ardupilot/Tools/autotest/pysim/util.py

582 lines
17 KiB
Python

from __future__ import print_function
import math
import os
import random
import re
import sys
import tempfile
import time
from math import acos, atan2, cos, pi, sqrt
from subprocess import PIPE, Popen, call, check_call
import pexpect
from . rotmat import Matrix3, Vector3
if (sys.version_info[0] >= 3):
ENCODING = 'ascii'
else:
ENCODING = None
def m2ft(x):
"""Meters to feet."""
return float(x) / 0.3048
def ft2m(x):
"""Feet to meters."""
return float(x) * 0.3048
def kt2mps(x):
return x * 0.514444444
def mps2kt(x):
return x / 0.514444444
def topdir():
"""Return top of git tree where autotest is running from."""
d = os.path.dirname(os.path.realpath(__file__))
assert(os.path.basename(d) == 'pysim')
d = os.path.dirname(d)
assert(os.path.basename(d) == 'autotest')
d = os.path.dirname(d)
assert(os.path.basename(d) == 'Tools')
d = os.path.dirname(d)
return d
def reltopdir(path):
"""Return a path relative to topdir()."""
return os.path.normpath(os.path.join(topdir(), path))
def run_cmd(cmd, directory=".", show=True, output=False, checkfail=True):
"""Run a shell command."""
shell = False
if not isinstance(cmd, list):
cmd = [cmd]
shell = True
if show:
print("Running: (%s) in (%s)" % (cmd_as_shell(cmd), directory,))
if output:
return Popen(cmd, shell=shell, stdout=PIPE, cwd=directory).communicate()[0]
elif checkfail:
return check_call(cmd, shell=shell, cwd=directory)
else:
return call(cmd, shell=shell, cwd=directory)
def rmfile(path):
"""Remove a file if it exists."""
try:
os.unlink(path)
except Exception:
pass
def deltree(path):
"""Delete a tree of files."""
run_cmd('rm -rf %s' % path)
def relwaf():
return "./modules/waf/waf-light"
def waf_configure(board, j=None, debug=False):
cmd_configure = [relwaf(), "configure", "--board", board]
if debug:
cmd_configure.append('--debug')
if j is not None:
cmd_configure.extend(['-j', str(j)])
run_cmd(cmd_configure, directory=topdir(), checkfail=True)
def waf_clean():
run_cmd([relwaf(), "clean"], directory=topdir(), checkfail=True)
def build_SITL(build_target, j=None, debug=False, board='sitl', clean=True, configure=True):
"""Build desktop SITL."""
# first configure
if configure:
waf_configure(board, j=j, debug=debug)
# then clean
if clean:
waf_clean()
# then build
cmd_make = [relwaf(), "build", "--target", build_target]
if j is not None:
cmd_make.extend(['-j', str(j)])
run_cmd(cmd_make, directory=topdir(), checkfail=True, show=True)
return True
def build_examples(board, j=None, debug=False, clean=False):
# first configure
waf_configure(board, j=j, debug=debug)
# then clean
if clean:
waf_clean()
# then build
cmd_make = [relwaf(), "examples"]
run_cmd(cmd_make, directory=topdir(), checkfail=True, show=True)
return True
# list of pexpect children to close on exit
close_list = []
def pexpect_autoclose(p):
"""Mark for autoclosing."""
global close_list
close_list.append(p)
def pexpect_close(p):
"""Close a pexpect child."""
global close_list
try:
p.close()
except Exception:
pass
try:
p.close(force=True)
except Exception:
pass
if p in close_list:
close_list.remove(p)
def pexpect_close_all():
"""Close all pexpect children."""
global close_list
for p in close_list[:]:
pexpect_close(p)
def pexpect_drain(p):
"""Drain any pending input."""
import pexpect
try:
p.read_nonblocking(1000, timeout=0)
except Exception:
pass
def cmd_as_shell(cmd):
return (" ".join(['"%s"' % x for x in cmd]))
def make_safe_filename(text):
"""Return a version of text safe for use as a filename."""
r = re.compile("([^a-zA-Z0-9_.+-])")
text.replace('/', '-')
filename = r.sub(lambda m: "%" + str(hex(ord(str(m.group(1))))).upper(), text)
return filename
def valgrind_log_filepath(binary, model):
return make_safe_filename('%s-%s-valgrind.log' % (os.path.basename(binary), model,))
def start_SITL(binary, valgrind=False, gdb=False, wipe=False,
synthetic_clock=True, home=None, model=None, speedup=1, defaults_file=None,
unhide_parameters=False, gdbserver=False):
"""Launch a SITL instance."""
