ardupilot/libraries/AP_Motors/AP_MotorsTailsitter.cpp

222 lines
7.9 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_MotorsTailsitter.cpp - ArduCopter motors library for tailsitters and bicopters
*
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include "AP_MotorsTailsitter.h"
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
#define SERVO_OUTPUT_RANGE 4500
// init
void AP_MotorsTailsitter::init(motor_frame_class frame_class, motor_frame_type frame_type)
{
// setup default motor and servo mappings
uint8_t chan;
// right throttle defaults to servo output 1
SRV_Channels::set_aux_channel_default(SRV_Channel::k_throttleRight, CH_1);
if (SRV_Channels::find_channel(SRV_Channel::k_throttleRight, chan)) {
motor_enabled[chan] = true;
}
// left throttle defaults to servo output 2
SRV_Channels::set_aux_channel_default(SRV_Channel::k_throttleLeft, CH_2);
if (SRV_Channels::find_channel(SRV_Channel::k_throttleLeft, chan)) {
motor_enabled[chan] = true;
}
// right servo defaults to servo output 3
SRV_Channels::set_aux_channel_default(SRV_Channel::k_tiltMotorRight, CH_3);
SRV_Channels::set_angle(SRV_Channel::k_tiltMotorRight, SERVO_OUTPUT_RANGE);
// left servo defaults to servo output 4
SRV_Channels::set_aux_channel_default(SRV_Channel::k_tiltMotorLeft, CH_4);
SRV_Channels::set_angle(SRV_Channel::k_tiltMotorLeft, SERVO_OUTPUT_RANGE);
_mav_type = MAV_TYPE_COAXIAL;
// record successful initialisation if what we setup was the desired frame_class
set_initialised_ok(frame_class == MOTOR_FRAME_TAILSITTER);
}
/// Constructor
AP_MotorsTailsitter::AP_MotorsTailsitter(uint16_t loop_rate, uint16_t speed_hz) :
AP_MotorsMulticopter(loop_rate, speed_hz)
{
set_update_rate(speed_hz);
}
// set update rate to motors - a value in hertz
void AP_MotorsTailsitter::set_update_rate(uint16_t speed_hz)
{
// record requested speed
_speed_hz = speed_hz;
SRV_Channels::set_rc_frequency(SRV_Channel::k_throttleLeft, speed_hz);
SRV_Channels::set_rc_frequency(SRV_Channel::k_throttleRight, speed_hz);
}
void AP_MotorsTailsitter::output_to_motors()
{
if (!initialised_ok()) {
return;
}
switch (_spool_state) {
case SpoolState::SHUT_DOWN:
_actuator[0] = 0.0f;
_actuator[1] = 0.0f;
_actuator[2] = 0.0f;
break;
case SpoolState::GROUND_IDLE:
set_actuator_with_slew(_actuator[0], actuator_spin_up_to_ground_idle());
set_actuator_with_slew(_actuator[1], actuator_spin_up_to_ground_idle());
set_actuator_with_slew(_actuator[2], actuator_spin_up_to_ground_idle());
break;
case SpoolState::SPOOLING_UP:
case SpoolState::THROTTLE_UNLIMITED:
case SpoolState::SPOOLING_DOWN:
set_actuator_with_slew(_actuator[0], thrust_to_actuator(_thrust_left));
set_actuator_with_slew(_actuator[1], thrust_to_actuator(_thrust_right));
set_actuator_with_slew(_actuator[2], thrust_to_actuator(_throttle));
break;
}
SRV_Channels::set_output_pwm(SRV_Channel::k_throttleLeft, output_to_pwm(_actuator[0]));
SRV_Channels::set_output_pwm(SRV_Channel::k_throttleRight, output_to_pwm(_actuator[1]));
// use set scaled to allow a different PWM range on plane forward throttle, throttle range is 0 to 100
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, _actuator[2]*100);
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft, _tilt_left*SERVO_OUTPUT_RANGE);
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight, _tilt_right*SERVO_OUTPUT_RANGE);
}
// get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsTailsitter::get_motor_mask()
{
uint32_t motor_mask = 0;
uint8_t chan;
if (SRV_Channels::find_channel(SRV_Channel::k_throttleLeft, chan)) {
motor_mask |= 1U << chan;
}
if (SRV_Channels::find_channel(SRV_Channel::k_throttleRight, chan)) {
motor_mask |= 1U << chan;
}
// add parent's mask
motor_mask |= AP_MotorsMulticopter::get_motor_mask();
return motor_mask;
}
// calculate outputs to the motors
void AP_MotorsTailsitter::output_armed_stabilizing()
{
float roll_thrust; // roll thrust input value, +/- 1.0
float pitch_thrust; // pitch thrust input value, +/- 1.0
float yaw_thrust; // yaw thrust input value, +/- 1.0
float throttle_thrust; // throttle thrust input value, 0.0 - 1.0
float thrust_max; // highest motor value
float thr_adj = 0.0f; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy
// apply voltage and air pressure compensation
const float compensation_gain = get_compensation_gain();
roll_thrust = (_roll_in + _roll_in_ff) * compensation_gain;
pitch_thrust = _pitch_in + _pitch_in_ff;
yaw_thrust = _yaw_in + _yaw_in_ff;
throttle_thrust = get_throttle() * compensation_gain;
// sanity check throttle is above zero and below current limited throttle
if (throttle_thrust <= 0.0f) {
throttle_thrust = 0.0f;
limit.throttle_lower = true;
}
if (throttle_thrust >= _throttle_thrust_max) {
throttle_thrust = _throttle_thrust_max;
limit.throttle_upper = true;
}
// calculate left and right throttle outputs
_thrust_left = throttle_thrust + roll_thrust * 0.5f;
_thrust_right = throttle_thrust - roll_thrust * 0.5f;
// if max thrust is more than one reduce average throttle
thrust_max = MAX(_thrust_right,_thrust_left);
if (thrust_max > 1.0f) {
thr_adj = 1.0f - thrust_max;
limit.throttle_upper = true;
limit.roll = true;
limit.pitch = true;
}
// Add adjustment to reduce average throttle
_thrust_left = constrain_float(_thrust_left + thr_adj, 0.0f, 1.0f);
_thrust_right = constrain_float(_thrust_right + thr_adj, 0.0f, 1.0f);
_throttle = throttle_thrust + thr_adj;
// compensation_gain can never be zero
_throttle_out = _throttle / compensation_gain;
// thrust vectoring
_tilt_left = pitch_thrust - yaw_thrust;
_tilt_right = pitch_thrust + yaw_thrust;
}
// output_test_seq - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsTailsitter::output_test_seq(uint8_t motor_seq, int16_t pwm)
{
// exit immediately if not armed
if (!armed()) {
return;
}
// output to motors and servos
switch (motor_seq) {
case 1:
// right throttle
SRV_Channels::set_output_pwm(SRV_Channel::k_throttleRight, pwm);
break;
case 2:
// right tilt servo
SRV_Channels::set_output_pwm(SRV_Channel::k_tiltMotorRight, pwm);
break;
case 3:
// left throttle
SRV_Channels::set_output_pwm(SRV_Channel::k_throttleLeft, pwm);
break;
case 4:
// left tilt servo
SRV_Channels::set_output_pwm(SRV_Channel::k_tiltMotorLeft, pwm);
break;
default:
// do nothing
break;
}
}