ardupilot/libraries/AP_UAVCAN/AP_UAVCAN.cpp
2017-04-10 22:38:12 +01:00

827 lines
29 KiB
C++

/*
* AP_UAVCAN.cpp
*
* Author: Eugene Shamaev
*/
#include <AP_Common/AP_Common.h>
#include <AP_HAL/AP_HAL.h>
#if HAL_WITH_UAVCAN
#include "AP_UAVCAN.h"
#include <GCS_MAVLink/GCS.h>
// Zubax GPS and other GPS, baro, magnetic sensors
#include <uavcan/equipment/gnss/Fix.hpp>
#include <uavcan/equipment/gnss/Auxiliary.hpp>
#include <uavcan/equipment/ahrs/MagneticFieldStrength.hpp>
#include <uavcan/equipment/air_data/StaticPressure.hpp>
#include <uavcan/equipment/air_data/StaticTemperature.hpp>
#include <uavcan/equipment/actuator/ArrayCommand.hpp>
#include <uavcan/equipment/actuator/Command.hpp>
#include <uavcan/equipment/actuator/Status.hpp>
#include <uavcan/equipment/esc/RawCommand.hpp>
#include <AP_BoardConfig/AP_BoardConfig.h>
extern const AP_HAL::HAL& hal;
#define debug_uavcan(level, fmt, args...) do { if ((level) <= AP_BoardConfig::get_can_debug()) { hal.console->printf(fmt, ##args); }} while (0)
// Translation of all messages from UAVCAN structures into AP structures is done
// in AP_UAVCAN and not in corresponding drivers.
// The overhead of including definitions of DSDL is very high and it is best to
// concentrate in one place.
// TODO: temperature can come not only from baro. There should be separation on node ID
// to check where it belongs to. If it is not baro that is the source, separate layer
// of listeners/nodes should be added.
// table of user settable CAN bus parameters
const AP_Param::GroupInfo AP_UAVCAN::var_info[] = {
// @Param: NODE
// @DisplayName: UAVCAN node that is used for Ardupilot
// @Description: UAVCAN node should be set implicitly
// @Range: 1 250
// @User: Advanced
AP_GROUPINFO("NODE", 1, AP_UAVCAN, _uavcan_node, 10),
AP_GROUPEND
};
static uavcan::Subscriber<uavcan::equipment::gnss::Fix> *gnss_fix;
static void gnss_fix_cb(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Fix>& msg)
{
if (hal.can_mgr != nullptr) {
AP_UAVCAN *ap_uavcan = hal.can_mgr->get_UAVCAN();
if (ap_uavcan != nullptr) {
AP_GPS::GPS_State *state = ap_uavcan->find_gps_node(msg.getSrcNodeID().get());
if (state != nullptr) {
bool process = false;
if (msg.status == uavcan::equipment::gnss::Fix::STATUS_NO_FIX) {
state->status = AP_GPS::GPS_Status::NO_FIX;
} else {
if (msg.status == uavcan::equipment::gnss::Fix::STATUS_TIME_ONLY) {
state->status = AP_GPS::GPS_Status::NO_FIX;
} else if (msg.status == uavcan::equipment::gnss::Fix::STATUS_2D_FIX) {
state->status = AP_GPS::GPS_Status::GPS_OK_FIX_2D;
process = true;
} else if (msg.status == uavcan::equipment::gnss::Fix::STATUS_3D_FIX) {
state->status = AP_GPS::GPS_Status::GPS_OK_FIX_3D;
process = true;
}
if (msg.gnss_time_standard == uavcan::equipment::gnss::Fix::GNSS_TIME_STANDARD_UTC) {
uint64_t epoch_ms = uavcan::UtcTime(msg.gnss_timestamp).toUSec();
epoch_ms /= 1000;
uint64_t gps_ms = epoch_ms - UNIX_OFFSET_MSEC;
state->time_week = (uint16_t)(gps_ms / MSEC_PER_WEEK);
state->time_week_ms = (uint32_t)(gps_ms - (state->time_week) * MSEC_PER_WEEK);
}
}
if (process) {
Location loc = { };