cmd = []
if valgrind and os.path.exists('/usr/bin/valgrind'):
# we specify a prefix for vgdb-pipe because on Vagrant virtual
# machines the pipes are created on the mountpoint for the
# shared directory with the host machine. mmap's,
# unsurprisingly, fail on files created on that mountpoint.
vgdb_prefix = os.path.join(tempfile.gettempdir(), "vgdb-pipe")
log_file = valgrind_log_filepath(binary=binary, model=model)
cmd.extend([
'valgrind',
'--vgdb-prefix=%s' % vgdb_prefix,
'-q',
'--log-file=%s' % log_file])
if gdbserver:
cmd.extend(['gdbserver', 'localhost:3333'])
if gdb:
# attach gdb to the gdbserver:
f = open("/tmp/x.gdb", "w")
f.write("target extended-remote localhost:3333\nc\n")
f.close()
run_cmd('screen -d -m -S ardupilot-gdb bash -c "gdb -x /tmp/x.gdb"')
elif gdb:
f = open("/tmp/x.gdb", "w")
f.write("r\n")
f.close()
cmd.extend(['xterm', '-e', 'gdb', '-x', '/tmp/x.gdb', '--args'])
cmd.append(binary)
if wipe:
cmd.append('-w')
if synthetic_clock:
cmd.append('-S')
if home is not None:
cmd.extend(['--home', home])
if model is not None:
cmd.extend(['--model', model])
if speedup != 1:
cmd.extend(['--speedup', str(speedup)])
if defaults_file is not None:
cmd.extend(['--defaults', defaults_file])
if unhide_parameters:
cmd.extend(['--unhide-groups'])
print("Running: %s" % cmd_as_shell(cmd))
first = cmd[0]
rest = cmd[1:]
child = pexpect.spawn(first, rest, logfile=sys.stdout, encoding=ENCODING, timeout=5)
delaybeforesend = 0
pexpect_autoclose(child)
# give time for parameters to properly setup
time.sleep(3)
if gdb:
# if we run GDB we do so in an xterm. "Waiting for
# connection" is never going to appear on xterm's output.
# ... so let's give it another magic second.
time.sleep(1)
# TODO: have a SITL-compiled ardupilot able to have its
# console on an output fd.
else:
child.expect('Waiting for connection', timeout=300)
return child
def start_MAVProxy_SITL(atype, aircraft=None, setup=False, master='tcp:127.0.0.1:5760',
options=[], logfile=sys.stdout):
"""Launch mavproxy connected to a SITL instance."""
import pexpect
global close_list
MAVPROXY = os.getenv('MAVPROXY_CMD', 'mavproxy.py')
cmd = MAVPROXY + ' --master=%s --out=127.0.0.1:14550' % master
if setup:
cmd += ' --setup'
if aircraft is None:
aircraft = 'test.%s' % atype
cmd += ' --aircraft=%s' % aircraft
cmd += ' ' + ' '.join(options)
ret = pexpect.spawn(cmd, logfile=logfile, encoding=ENCODING, timeout=60)
ret.delaybeforesend = 0
pexpect_autoclose(ret)
return ret
def expect_setup_callback(e, callback):
"""Setup a callback that is called once a second while waiting for
patterns."""
import pexpect
def _expect_callback(pattern, timeout=e.timeout):
tstart = time.time()
while time.time() < tstart + timeout:
try:
ret = e.expect_saved(pattern, timeout=1)
return ret
except pexpect.TIMEOUT:
e.expect_user_callback(e)
pass
print("Timed out looking for %s" % pattern)
raise pexpect.TIMEOUT(timeout)
e.expect_user_callback = callback
e.expect_saved = e.expect
e.expect = _expect_callback
def mkdir_p(directory):
"""Like mkdir -p ."""
if not directory:
return
if directory.endswith("/"):
mkdir_p(directory[:-1])
return
if os.path.isdir(directory):
return
mkdir_p(os.path.dirname(directory))
os.mkdir(directory)
def loadfile(fname):
"""Load a file as a string."""
