ardupilot/libraries/AP_Proximity/AP_Proximity_AirSimSITL.cpp

104 lines
3.5 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Proximity_AirSimSITL.h"
#if HAL_PROXIMITY_ENABLED
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include <AP_HAL/AP_HAL.h>
#include <stdio.h>
extern const AP_HAL::HAL& hal;
#define PROXIMITY_MAX_RANGE 100.0f
#define PROXIMITY_ACCURACY 0.1f // minimum distance (in meters) between objects sent to object database
// update the state of the sensor
void AP_Proximity_AirSimSITL::update(void)
{
SITL::vector3f_array &points = sitl->state.scanner.points;
if (points.length == 0) {
set_status(AP_Proximity::Status::NoData);
return;
}
set_status(AP_Proximity::Status::Good);
// reset all faces to default so that it can be filled with the fresh lidar data
frontend.boundary.reset();
// precalculate sq of min distance
const float distance_min_sq = sq(distance_min());
// variables used to reduce data sent to object database
const float accuracy_sq = sq(PROXIMITY_ACCURACY);
bool prev_pos_valid = false;
Vector2f prev_pos;
// clear temp boundary since we have a new message
temp_boundary.reset();
for (uint16_t i=0; i<points.length; i++) {
Vector3f &point = points.data[i];
if (point.is_zero()) {
continue;
}
// calculate distance to point and check larger than min distance
const Vector2f new_pos = Vector2f{point.x, point.y};
const float distance_sq = new_pos.length_squared();
if (distance_sq > distance_min_sq) {
// add distance to the 3D boundary
const float yaw_angle_deg = wrap_360(degrees(atan2f(point.y, point.x)));
const AP_Proximity_Boundary_3D::Face face = frontend.boundary.get_face(yaw_angle_deg);
// store the min distance in each face in a temp boundary
temp_boundary.add_distance(face, yaw_angle_deg, safe_sqrt(distance_sq));
// check distance from previous point to reduce amount of data sent to object database
if (!prev_pos_valid || ((new_pos - prev_pos).length_squared() >= accuracy_sq)) {
// update OA database
database_push(yaw_angle_deg, safe_sqrt(distance_sq));
// store point
prev_pos_valid = true;
prev_pos = new_pos;
}
}
}
// copy temp boundary to real boundary
temp_boundary.update_3D_boundary(state.instance, frontend.boundary);
}
// get maximum and minimum distances (in meters) of primary sensor
float AP_Proximity_AirSimSITL::distance_max() const
{
return PROXIMITY_MAX_RANGE;
}
float AP_Proximity_AirSimSITL::distance_min() const
{
return 0.0f;
}
// get distance upwards in meters. returns true on success
bool AP_Proximity_AirSimSITL::get_upward_distance(float &distance) const
{
// we don't have an upward facing laser
return false;
}
#endif // CONFIG_HAL_BOARD == HAL_BOARD_SITL
#endif // HAL_PROXIMITY_ENABLED