ardupilot/libraries/AP_HAL_Linux/Scheduler.cpp

427 lines
11 KiB
C++

#include "Scheduler.h"
#include <algorithm>
#include <errno.h>
#include <poll.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <unistd.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include <AP_Vehicle/AP_Vehicle_Type.h>
#include "RCInput.h"
#include "SPIUARTDriver.h"
#include "Storage.h"
#include "UARTDriver.h"
#include "Util.h"
using namespace Linux;
extern const AP_HAL::HAL& hal;
#define APM_LINUX_MAX_PRIORITY 20
#define APM_LINUX_TIMER_PRIORITY 15
#define APM_LINUX_UART_PRIORITY 14
#define APM_LINUX_RCIN_PRIORITY 13
#define APM_LINUX_MAIN_PRIORITY 12
#define APM_LINUX_IO_PRIORITY 10
#define APM_LINUX_SCRIPTING_PRIORITY 1
#define APM_LINUX_TIMER_RATE 1000
#define APM_LINUX_UART_RATE 100
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO || \
CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBRAIN2 || \
CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BH || \
CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_DARK || \
CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXFMINI || \
CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_CANZERO
#define APM_LINUX_RCIN_RATE 500
#define APM_LINUX_IO_RATE 50
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_OBAL_V1
#define APM_LINUX_RCIN_RATE 50
#define APM_LINUX_IO_RATE 50
#else
#define APM_LINUX_RCIN_RATE 100
#define APM_LINUX_IO_RATE 50
#endif
#define SCHED_THREAD(name_, UPPER_NAME_) \
{ \
.name = "ap-" #name_, \
.thread = &_##name_##_thread, \
.policy = SCHED_FIFO, \
.prio = APM_LINUX_##UPPER_NAME_##_PRIORITY, \
.rate = APM_LINUX_##UPPER_NAME_##_RATE, \
}
Scheduler::Scheduler()
{
CPU_ZERO(&_cpu_affinity);
}
void Scheduler::init_realtime()
{
#if APM_BUILD_TYPE(APM_BUILD_Replay)
// we don't run Replay in real-time...
return;
#endif
#if APM_BUILD_TYPE(APM_BUILD_UNKNOWN)
// we opportunistically run examples/tools in realtime
if (geteuid() != 0) {
fprintf(stderr, "WARNING: not running as root. Will not use realtime scheduling\n");
return;
}
#endif
mlockall(MCL_CURRENT|MCL_FUTURE);
struct sched_param param = { .sched_priority = APM_LINUX_MAIN_PRIORITY };
if (pthread_setschedparam(pthread_self(), SCHED_FIFO, &param) == -1) {
AP_HAL::panic("Scheduler: failed to set scheduling parameters: %s",
strerror(errno));
}
}
void Scheduler::init_cpu_affinity()
{
if (!CPU_COUNT(&_cpu_affinity)) {
return;
}
if (sched_setaffinity(0, sizeof(_cpu_affinity), &_cpu_affinity) != 0) {
AP_HAL::panic("Failed to set affinity for main process: %m");
}
}
void Scheduler::init()
{
int ret;
const struct sched_table {
const char *name;
SchedulerThread *thread;
int policy;
int prio;
uint32_t rate;
} sched_table[] = {
SCHED_THREAD(timer, TIMER),
SCHED_THREAD(uart, UART),
SCHED_THREAD(rcin, RCIN),
SCHED_THREAD(io, IO),
};
_main_ctx = pthread_self();
init_realtime();
init_cpu_affinity();
/* set barrier to N + 1 threads: worker threads + main */
unsigned n_threads = ARRAY_SIZE(sched_table) + 1;
ret = pthread_barrier_init(&_initialized_barrier, nullptr, n_threads);
if (ret) {
AP_HAL::panic("Scheduler: Failed to initialise barrier object: %s",
strerror(ret));
}
for (size_t i = 0; i < ARRAY_SIZE(sched_table); i++) {
const struct sched_table *t = &sched_table[i];
t->thread->set_rate(t->rate);
t->thread->set_stack_size(1024 * 1024);
t->thread->start(t->name, t->policy, t->prio);
}
#if defined(DEBUG_STACK) && DEBUG_STACK
