mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-22 08:38:36 -04:00
fc0d703b9b
as soon as we hit the SPEED_TURN_DIST we lower target speed to the specified gain
279 lines
9.6 KiB
Plaintext
279 lines
9.6 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
/*****************************************
|
|
* Throttle slew limit
|
|
*****************************************/
|
|
static void throttle_slew_limit(int16_t last_throttle)
|
|
{
|
|
// if slew limit rate is set to zero then do not slew limit
|
|
if (g.throttle_slewrate) {
|
|
// limit throttle change by the given percentage per second
|
|
float temp = g.throttle_slewrate * G_Dt * 0.01f * fabsf(channel_throttle->radio_max - channel_throttle->radio_min);
|
|
// allow a minimum change of 1 PWM per cycle
|
|
if (temp < 1) {
|
|
temp = 1;
|
|
}
|
|
channel_throttle->radio_out = constrain_int16(channel_throttle->radio_out, last_throttle - temp, last_throttle + temp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
check for triggering of start of auto mode
|
|
*/
|
|
static bool auto_check_trigger(void)
|
|
{
|
|
// only applies to AUTO mode
|
|
if (control_mode != AUTO) {
|
|
return true;
|
|
}
|
|
|
|
// check for user pressing the auto trigger to off
|
|
if (auto_triggered && g.auto_trigger_pin != -1 && check_digital_pin(g.auto_trigger_pin) == 1) {
|
|
gcs_send_text_P(SEVERITY_LOW, PSTR("AUTO triggered off"));
|
|
auto_triggered = false;
|
|
return false;
|
|
}
|
|
|
|
// if already triggered, then return true, so you don't
|
|
// need to hold the switch down
|
|
if (auto_triggered) {
|
|
return true;
|
|
}
|
|
|
|
if (g.auto_trigger_pin == -1 && g.auto_kickstart == 0.0f) {
|
|
// no trigger configured - let's go!
|
|
auto_triggered = true;
|
|
return true;
|
|
}
|
|
|
|
if (g.auto_trigger_pin != -1 && check_digital_pin(g.auto_trigger_pin) == 0) {
|
|
gcs_send_text_P(SEVERITY_LOW, PSTR("Triggered AUTO with pin"));
|
|
auto_triggered = true;
|
|
return true;
|
|
}
|
|
|
|
if (g.auto_kickstart != 0.0f) {
|
|
float xaccel = ins.get_accel().x;
|
|
if (xaccel >= g.auto_kickstart) {
|
|
gcs_send_text_fmt(PSTR("Triggered AUTO xaccel=%.1f"), xaccel);
|
|
auto_triggered = true;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
work out if we are going to use pivot steering
|
|
*/
|
|
static bool use_pivot_steering(void)
|
|
{
|
|
if (control_mode >= AUTO && g.skid_steer_out && g.pivot_turn_angle != 0) {
|
|
int16_t bearing_error = wrap_180_cd(nav_controller->target_bearing_cd() - ahrs.yaw_sensor) / 100;
|
|
if (abs(bearing_error) > g.pivot_turn_angle) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/*
|
|
calculate the throtte for auto-throttle modes
|
|
*/
|
|
static void calc_throttle(float target_speed)
|
|
{
|
|
if (!auto_check_trigger()) {
|
|
channel_throttle->servo_out = g.throttle_min.get();
|
|
return;
|
|
}
|
|
|
|
float throttle_base = (fabsf(target_speed) / g.speed_cruise) * g.throttle_cruise;
|
|
int throttle_target = throttle_base + throttle_nudge;
|
|
|
|
/*
|
|
reduce target speed in proportion to turning rate, up to the
|
|
SPEED_TURN_GAIN percentage.
|
|
*/
|
|
float steer_rate = fabsf(lateral_acceleration / (g.turn_max_g*GRAVITY_MSS));
|
|
steer_rate = constrain_float(steer_rate, 0.0, 1.0);
|
|
|
|
// use g.speed_turn_gain for a 90 degree turn, and in proportion
|
|
// for other turn angles
|
|
int32_t turn_angle = wrap_180_cd(next_navigation_leg_cd - ahrs.yaw_sensor);
|
|
float speed_turn_ratio = constrain_float(fabsf(turn_angle / 9000.0f), 0, 1);
|
|
float speed_turn_reduction = (100 - g.speed_turn_gain) * speed_turn_ratio * 0.01f;
|
|
|
|
float reduction = 1.0 - steer_rate*speed_turn_reduction;
|
|
|
|
if (control_mode >= AUTO && wp_distance <= g.speed_turn_dist) {
|
|
// in auto-modes we reduce speed when approaching waypoints
|
|
float reduction2 = 1.0 - speed_turn_reduction;
|
|
if (reduction2 < reduction) {
|
|
reduction = reduction2;
|
|
}
|
|
}
|
|
|
|
// reduce the target speed by the reduction factor
|
|
target_speed *= reduction;
|
|
|
|
groundspeed_error = fabsf(target_speed) - ground_speed;
|
|
|
|
throttle = throttle_target + (g.pidSpeedThrottle.get_pid(groundspeed_error * 100) / 100);
|
|
|
|
// also reduce the throttle by the reduction factor. This gives a
|
|
// much faster response in turns
|
|
throttle *= reduction;
|
|
|
|
if (in_reverse) {
|
|
channel_throttle->servo_out = constrain_int16(-throttle, -g.throttle_max, -g.throttle_min);
|
|
} else {
|
|
channel_throttle->servo_out = constrain_int16(throttle, g.throttle_min, g.throttle_max);
|
|
}
|
|
|
|
if (!in_reverse && g.braking_percent != 0 && groundspeed_error < -g.braking_speederr) {
|
|
// the user has asked to use reverse throttle to brake. Apply
|
|
// it in proportion to the ground speed error, but only when
|
|
// our ground speed error is more than BRAKING_SPEEDERR.
