ardupilot/libraries/AP_InertialSensor/AP_InertialSensor_PX4.cpp
2013-10-14 08:45:58 +11:00

178 lines
4.6 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
#include "AP_InertialSensor_PX4.h"
const extern AP_HAL::HAL& hal;
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <drivers/drv_accel.h>
#include <drivers/drv_gyro.h>
#include <drivers/drv_hrt.h>
uint16_t AP_InertialSensor_PX4::_init_sensor( Sample_rate sample_rate )
{
switch (sample_rate) {
case RATE_50HZ:
_default_filter_hz = 15;
_sample_time_usec = 20000;
break;
case RATE_100HZ:
_default_filter_hz = 30;
_sample_time_usec = 10000;
break;
case RATE_200HZ:
default:
_default_filter_hz = 30;
_sample_time_usec = 5000;
break;
}
_delta_time = _sample_time_usec * 1.0e-6f;
// init accelerometers
_accel_fd = open(ACCEL_DEVICE_PATH, O_RDONLY);
if (_accel_fd < 0) {
hal.scheduler->panic("Unable to open accel device " ACCEL_DEVICE_PATH);
}
_gyro_fd = open(GYRO_DEVICE_PATH, O_RDONLY);
if (_gyro_fd < 0) {
hal.scheduler->panic("Unable to open gyro device " GYRO_DEVICE_PATH);
}
#ifdef CONFIG_ARCH_BOARD_PX4FMU_V1
uint32_t driver_rate = 1000;
#else
uint32_t driver_rate = 800;
#endif
/*
* set the accel and gyro sampling rate.
*/
ioctl(_accel_fd, ACCELIOCSSAMPLERATE, driver_rate);
ioctl(_accel_fd, SENSORIOCSPOLLRATE, driver_rate);
ioctl(_gyro_fd, GYROIOCSSAMPLERATE, driver_rate);
ioctl(_gyro_fd, SENSORIOCSPOLLRATE, driver_rate);
_set_filter_frequency(_mpu6000_filter);
#if defined(CONFIG_ARCH_BOARD_PX4FMU_V2)
return AP_PRODUCT_ID_PX4_V2;
#else
return AP_PRODUCT_ID_PX4;
#endif
}
/*
set the filter frequency
*/
void AP_InertialSensor_PX4::_set_filter_frequency(uint8_t filter_hz)
{
if (filter_hz == 0) {
filter_hz = _default_filter_hz;
}
ioctl(_gyro_fd, GYROIOCSLOWPASS, filter_hz);
ioctl(_accel_fd, ACCELIOCSLOWPASS, filter_hz);
}
/*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */
bool AP_InertialSensor_PX4::update(void)
{
Vector3f accel_scale = _accel_scale.get();
// get the latest sample from the sensor drivers
_get_sample();
_accel = _accel_in;
_gyro = _gyro_in;
// add offsets and rotation
_accel.rotate(_board_orientation);
_accel.x *= accel_scale.x;
_accel.y *= accel_scale.y;
_accel.z *= accel_scale.z;
_accel -= _accel_offset;
_gyro.rotate(_board_orientation);
_gyro -= _gyro_offset;
if (_last_filter_hz != _mpu6000_filter) {
_set_filter_frequency(_mpu6000_filter);
_last_filter_hz = _mpu6000_filter;
}
_have_sample_available = false;
return true;
}
float AP_InertialSensor_PX4::get_delta_time(void)
{
return _delta_time;
}
float AP_InertialSensor_PX4::get_gyro_drift_rate(void)
{
// 0.5 degrees/second/minute
return ToRad(0.5/60);
}
void AP_InertialSensor_PX4::_get_sample(void)
{
struct accel_report accel_report;
struct gyro_report gyro_report;
while (::read(_accel_fd, &accel_report, sizeof(accel_report)) == sizeof(accel_report) &&
accel_report.timestamp != _last_accel_timestamp) {
_accel_in = Vector3f(accel_report.x, accel_report.y, accel_report.z);
_last_accel_timestamp = accel_report.timestamp;
}
while (::read(_gyro_fd, &gyro_report, sizeof(gyro_report)) == sizeof(gyro_report) &&
gyro_report.timestamp != _last_gyro_timestamp) {
_gyro_in = Vector3f(gyro_report.x, gyro_report.y, gyro_report.z);
_last_gyro_timestamp = gyro_report.timestamp;
}
}
bool AP_InertialSensor_PX4::sample_available(void)
{
uint64_t tnow = hrt_absolute_time();
while (tnow - _last_sample_timestamp > _sample_time_usec) {
_have_sample_available = true;
_last_sample_timestamp += _sample_time_usec;
}
return _have_sample_available;
}
bool AP_InertialSensor_PX4::wait_for_sample(uint16_t timeout_ms)
{
if (sample_available()) {
return true;
}
uint32_t start = hal.scheduler->millis();
while ((hal.scheduler->millis() - start) < timeout_ms) {
uint64_t tnow = hrt_absolute_time();
// we spin for the last timing_lag microseconds. Before that
// we yield the CPU to allow IO to happen
const uint16_t timing_lag = 400;
if (_last_sample_timestamp + _sample_time_usec > tnow+timing_lag) {
hal.scheduler->delay_microseconds(_last_sample_timestamp + _sample_time_usec - (tnow+timing_lag));
}
if (sample_available()) {
return true;
}
}
return false;
}
#endif // CONFIG_HAL_BOARD