loc.lat = msg.latitude_deg_1e8 / 10;
loc.lng = msg.longitude_deg_1e8 / 10;
loc.alt = msg.height_msl_mm / 10;
state->location = loc;
state->location.options = 0;
if (!uavcan::isNaN(msg.ned_velocity[0])) {
Vector3f vel(msg.ned_velocity[0], msg.ned_velocity[1], msg.ned_velocity[2]);
state->velocity = vel;
state->ground_speed = norm(vel.x, vel.y);
state->ground_course = wrap_360(degrees(atan2f(vel.y, vel.x)));
state->have_vertical_velocity = true;
} else {
state->have_vertical_velocity = false;
}
float pos_cov[9];
msg.position_covariance.unpackSquareMatrix(pos_cov);
if (!uavcan::isNaN(pos_cov[8])) {
if (pos_cov[8] > 0) {
state->vertical_accuracy = sqrtf(pos_cov[8]);
state->have_vertical_accuracy = true;
} else {
state->have_vertical_accuracy = false;
}
} else {
state->have_vertical_accuracy = false;
}
const float horizontal_pos_variance = MAX(pos_cov[0], pos_cov[4]);
if (!uavcan::isNaN(horizontal_pos_variance)) {
if (horizontal_pos_variance > 0) {
state->horizontal_accuracy = sqrtf(horizontal_pos_variance);
state->have_horizontal_accuracy = true;
} else {
state->have_horizontal_accuracy = false;
}
} else {
state->have_horizontal_accuracy = false;
}
float vel_cov[9];
msg.velocity_covariance.unpackSquareMatrix(vel_cov);
if (!uavcan::isNaN(vel_cov[0])) {
state->speed_accuracy = sqrtf((vel_cov[0] + vel_cov[4] + vel_cov[8]) / 3.0);
state->have_speed_accuracy = true;
} else {
state->have_speed_accuracy = false;
}
state->num_sats = msg.sats_used;
} else {
state->have_vertical_velocity = false;
state->have_vertical_accuracy = false;
state->have_horizontal_accuracy = false;
state->have_speed_accuracy = false;
state->num_sats = 0;
}
state->last_gps_time_ms = AP_HAL::millis();
// after all is filled, update all listeners with new data
ap_uavcan->update_gps_state(msg.getSrcNodeID().get());
}
}
}
}
static uavcan::Subscriber<uavcan::equipment::gnss::Auxiliary> *gnss_aux;
static void gnss_aux_cb(const uavcan::ReceivedDataStructure<uavcan::equipment::gnss::Auxiliary>& msg)
{
if (hal.can_mgr != nullptr) {
AP_UAVCAN *ap_uavcan = hal.can_mgr->get_UAVCAN();
if (ap_uavcan != nullptr) {
AP_GPS::GPS_State *state = ap_uavcan->find_gps_node(msg.getSrcNodeID().get());
if (state != nullptr) {
if (!uavcan::isNaN(msg.hdop)) {
state->hdop = msg.hdop * 100.0;
}
if (!uavcan::isNaN(msg.vdop)) {
state->vdop = msg.vdop * 100.0;
}
}
}
}
}
static uavcan::Subscriber<uavcan::equipment::ahrs::MagneticFieldStrength> *magnetic;
static void magnetic_cb(const uavcan::ReceivedDataStructure<uavcan::equipment::ahrs::MagneticFieldStrength>& msg)
{
if (hal.can_mgr != nullptr) {
AP_UAVCAN *ap_uavcan = hal.can_mgr->get_UAVCAN();
if (ap_uavcan != nullptr) {
AP_UAVCAN::Mag_Info *state = ap_uavcan->find_mag_node(msg.getSrcNodeID().get());
if (state != nullptr) {
state->mag_vector[0] = msg.magnetic_field_ga[0];
state->mag_vector[1] = msg.magnetic_field_ga[1];
state->mag_vector[2] = msg.magnetic_field_ga[2];
// after all is filled, update all listeners with new data
ap_uavcan->update_mag_state(msg.getSrcNodeID().get());
}
}
}
}
static uavcan::Subscriber<uavcan::equipment::air_data::StaticPressure> *air_data_sp;