|
|
//
|
|
// We use a linear gain, with 0 gain at a ground speed error
|
|
// of braking_speederr, and 100% gain when groundspeed_error
|
|
// is 2*braking_speederr
|
|
float brake_gain = constrain_float(((-groundspeed_error)-g.braking_speederr)/g.braking_speederr, 0, 1);
|
|
int16_t braking_throttle = g.throttle_max * (g.braking_percent * 0.01f) * brake_gain;
|
|
channel_throttle->servo_out = constrain_int16(-braking_throttle, -g.throttle_max, -g.throttle_min);
|
|
|
|
// temporarily set us in reverse to allow the PWM setting to
|
|
// go negative
|
|
set_reverse(true);
|
|
}
|
|
|
|
if (use_pivot_steering()) {
|
|
channel_throttle->servo_out = 0;
|
|
}
|
|
}
|
|
|
|
/*****************************************
|
|
* Calculate desired turn angles (in medium freq loop)
|
|
*****************************************/
|
|
|
|
static void calc_lateral_acceleration()
|
|
{
|
|
switch (control_mode) {
|
|
case AUTO:
|
|
nav_controller->update_waypoint(prev_WP, next_WP);
|
|
break;
|
|
|
|
case RTL:
|
|
case GUIDED:
|
|
case STEERING:
|
|
nav_controller->update_waypoint(current_loc, next_WP);
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
// Calculate the required turn of the wheels
|
|
|
|
// negative error = left turn
|
|
// positive error = right turn
|
|
lateral_acceleration = nav_controller->lateral_acceleration();
|
|
if (use_pivot_steering()) {
|
|
int16_t bearing_error = wrap_180_cd(nav_controller->target_bearing_cd() - ahrs.yaw_sensor) / 100;
|
|
if (bearing_error > 0) {
|
|
lateral_acceleration = g.turn_max_g*GRAVITY_MSS;
|
|
} else {
|
|
lateral_acceleration = -g.turn_max_g*GRAVITY_MSS;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
calculate steering angle given lateral_acceleration
|
|
*/
|
|
static void calc_nav_steer()
|
|
{
|
|
// add in obstacle avoidance
|
|
lateral_acceleration += (obstacle.turn_angle/45.0f) * g.turn_max_g;
|
|
|
|
// constrain to max G force
|
|
lateral_acceleration = constrain_float(lateral_acceleration, -g.turn_max_g*GRAVITY_MSS, g.turn_max_g*GRAVITY_MSS);
|
|
|
|
channel_steer->servo_out = steerController.get_steering_out_lat_accel(lateral_acceleration);
|
|
}
|
|
|
|
/*****************************************
|
|
* Set the flight control servos based on the current calculated values
|
|
*****************************************/
|
|
static void set_servos(void)
|
|
{
|
|
int16_t last_throttle = channel_throttle->radio_out;
|
|
|
|
// support a separate steering channel
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_steering, channel_steer->pwm_to_angle_dz(0));
|
|
|
|
if ((control_mode == MANUAL || control_mode == LEARNING) &&
|
|
(g.skid_steer_out == g.skid_steer_in)) {
|
|
// do a direct pass through of radio values
|
|
channel_steer->radio_out = channel_steer->read();
|
|
channel_throttle->radio_out = channel_throttle->read();
|
|
if (failsafe.bits & FAILSAFE_EVENT_THROTTLE) {
|
|
// suppress throttle if in failsafe and manual
|
|
channel_throttle->radio_out = channel_throttle->radio_trim;
|
|
}
|
|
} else {
|
|
channel_steer->calc_pwm();
|
|
if (in_reverse) {
|
|
channel_throttle->servo_out = constrain_int16(channel_throttle->servo_out,
|
|
-g.throttle_max,
|
|
-g.throttle_min);
|
|
} else {
|
|
channel_throttle->servo_out = constrain_int16(channel_throttle->servo_out,
|
|
g.throttle_min.get(),
|
|
g.throttle_max.get());
|
|
}
|
|
|
|
if ((failsafe.bits & FAILSAFE_EVENT_THROTTLE) && control_mode < AUTO) {
|
|
// suppress throttle if in failsafe
|
|
channel_throttle->servo_out = 0;
|
|
}
|
|
|
|
// convert 0 to 100% into PWM
|
|
channel_throttle->calc_pwm();
|
|
|
|
// limit throttle movement speed
|
|
throttle_slew_limit(last_throttle);
|
|
|
|
if (g.skid_steer_out) {
|
|
// convert the two radio_out values to skid steering values
|
|
/*
|
|
mixing rule:
|
|
steering = motor1 - motor2
|
|
throttle = 0.5*(motor1 + motor2)
|
|
motor1 = throttle + 0.5*steering
|
|
motor2 = throttle - 0.5*steering
|
|
*/
|
|
float steering_scaled = channel_steer->norm_output();
|
|
float throttle_scaled = channel_throttle->norm_output();
|
|
float motor1 = throttle_scaled + 0.5*steering_scaled;
|
|
float motor2 = throttle_scaled - 0.5*steering_scaled;
|
|
channel_steer->servo_out = 4500*motor1;
|
|
channel_throttle->servo_out = 100*motor2;
|
|
channel_steer->calc_pwm();
|
|
channel_throttle->calc_pwm();
|
|
}
|
|
}
|
|
|
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
|
|
// send values to the PWM timers for output
|
|
// ----------------------------------------
|
|
channel_steer->output();
|
|
channel_throttle->output();
|
|
RC_Channel_aux::output_ch_all();
|
|
#endif
|
|
}
|
|
|
|
|