, float ang_rad)
{
// @LoggerMessage: ATDH
// @Description: Heli AutoTune data packet
// @Vehicles: Copter
// @Field: TimeUS: Time since system startup
// @Field: Cmd: current motor command
// @Field: TRate: current target angular rate
// @Field: Rate: current angular rate
// @Field: TAng: current target angle
// @Field: Ang: current angle
AP::logger().WriteStreaming(
"ATDH",
"TimeUS,Cmd,TRate,Rate,TAng,Ang",
"s-kkdd",
"F00000",
"Qfffff",
AP_HAL::micros64(),
motor_cmd,
tgt_rate_rads*57.3,
rate_rads*57.3f,
tgt_ang_rad*57.3,
ang_rad*57.3f);
}
// Write an Autotune frequency response data packet
void AC_AutoTune_Heli::Log_Write_AutoTuneSweep(float freq, float gain, float phase)
{
// @LoggerMessage: ATSH
// @Description: Heli AutoTune Sweep packet
// @Vehicles: Copter
// @Field: TimeUS: Time since system startup
// @Field: freq: current frequency
// @Field: gain: current response gain
// @Field: phase: current response phase
AP::logger().WriteStreaming(
"ATSH",
"TimeUS,freq,gain,phase",
"sE-d",
"F000",
"Qfff",
AP_HAL::micros64(),
freq,
gain,
phase);
}
// get intra test rate I gain for the specified axis
float AC_AutoTune_Heli::get_intra_test_ri(AxisType test_axis)
{
float ret = 0.0f;
switch (test_axis) {
case ROLL:
ret = orig_roll_rff * AUTOTUNE_FFI_RATIO_FOR_TESTING;
break;
case PITCH:
ret = orig_pitch_rff * AUTOTUNE_FFI_RATIO_FOR_TESTING;
break;
case YAW:
ret = orig_yaw_rp*AUTOTUNE_PI_RATIO_FOR_TESTING;
break;
}
return ret;
}
// get tuned rate I gain for the specified axis
float AC_AutoTune_Heli::get_tuned_ri(AxisType test_axis)
{
float ret = 0.0f;
switch (test_axis) {
case ROLL:
ret = tune_roll_rff*AUTOTUNE_FFI_RATIO_FINAL;
break;
case PITCH:
ret = tune_pitch_rff*AUTOTUNE_FFI_RATIO_FINAL;
break;
case YAW:
ret = tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL;
break;
}
return ret;
}
// get minimum rate P (for any axis)
float AC_AutoTune_Heli::get_rp_min() const
{
return AUTOTUNE_RP_MIN;
}
// get minimum angle P (for any axis)
float AC_AutoTune_Heli::get_sp_min() const
{
return AUTOTUNE_SP_MIN;
}
// get minimum rate Yaw filter value
float AC_AutoTune_Heli::get_yaw_rate_filt_min() const
{
return AUTOTUNE_RLPF_MIN;
}
// set the tuning test sequence
void AC_AutoTune_Heli::set_tune_sequence()
{
uint8_t seq_cnt = 0;
if (seq_bitmask & AUTOTUNE_SEQ_BITMASK_VFF) {
tune_seq[seq_cnt] = RFF_UP;
seq_cnt++;
}
if (seq_bitmask & AUTOTUNE_SEQ_BITMASK_RATE_D) {
tune_seq[seq_cnt] = MAX_GAINS;
seq_cnt++;
tune_seq[seq_cnt] = RD_UP;
seq_cnt++;
tune_seq[seq_cnt] = RP_UP;
seq_cnt++;
}
if (seq_bitmask & AUTOTUNE_SEQ_BITMASK_ANGLE_P) {
tune_seq[seq_cnt] = SP_UP;
seq_cnt++;
}
if (seq_bitmask & AUTOTUNE_SEQ_BITMASK_MAX_GAIN && !(seq_bitmask & AUTOTUNE_SEQ_BITMASK_RATE_D)) {
tune_seq[seq_cnt] = MAX_GAINS;
seq_cnt++;
}
tune_seq[seq_cnt] = TUNE_COMPLETE;
}