f = open(fname, mode='r')
r = f.read()
f.close()
return r
def lock_file(fname):
"""Lock a file."""
import fcntl
f = open(fname, mode='w')
try:
fcntl.lockf(f, fcntl.LOCK_EX | fcntl.LOCK_NB)
except Exception:
return None
return f
def check_parent(parent_pid=None):
"""Check our parent process is still alive."""
if parent_pid is None:
try:
parent_pid = os.getppid()
except Exception:
pass
if parent_pid is None:
return
try:
os.kill(parent_pid, 0)
except Exception:
print("Parent had finished - exiting")
sys.exit(1)
def EarthRatesToBodyRates(dcm, earth_rates):
"""Convert the angular velocities from earth frame to
body frame. Thanks to James Goppert for the formula
all inputs and outputs are in radians
returns a gyro vector in body frame, in rad/s .
"""
from math import sin, cos
(phi, theta, psi) = dcm.to_euler()
phiDot = earth_rates.x
thetaDot = earth_rates.y
psiDot = earth_rates.z
p = phiDot - psiDot * sin(theta)
q = cos(phi) * thetaDot + sin(phi) * psiDot * cos(theta)
r = cos(phi) * psiDot * cos(theta) - sin(phi) * thetaDot
return Vector3(p, q, r)
def BodyRatesToEarthRates(dcm, gyro):
"""Convert the angular velocities from body frame to
earth frame.
all inputs and outputs are in radians/s
returns a earth rate vector.
"""
from math import sin, cos, tan, fabs
p = gyro.x
q = gyro.y
r = gyro.z
(phi, theta, psi) = dcm.to_euler()
phiDot = p + tan(theta) * (q * sin(phi) + r * cos(phi))
thetaDot = q * cos(phi) - r * sin(phi)
if fabs(cos(theta)) < 1.0e-20:
theta += 1.0e-10
psiDot = (q * sin(phi) + r * cos(phi)) / cos(theta)
return Vector3(phiDot, thetaDot, psiDot)
radius_of_earth = 6378100.0 # in meters
def gps_newpos(lat, lon, bearing, distance):
"""Extrapolate latitude/longitude given a heading and distance
thanks to http://www.movable-type.co.uk/scripts/latlong.html .
"""
from math import sin, asin, cos, atan2, radians, degrees
lat1 = radians(lat)
lon1 = radians(lon)
brng = radians(bearing)
dr = distance / radius_of_earth
lat2 = asin(sin(lat1) * cos(dr) +
cos(lat1) * sin(dr) * cos(brng))
lon2 = lon1 + atan2(sin(brng) * sin(dr) * cos(lat1),
cos(dr) - sin(lat1) * sin(lat2))
return (degrees(lat2), degrees(lon2))
def gps_distance(lat1, lon1, lat2, lon2):
"""Return distance between two points in meters,
coordinates are in degrees
thanks to http://www.movable-type.co.uk/scripts/latlong.html ."""
lat1 = math.radians(lat1)
lat2 = math.radians(lat2)
lon1 = math.radians(lon1)
lon2 = math.radians(lon2)
dLat = lat2 - lat1
dLon = lon2 - lon1
a = math.sin(0.5 * dLat)**2 + math.sin(0.5 * dLon)**2 * math.cos(lat1) * math.cos(lat2)
c = 2.0 * math.atan2(math.sqrt(a), math.sqrt(1.0 - a))
return radius_of_earth * c
def gps_bearing(lat1, lon1, lat2, lon2):
"""Return bearing between two points in degrees, in range 0-360
thanks to http://www.movable-type.co.uk/scripts/latlong.html ."""
lat1 = math.radians(lat1)
lat2 = math.radians(lat2)
lon1 = math.radians(lon1)
lon2 = math.radians(lon2)
dLon = lon2 - lon1
y = math.sin(dLon) * math.cos(lat2)
x = math.cos(lat1) * math.sin(lat2) - math.sin(lat1) * math.cos(lat2) * math.cos(dLon)
bearing = math.degrees(math.atan2(y, x))
if bearing < 0:
bearing += 360.0
return bearing
class Wind(object):
"""A wind generation object."""