static void air_data_sp_cb(const uavcan::ReceivedDataStructure<uavcan::equipment::air_data::StaticPressure>& msg)
{
if (hal.can_mgr != nullptr) {
AP_UAVCAN *ap_uavcan = hal.can_mgr->get_UAVCAN();
if (ap_uavcan != nullptr) {
AP_UAVCAN::Baro_Info *state = ap_uavcan->find_baro_node(msg.getSrcNodeID().get());
if (state != nullptr) {
state->pressure = msg.static_pressure;
state->pressure_variance = msg.static_pressure_variance;
// after all is filled, update all listeners with new data
ap_uavcan->update_baro_state(msg.getSrcNodeID().get());
}
}
}
}
// Temperature is not main parameter so do not update listeners when it is received
static uavcan::Subscriber<uavcan::equipment::air_data::StaticTemperature> *air_data_st;
static void air_data_st_cb(const uavcan::ReceivedDataStructure<uavcan::equipment::air_data::StaticTemperature>& msg)
{
if (hal.can_mgr != nullptr) {
AP_UAVCAN *ap_uavcan = hal.can_mgr->get_UAVCAN();
if (ap_uavcan != nullptr) {
AP_UAVCAN::Baro_Info *state = ap_uavcan->find_baro_node(msg.getSrcNodeID().get());
if (state != nullptr) {
state->temperature = msg.static_temperature;
state->temperature_variance = msg.static_temperature_variance;
}
}
}
}
// publisher interfaces
static uavcan::Publisher<uavcan::equipment::actuator::ArrayCommand> *act_out_array;
static uavcan::Publisher<uavcan::equipment::esc::RawCommand> *esc_raw;
AP_UAVCAN::AP_UAVCAN() :
_initialized(false), _rco_armed(false), _rco_safety(false), _rc_out_sem(nullptr), _node_allocator(
UAVCAN_NODE_POOL_SIZE, UAVCAN_NODE_POOL_SIZE)
{
AP_Param::setup_object_defaults(this, var_info);
for (uint8_t i = 0; i < UAVCAN_RCO_NUMBER; i++) {
_rco_conf[i].active = false;
}
for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) {
_gps_nodes[i] = 255;
_gps_node_taken[i] = 0;
}
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) {
_baro_nodes[i] = 255;
_baro_node_taken[i] = 0;
}
for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) {
_mag_nodes[i] = 255;
_mag_node_taken[i] = 0;
}
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
_gps_listener_to_node[i] = 255;
_gps_listeners[i] = nullptr;
_baro_listener_to_node[i] = 255;
_baro_listeners[i] = nullptr;
_mag_listener_to_node[i] = 255;
_mag_listeners[i] = nullptr;
}
_rc_out_sem = hal.util->new_semaphore();
debug_uavcan(2, "AP_UAVCAN constructed\n\r");
}
AP_UAVCAN::~AP_UAVCAN()
{
}
bool AP_UAVCAN::try_init(void)
{
if (hal.can_mgr != nullptr) {
if (hal.can_mgr->is_initialized() && !_initialized) {
auto *node = get_node();
if (node != nullptr) {
if (!node->isStarted()) {
uavcan::NodeID self_node_id(_uavcan_node);
node->setNodeID(self_node_id);
uavcan::NodeStatusProvider::NodeName name("org.ardupilot");
node->setName(name);
uavcan::protocol::SoftwareVersion sw_version; // Standard type uavcan.protocol.SoftwareVersion
sw_version.major = AP_UAVCAN_SW_VERS_MAJOR;
sw_version.minor = AP_UAVCAN_SW_VERS_MINOR;
node->setSoftwareVersion(sw_version);
uavcan::protocol::HardwareVersion hw_version; // Standard type uavcan.protocol.HardwareVersion
hw_version.major = AP_UAVCAN_HW_VERS_MAJOR;
