mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-25 01:58:29 -04:00
111 lines
4.5 KiB
C
111 lines
4.5 KiB
C
// fielddecode.h was generated by ProtoGen version 2.18.c
|
|
|
|
#ifndef _FIELDDECODE_H
|
|
#define _FIELDDECODE_H
|
|
|
|
// C++ compilers: don't mangle us
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/*!
|
|
* \file
|
|
* fielddecode provides routines to pull numbers from a byte stream.
|
|
*
|
|
* fielddecode provides routines to pull numbers in local memory layout from
|
|
* a big or little endian byte stream. It is the opposite operation from the
|
|
* routines contained in fieldencode.h
|
|
*
|
|
* When compressing unsigned numbers (for example 32-bits to 16-bits) the most
|
|
* signficant bytes are discarded and the only requirement is that the value of
|
|
* the number fits in the smaller width. When going the other direction the
|
|
* most significant bytes are simply set to 0x00. However signed two's
|
|
* complement numbers are more complicated.
|
|
*
|
|
* If the signed value is a positive number that fits in the range then the
|
|
* most significant byte will be zero, and we can discard it. If the signed
|
|
* value is negative (in two's complement) then the most significant bytes are
|
|
* 0xFF and again we can throw them away. See the example below
|
|
*
|
|
* 32-bit +100 | 16-bit +100 | 8-bit +100
|
|
* 0x00000064 | 0x0064 | 0x64 <-- notice most significant bit clear
|
|
*
|
|
* 32-bit -100 | 16-bit -100 | 8-bit -100
|
|
* 0xFFFFFF9C | 0xFF9C | 0x9C <-- notice most significant bit set
|
|
*
|
|
* The signed complication comes when going the other way. If the number is
|
|
* positive setting the most significant bytes to zero is correct. However
|
|
* if the number is negative the most significant bytes must be set to 0xFF.
|
|
* This is the process of sign-extension. Typically this is handled by the
|
|
* compiler. For example if a int16_t is assigned to an int32_t the compiler
|
|
* (or the processor instruction) knows to perform the sign extension. However
|
|
* in our case we can decode signed 24-bit numbers (for example) which are
|
|
* returned to the caller as int32_t. In this instance fielddecode performs the
|
|
* sign extension.
|
|
*/
|
|
|
|
#define __STDC_CONSTANT_MACROS
|
|
#include <stdint.h>
|
|
|
|
//! Decode a null terminated string from a byte stream
|
|
void stringFromBytes(char* string, const uint8_t* bytes, int* index, int maxLength, int fixedLength);
|
|
|
|
//! Copy an array of bytes from a byte stream without changing the order.
|
|
void bytesFromBeBytes(uint8_t* data, const uint8_t* bytes, int* index, int num);
|
|
|
|
//! Copy an array of bytes from a byte stream while reversing the order.
|
|
void bytesFromLeBytes(uint8_t* data, const uint8_t* bytes, int* index, int num);
|
|
|
|
//! Decode a 4 byte float from a big endian byte stream.
|
|
float float32FromBeBytes(const uint8_t* bytes, int* index);
|
|
|
|
//! Decode a 4 byte float from a little endian byte stream.
|
|
float float32FromLeBytes(const uint8_t* bytes, int* index);
|
|
|
|
//! Decode a unsigned 4 byte integer from a big endian byte stream.
|
|
uint32_t uint32FromBeBytes(const uint8_t* bytes, int* index);
|
|
|
|
//! Decode a unsigned 4 byte integer from a little endian byte stream.
|
|
uint32_t uint32FromLeBytes(const uint8_t* bytes, int* index);
|
|
|
|
//! Decode a signed 4 byte integer from a big endian byte stream.
|
|
int32_t int32FromBeBytes(const uint8_t* bytes, int* index);
|
|
|
|
//! Decode a signed 4 byte integer from a little endian byte stream.
|
|
int32_t int32FromLeBytes(const uint8_t* bytes, int* index);
|
|
|
|
//! Decode a unsigned 3 byte integer from a big endian byte stream.
|
|
uint32_t uint24FromBeBytes(const uint8_t* bytes, int* index);
|
|
|
|
//! Decode a unsigned 3 byte integer from a little endian byte stream.
|
|
uint32_t uint24FromLeBytes(const uint8_t* bytes, int* index);
|
|
|
|
//! Decode a signed 3 byte integer from a big endian byte stream.
|
|
int32_t int24FromBeBytes(const uint8_t* bytes, int* index);
|
|
|
|
//! Decode a signed 3 byte integer from a little endian byte stream.
|
|
int32_t int24FromLeBytes(const uint8_t* bytes, int* index);
|
|
|
|
//! Decode a unsigned 2 byte integer from a big endian byte stream.
|
|
uint16_t uint16FromBeBytes(const uint8_t* bytes, int* index);
|
|
|
|
//! Decode a unsigned 2 byte integer from a little endian byte stream.
|
|
uint16_t uint16FromLeBytes(const uint8_t* bytes, int* index);
|
|
|
|
//! Decode a signed 2 byte integer from a big endian byte stream.
|
|
int16_t int16FromBeBytes(const uint8_t* bytes, int* index);
|
|
|
|
//! Decode a signed 2 byte integer from a little endian byte stream.
|
|
int16_t int16FromLeBytes(const uint8_t* bytes, int* index);
|
|
|
|
//! Decode a unsigned 1 byte integer from a byte stream.
|
|
#define uint8FromBytes(bytes, index) (uint8_t)((bytes)[(*(index))++])
|
|
|
|
//! Decode a signed 1 byte integer from a byte stream.
|
|
#define int8FromBytes(bytes, index) (int8_t)((bytes)[(*(index))++])
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
#endif
|