def __init__(self, windstring, cross_section=0.1):
a = windstring.split(',')
if len(a) != 3:
raise RuntimeError("Expected wind in speed,direction,turbulance form, not %s" % windstring)
self.speed = float(a[0]) # m/s
self.direction = float(a[1]) # direction the wind is going in
self.turbulance = float(a[2]) # turbulance factor (standard deviation)
# the cross-section of the aircraft to wind. This is multiplied by the
# difference in the wind and the velocity of the aircraft to give the acceleration
self.cross_section = cross_section
# the time constant for the turbulance - the average period of the
# changes over time
self.turbulance_time_constant = 5.0
# wind time record
self.tlast = time.time()
# initial turbulance multiplier
self.turbulance_mul = 1.0
def current(self, deltat=None):
"""Return current wind speed and direction as a tuple
speed is in m/s, direction in degrees."""
if deltat is None:
tnow = time.time()
deltat = tnow - self.tlast
self.tlast = tnow
# update turbulance random walk
w_delta = math.sqrt(deltat) * (1.0 - random.gauss(1.0, self.turbulance))
w_delta -= (self.turbulance_mul - 1.0) * (deltat / self.turbulance_time_constant)
self.turbulance_mul += w_delta
speed = self.speed * math.fabs(self.turbulance_mul)
return (speed, self.direction)
# Calculate drag.
def drag(self, velocity, deltat=None, testing=None):
"""Return current wind force in Earth frame. The velocity parameter is
a Vector3 of the current velocity of the aircraft in earth frame, m/s ."""
from math import radians
# (m/s, degrees) : wind vector as a magnitude and angle.
(speed, direction) = self.current(deltat=deltat)
# speed = self.speed
# direction = self.direction
# Get the wind vector.
w = toVec(speed, radians(direction))
obj_speed = velocity.length()
# Compute the angle between the object vector and wind vector by taking
# the dot product and dividing by the magnitudes.
d = w.length() * obj_speed
if d == 0:
alpha = 0
else:
alpha = acos((w * velocity) / d)
# Get the relative wind speed and angle from the object. Note that the
# relative wind speed includes the velocity of the object; i.e., there
# is a headwind equivalent to the object's speed even if there is no
# absolute wind.
(rel_speed, beta) = apparent_wind(speed, obj_speed, alpha)
# Return the vector of the relative wind, relative to the coordinate
# system.
relWindVec = toVec(rel_speed, beta + atan2(velocity.y, velocity.x))
# Combine them to get the acceleration vector.
return Vector3(acc(relWindVec.x, drag_force(self, relWindVec.x)), acc(relWindVec.y, drag_force(self, relWindVec.y)), 0)
def apparent_wind(wind_sp, obj_speed, alpha):
"""http://en.wikipedia.org/wiki/Apparent_wind
Returns apparent wind speed and angle of apparent wind. Alpha is the angle
between the object and the true wind. alpha of 0 rads is a headwind; pi a
tailwind. Speeds should always be positive."""
delta = wind_sp * cos(alpha)
x = wind_sp**2 + obj_speed**2 + 2 * obj_speed * delta
rel_speed = sqrt(x)
if rel_speed == 0:
beta = pi
else:
beta = acos((delta + obj_speed) / rel_speed)
return (rel_speed, beta)
def drag_force(wind, sp):
"""See http://en.wikipedia.org/wiki/Drag_equation
Drag equation is F(a) = cl * p/2 * v^2 * a, where cl : drag coefficient
(let's assume it's low, .e.g., 0.2), p : density of air (assume about 1
kg/m^3, the density just over 1500m elevation), v : relative speed of wind
(to the body), a : area acted on (this is captured by the cross_section
parameter).
So then we have
F(a) = 0.2 * 1/2 * v^2 * cross_section = 0.1 * v^2 * cross_section."""
return (sp**2.0) * 0.1 * wind.cross_section
def acc(val, mag):
""" Function to make the force vector. relWindVec is the direction the apparent
wind comes *from*. We want to compute the accleration vector in the direction
the wind blows to."""
if val == 0:
return mag
else:
return (val / abs(val)) * (0 - mag)
def toVec(magnitude, angle):
"""Converts a magnitude and angle (radians) to a vector in the xy plane."""
v = Vector3(magnitude, 0, 0)
m = Matrix3()
m.from_euler(0, 0, angle)
return m.transposed() * v
def constrain(value, minv, maxv):
"""Constrain a value to a range."""
if value < minv:
value = minv
if value > maxv:
value = maxv
return value
if __name__ == "__main__":
import doctest
doctest.testmod()