hw_version.minor = AP_UAVCAN_HW_VERS_MINOR;
node->setHardwareVersion(hw_version);
const int node_start_res = node->start();
if (node_start_res < 0) {
debug_uavcan(1, "UAVCAN: node start problem\n\r");
}
gnss_fix = new uavcan::Subscriber<uavcan::equipment::gnss::Fix>(*node);
const int gnss_fix_start_res = gnss_fix->start(gnss_fix_cb);
if (gnss_fix_start_res < 0) {
debug_uavcan(1, "UAVCAN GNSS subscriber start problem\n\r");
return false;
}
gnss_aux = new uavcan::Subscriber<uavcan::equipment::gnss::Auxiliary>(*node);
const int gnss_aux_start_res = gnss_aux->start(gnss_aux_cb);
if (gnss_aux_start_res < 0) {
debug_uavcan(1, "UAVCAN GNSS Aux subscriber start problem\n\r");
return false;
}
magnetic = new uavcan::Subscriber<uavcan::equipment::ahrs::MagneticFieldStrength>(*node);
const int magnetic_start_res = magnetic->start(magnetic_cb);
if (magnetic_start_res < 0) {
debug_uavcan(1, "UAVCAN Compass subscriber start problem\n\r");
return false;
}
air_data_sp = new uavcan::Subscriber<uavcan::equipment::air_data::StaticPressure>(*node);
const int air_data_sp_start_res = air_data_sp->start(air_data_sp_cb);
if (air_data_sp_start_res < 0) {
debug_uavcan(1, "UAVCAN Baro subscriber start problem\n\r");
return false;
}
air_data_st = new uavcan::Subscriber<uavcan::equipment::air_data::StaticTemperature>(*node);
const int air_data_st_start_res = air_data_st->start(air_data_st_cb);
if (air_data_st_start_res < 0) {
debug_uavcan(1, "UAVCAN Temperature subscriber start problem\n\r");
return false;
}
act_out_array = new uavcan::Publisher<uavcan::equipment::actuator::ArrayCommand>(*node);
act_out_array->setTxTimeout(uavcan::MonotonicDuration::fromMSec(20));
act_out_array->setPriority(uavcan::TransferPriority::OneLowerThanHighest);
esc_raw = new uavcan::Publisher<uavcan::equipment::esc::RawCommand>(*node);
esc_raw->setTxTimeout(uavcan::MonotonicDuration::fromMSec(20));
esc_raw->setPriority(uavcan::TransferPriority::OneLowerThanHighest);
/*
* Informing other nodes that we're ready to work.
* Default mode is INITIALIZING.
*/
node->setModeOperational();
_initialized = true;
debug_uavcan(1, "UAVCAN: init done\n\r");
return true;
}
}
}
if (_initialized) {
return true;
}
}
return false;
}
bool AP_UAVCAN::rc_out_sem_take()
{
bool sem_ret = _rc_out_sem->take(10);
if (!sem_ret) {
debug_uavcan(1, "AP_UAVCAN RCOut semaphore fail\n\r");
}
return sem_ret;
}
void AP_UAVCAN::rc_out_sem_give()
{
_rc_out_sem->give();
}
void AP_UAVCAN::do_cyclic(void)
{
uint32_t _servo_bm = SRV_Channels::get_can_servo_bm();
uint32_t _esc_bm = SRV_Channels::get_can_esc_bm();
if (_initialized) {
auto *node = get_node();
const int error = node->spin(uavcan::MonotonicDuration::fromMSec(1));
if (error < 0) {
hal.scheduler->delay_microseconds(1000);
} else {
if (rc_out_sem_take()) {
if (_rco_armed) {
// TODO: several transmittions if did not fit in 15 servos
uavcan::equipment::actuator::ArrayCommand msg;
uint8_t k = 0;
for (uint8_t i = 0; i < UAVCAN_RCO_NUMBER && k < 15; i++) {
uavcan::equipment::actuator::Command cmd;
/*
* Servo output uses a range of 1000-2000 PWM for scaling.
