mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-19 07:08:29 -04:00
144 lines
3.8 KiB
C++
144 lines
3.8 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
|
|
|
|
/// @file AP_Curve.h
|
|
/// @brief used to transforms a pwm value to account for the non-linear pwm->thrust values of normal ESC+motors
|
|
|
|
#ifndef AP_CURVE
|
|
#define AP_CURVE
|
|
|
|
#include <FastSerial.h>
|
|
#include <AP_Common.h>
|
|
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
|
|
|
|
/// @class AP_Curve
|
|
template <class T, uint8_t SIZE>
|
|
class AP_Curve {
|
|
public:
|
|
|
|
// Constructor
|
|
AP_Curve();
|
|
|
|
// clear - removes all points from the curve
|
|
virtual void clear();
|
|
|
|
// add_point - adds a point to the curve. returns TRUE if successfully added
|
|
virtual bool add_point( T x, T y );
|
|
|
|
// get_y - returns the point on the curve at the given pwm_value (i.e. the new modified pwm_value)
|
|
virtual T get_y( T x );
|
|
|
|
// displays the contents of the curve (for debugging)
|
|
virtual void dump_curve();
|
|
|
|
protected:
|
|
uint8_t _num_points; // number of points in the cruve
|
|
T _x[SIZE]; // x values of each point on the curve
|
|
T _y[SIZE]; // y values of each point on the curve
|
|
float _slope[SIZE]; // slope between any two points. i.e. slope[0] is the slope between points 0 and 1
|
|
bool _constrained; // if true, first and last points added will constrain the y values returned by get_y function
|
|
};
|
|
|
|
// Typedef for convenience
|
|
typedef AP_Curve<int16_t,3> AP_CurveInt16_Size3;
|
|
typedef AP_Curve<int16_t,4> AP_CurveInt16_Size4;
|
|
typedef AP_Curve<int16_t,5> AP_CurveInt16_Size5;
|
|
|
|
typedef AP_Curve<uint16_t,3> AP_CurveUInt16_Size3;
|
|
typedef AP_Curve<uint16_t,4> AP_CurveUInt16_Size4;
|
|
typedef AP_Curve<uint16_t,5> AP_CurveUInt16_Size5;
|
|
|
|
// Constructor
|
|
template <class T, uint8_t SIZE>
|
|
AP_Curve<T,SIZE>::AP_Curve() :
|
|
_num_points(0)
|
|
{
|
|
// clear the curve
|
|
clear();
|
|
};
|
|
|
|
// clear the curve
|
|
template <class T, uint8_t SIZE>
|
|
void AP_Curve<T,SIZE>::clear() {
|
|
// clear the curve
|
|
for( uint8_t i=0; i<SIZE; i++ ) {
|
|
_x[i] = 0;
|
|
_y[i] = 0;
|
|
_slope[i] = 0.0;
|
|
}
|
|
_num_points = 0;
|
|
}
|
|
|
|
// add_point - adds a point to the curve
|
|
template <class T, uint8_t SIZE>
|
|
bool AP_Curve<T,SIZE>::add_point( T x, T y )
|
|
{
|
|
if( _num_points < SIZE ) {
|
|
_x[_num_points] = x;
|
|
_y[_num_points] = y;
|
|
|
|
// increment the number of points
|
|
_num_points++;
|
|
|
|
// if we have at least two points calculate the slope
|
|
if( _num_points > 1 ) {
|
|
_slope[_num_points-2] = (float)(_y[_num_points-1] - _y[_num_points-2]) / (float)(_x[_num_points-1] - _x[_num_points-2]);
|
|
_slope[_num_points-1] = _slope[_num_points-2]; // the final slope is for interpolation beyond the end of the curve
|
|
}
|
|
return true;
|
|
}else{
|
|
// we do not have room for the new point
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// get_y - returns the y value on the curve for a given x value
|
|
template <class T, uint8_t SIZE>
|
|
T AP_Curve<T,SIZE>::get_y( T x )
|
|
{
|
|
uint8_t i;
|
|
T result;
|
|
|
|
// deal with case where ther is no curve
|
|
if( _num_points == 0 ) {
|
|
return x;
|
|
}
|
|
|
|
// when x value is lower than the first point's x value, return minimum y value
|
|
if( x <= _x[0] ) {
|
|
return _y[0];
|
|
}
|
|
|
|
// when x value is higher than the last point's x value, return maximum y value
|
|
if( x >= _x[_num_points-1] ) {
|
|
return _y[_num_points-1];
|
|
}
|
|
|
|
// deal with the normal case
|
|
for( i=0; i<_num_points-1; i++ ) {
|
|
if( x >= _x[i] && x <= _x[i+1] ) {
|
|
result = _y[i] + (x - _x[i]) * _slope[i];
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// we should never get here
|
|
return x;
|
|
}
|
|
|
|
// displays the contents of the curve (for debugging)
|
|
template <class T, uint8_t SIZE>
|
|
void AP_Curve<T,SIZE>::dump_curve()
|
|
{
|
|
Serial.println_P(PSTR("Curve:"));
|
|
for( uint8_t i = 0; i<_num_points; i++ ){
|
|
Serial.print_P(PSTR("x:"));
|
|
Serial.print(_x[i]);
|
|
Serial.print_P(PSTR("\ty:"));
|
|
Serial.print(_y[i]);
|
|
Serial.print_P(PSTR("\tslope:"));
|
|
Serial.print(_slope[i],4);
|
|
Serial.println();
|
|
}
|
|
}
|
|
|
|
#endif // AP_CURVE
|