* This converts output PWM from [1000:2000] range to [-1:1] range that
* is passed to servo as unitless type via UAVCAN.
* This approach allows for MIN/TRIM/MAX values to be used fully on
* autopilot side and for servo it should have the setup to provide maximum
* physically possible throws at [-1:1] limits.
*/
if (_rco_conf[i].active && ((((uint32_t) 1) << i) & _servo_bm)) {
cmd.actuator_id = i + 1;
// TODO: other types
cmd.command_type = uavcan::equipment::actuator::Command::COMMAND_TYPE_UNITLESS;
// TODO: failsafe, safety
cmd.command_value = constrain_value(((float) _rco_conf[i].pulse - 1000.0) / 500.0 - 1.0, -1.0, 1.0);
msg.commands.push_back(cmd);
// UAVCAN can hold maximum of 15 commands in one frame
k++;
}
}
if (msg.commands.size() > 0) {
act_out_array->broadcast(msg);
}
// if we have any ESC's in bitmask
if (_esc_bm > 0) {
static const int cmd_max = uavcan::equipment::esc::RawCommand::FieldTypes::cmd::RawValueType::max();
uavcan::equipment::esc::RawCommand esc_msg;
uint8_t active_esc_num = 0, max_esc_num = 0;
// find out how many esc we have enabled and if they are active at all
for (uint8_t i = 0; i < UAVCAN_RCO_NUMBER; i++) {
if ((((uint32_t) 1) << i) & _esc_bm) {
max_esc_num = i;
if (_rco_conf[i].active) {
active_esc_num++;
}
}
}
// if at least one is active (update) we need to send to all
if (active_esc_num > 0) {
k = 0;
for (uint8_t i = 0; i < max_esc_num && k < 20; i++) {
uavcan::equipment::actuator::Command cmd;
if ((((uint32_t) 1) << i) & _esc_bm) {
// TODO: ESC negative scaling for reverse thrust and reverse rotation
float scaled = cmd_max * (hal.rcout->scale_esc_to_unity(_rco_conf[i].pulse) + 1.0) / 2.0;
scaled = constrain_float(scaled, 0, cmd_max);
esc_msg.cmd.push_back(static_cast<int>(scaled));
} else {
esc_msg.cmd.push_back(static_cast<unsigned>(0));
}
k++;
}
esc_raw->broadcast(esc_msg);
}
}
}
for (uint8_t i = 0; i < UAVCAN_RCO_NUMBER; i++) {
// mark as transmitted
_rco_conf[i].active = false;
}
rc_out_sem_give();
}
}
}
}
uavcan::ISystemClock & AP_UAVCAN::get_system_clock()
{
return SystemClock::instance();
}
uavcan::ICanDriver * AP_UAVCAN::get_can_driver()
{
if (hal.can_mgr != nullptr) {
if (hal.can_mgr->is_initialized() == false) {
return nullptr;
} else {
return hal.can_mgr;
}
}
return nullptr;
}
uavcan::Node<0> *AP_UAVCAN::get_node()
{
if (_node == nullptr && get_can_driver() != nullptr) {
_node = new uavcan::Node<0>(*get_can_driver(), get_system_clock(), _node_allocator);
}
return _node;
}
void AP_UAVCAN::rco_set_safety_pwm(uint32_t chmask, uint16_t pulse_len)
{
for (uint8_t i = 0; i < UAVCAN_RCO_NUMBER; i++) {
if (chmask & (((uint32_t) 1) << i)) {
_rco_conf[i].safety_pulse = pulse_len;
}
}
}
void AP_UAVCAN::rco_set_failsafe_pwm(uint32_t chmask, uint16_t pulse_len)
{
for (uint8_t i = 0; i < UAVCAN_RCO_NUMBER; i++) {
if (chmask & (((uint32_t) 1) << i)) {
_rco_conf[i].failsafe_pulse = pulse_len;
}
}
}
void AP_UAVCAN::rco_force_safety_on(void)
{
_rco_safety = true;
}
void AP_UAVCAN::rco_force_safety_off(void)
{
_rco_safety = false;
}
void AP_UAVCAN::rco_arm_actuators(bool arm)
{
_rco_armed = arm;
}
void AP_UAVCAN::rco_write(uint16_t pulse_len, uint8_t ch)
{
_rco_conf[ch].pulse = pulse_len;
_rco_conf[ch].active = true;
}
uint8_t AP_UAVCAN::register_gps_listener(AP_GPS_Backend* new_listener, uint8_t preferred_channel)
{
uint8_t sel_place = 255, ret = 0;
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
if (_gps_listeners[i] == nullptr) {
sel_place = i;
break;
}
}
if (sel_place != 255) {
if (preferred_channel != 0) {
if (preferred_channel <= AP_UAVCAN_MAX_GPS_NODES) {
_gps_listeners[sel_place] = new_listener;
_gps_listener_to_node[sel_place] = preferred_channel - 1;
_gps_node_taken[_gps_listener_to_node[sel_place]]++;
ret = preferred_channel;
debug_uavcan(2, "reg_GPS place:%d, chan: %d\n\r", sel_place, preferred_channel);
}
} else {
for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) {
if (_gps_node_taken[i] == 0) {
_gps_listeners[sel_place] = new_listener;
_gps_listener_to_node[sel_place] = i;
_gps_node_taken[i]++;
ret = i + 1;
debug_uavcan(2, "reg_GPS place:%d, chan: %d\n\r", sel_place, i);
break;
}
}
}
}
return ret;
}
void AP_UAVCAN::remove_gps_listener(AP_GPS_Backend* rem_listener)
{
// Check for all listeners and compare pointers
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
if (_gps_listeners[i] == rem_listener) {
_gps_listeners[i] = nullptr;
// Also decrement usage counter and reset listening node
if (_gps_node_taken[_gps_listener_to_node[i]] > 0) {
_gps_node_taken[_gps_listener_to_node[i]]--;
}
_gps_listener_to_node[i] = 255;
}
}
}
AP_GPS::GPS_State *AP_UAVCAN::find_gps_node(uint8_t node)
{
// Check if such node is already defined
for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) {
if (_gps_nodes[i] == node) {
return &_gps_node_state[i];
}
}
// If not - try to find free space for it
for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) {
if (_gps_nodes[i] == 255) {
_gps_nodes[i] = node;
return &_gps_node_state[i];
}
}
// If no space is left - return nullptr
return nullptr;
}
void AP_UAVCAN::update_gps_state(uint8_t node)
{
// Go through all listeners of specified node and call their's update methods
for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) {
if (_gps_nodes[i] == node) {
for (uint8_t j = 0; j < AP_UAVCAN_MAX_LISTENERS; j++) {
if (_gps_listener_to_node[j] == i) {
_gps_listeners[j]->handle_gnss_msg(_gps_node_state[i]);
}
}
}
}
}
uint8_t AP_UAVCAN::register_baro_listener(AP_Baro_Backend* new_listener, uint8_t preferred_channel)
{
uint8_t sel_place = 255, ret = 0;
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
if (_baro_listeners[i] == nullptr) {
sel_place = i;
break;
}
}
if (sel_place != 255) {
if (preferred_channel != 0) {
if (preferred_channel < AP_UAVCAN_MAX_BARO_NODES) {
_baro_listeners[sel_place] = new_listener;
_baro_listener_to_node[sel_place] = preferred_channel - 1;
_baro_node_taken[_baro_listener_to_node[sel_place]]++;
ret = preferred_channel;
debug_uavcan(2, "reg_Baro place:%d, chan: %d\n\r", sel_place, preferred_channel);
}
} else {
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) {
if (_baro_node_taken[i] == 0) {
_baro_listeners[sel_place] = new_listener;
_baro_listener_to_node[sel_place] = i;
_baro_node_taken[i]++;
ret = i + 1;
debug_uavcan(2, "reg_BARO place:%d, chan: %d\n\r", sel_place, i);
break;
}
}
}
}
return ret;
}
void AP_UAVCAN::remove_baro_listener(AP_Baro_Backend* rem_listener)
{
// Check for all listeners and compare pointers
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
if (_baro_listeners[i] == rem_listener) {
_baro_listeners[i] = nullptr;
// Also decrement usage counter and reset listening node
if (_baro_node_taken[_baro_listener_to_node[i]] > 0) {
_baro_node_taken[_baro_listener_to_node[i]]--;
}
_baro_listener_to_node[i] = 255;
}
}
}
AP_UAVCAN::Baro_Info *AP_UAVCAN::find_baro_node(uint8_t node)
{
// Check if such node is already defined
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) {
if (_baro_nodes[i] == node) {
return &_baro_node_state[i];
}
}
// If not - try to find free space for it
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) {
if (_baro_nodes[i] == 255) {
_baro_nodes[i] = node;
return &_baro_node_state[i];
}
}
// If no space is left - return nullptr
return nullptr;
}
void AP_UAVCAN::update_baro_state(uint8_t node)
{
// Go through all listeners of specified node and call their's update methods
for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) {
if (_baro_nodes[i] == node) {
for (uint8_t j = 0; j < AP_UAVCAN_MAX_LISTENERS; j++) {
if (_baro_listener_to_node[j] == i) {
_baro_listeners[j]->handle_baro_msg(_baro_node_state[i].pressure, _baro_node_state[i].temperature);
}
}
}
}
}
uint8_t AP_UAVCAN::register_mag_listener(AP_Compass_Backend* new_listener, uint8_t preferred_channel)
{
uint8_t sel_place = 255, ret = 0;
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
if (_mag_listeners[i] == nullptr) {
sel_place = i;
break;
}
}
if (sel_place != 255) {
if (preferred_channel != 0) {
if (preferred_channel < AP_UAVCAN_MAX_MAG_NODES) {
_mag_listeners[sel_place] = new_listener;
_mag_listener_to_node[sel_place] = preferred_channel - 1;
_mag_node_taken[_mag_listener_to_node[sel_place]]++;
ret = preferred_channel;
debug_uavcan(2, "reg_Compass place:%d, chan: %d\n\r", sel_place, preferred_channel);
}
} else {
for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) {
if (_mag_node_taken[i] == 0) {
_mag_listeners[sel_place] = new_listener;
_mag_listener_to_node[sel_place] = i;
_mag_node_taken[i]++;
ret = i + 1;
debug_uavcan(2, "reg_MAG place:%d, chan: %d\n\r", sel_place, i);
break;
}
}
}
}
return ret;
}
void AP_UAVCAN::remove_mag_listener(AP_Compass_Backend* rem_listener)
{
// Check for all listeners and compare pointers
for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) {
if (_mag_listeners[i] == rem_listener) {
_mag_listeners[i] = nullptr;
// Also decrement usage counter and reset listening node
if (_mag_node_taken[_mag_listener_to_node[i]] > 0) {
_mag_node_taken[_mag_listener_to_node[i]]--;
}
_mag_listener_to_node[i] = 255;
}
}
}
AP_UAVCAN::Mag_Info *AP_UAVCAN::find_mag_node(uint8_t node)
{
// Check if such node is already defined
for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) {
if (_mag_nodes[i] == node) {
return &_mag_node_state[i];
}
}
// If not - try to find free space for it
for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) {
if (_mag_nodes[i] == 255) {
_mag_nodes[i] = node;
return &_mag_node_state[i];
}
}
// If no space is left - return nullptr
return nullptr;
}
void AP_UAVCAN::update_mag_state(uint8_t node)
{
// Go through all listeners of specified node and call their's update methods
for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) {
if (_mag_nodes[i] == node) {
for (uint8_t j = 0; j < AP_UAVCAN_MAX_LISTENERS; j++) {
if (_mag_listener_to_node[j] == i) {
_mag_listeners[j]->handle_mag_msg(_mag_node_state[i].mag_vector);
}
}
}
}
}
#endif // HAL_WITH_UAVCAN