register_timer_process(FUNCTOR_BIND_MEMBER(&Scheduler::_debug_stack, void));
#endif
}
void Scheduler::_debug_stack()
{
uint64_t now = AP_HAL::millis64();
if (now - _last_stack_debug_msec > 5000) {
fprintf(stderr, "Stack Usage:\n"
"\ttimer = %zu\n"
"\tio = %zu\n"
"\trcin = %zu\n"
"\tuart = %zu\n",
_timer_thread.get_stack_usage(),
_io_thread.get_stack_usage(),
_rcin_thread.get_stack_usage(),
_uart_thread.get_stack_usage());
_last_stack_debug_msec = now;
}
}
void Scheduler::microsleep(uint32_t usec)
{
struct timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = usec*1000UL;
while (nanosleep(&ts, &ts) == -1 && errno == EINTR) ;
}
void Scheduler::delay(uint16_t ms)
{
if (_stopped_clock_usec) {
return;
}
uint64_t start = AP_HAL::millis64();
while ((AP_HAL::millis64() - start) < ms) {
// this yields the CPU to other apps
microsleep(1000);
if (in_main_thread() && _min_delay_cb_ms <= ms) {
call_delay_cb();
}
}
}
void Scheduler::delay_microseconds(uint16_t us)
{
if (_stopped_clock_usec) {
return;
}
microsleep(us);
}
void Scheduler::register_timer_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] == proc) {
return;
}
}
if (_num_timer_procs >= LINUX_SCHEDULER_MAX_TIMER_PROCS) {
hal.console->printf("Out of timer processes\n");
return;
}
_timer_proc[_num_timer_procs] = proc;
_num_timer_procs++;
}
void Scheduler::register_io_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_io_procs; i++) {
if (_io_proc[i] == proc) {
return;
}
}
if (_num_io_procs < LINUX_SCHEDULER_MAX_IO_PROCS) {
_io_proc[_num_io_procs] = proc;
_num_io_procs++;
} else {
hal.console->printf("Out of IO processes\n");
}
}
void Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us)
{
_failsafe = failsafe;
}
void Scheduler::_timer_task()
{
int i;
if (_in_timer_proc) {
return;
}
_in_timer_proc = true;
// now call the timer based drivers
for (i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i]) {
_timer_proc[i]();
}
}
// and the failsafe, if one is setup
if (_failsafe != nullptr) {
_failsafe();
}
_in_timer_proc = false;
}
void Scheduler::_run_io(void)
{
_io_semaphore.take_blocking();
// now call the IO based drivers
for (int i = 0; i < _num_io_procs; i++) {
if (_io_proc[i]) {
_io_proc[i]();
}
}
_io_semaphore.give();
}
/*
run timers for all UARTs
*/
void Scheduler::_run_uarts()
{
// process any pending serial bytes
for (uint8_t i=0;i<hal.num_serial; i++) {
hal.serial(i)->_timer_tick();
}
}
void Scheduler::_rcin_task()
{
RCInput::from(hal.rcin)->_timer_tick();
}
void Scheduler::_uart_task()
{
_run_uarts();
}
void Scheduler::_io_task()
{
// process any pending storage writes
hal.storage->_timer_tick();
// run registered IO processes
_run_io();
}
bool Scheduler::in_main_thread() const
{
return pthread_equal(pthread_self(), _main_ctx);
}
void Scheduler::_wait_all_threads()
{
int r = pthread_barrier_wait(&_initialized_barrier);
if (r == PTHREAD_BARRIER_SERIAL_THREAD) {
pthread_barrier_destroy(&_initialized_barrier);
}
}
void Scheduler::set_system_initialized()
{
if (_initialized) {
AP_HAL::panic("PANIC: scheduler::set_system_initialized called more than once");
}
_initialized = true;
_wait_all_threads();
}
void Scheduler::reboot(bool hold_in_bootloader)
{
exit(1);
}
#if APM_BUILD_TYPE(APM_BUILD_Replay) || APM_BUILD_TYPE(APM_BUILD_UNKNOWN)
void Scheduler::stop_clock(uint64_t time_usec)
{
if (time_usec < _stopped_clock_usec) {
::fprintf(stderr, "Warning: setting time backwards from (%" PRIu64 ") to (%" PRIu64 ")\n", _stopped_clock_usec, time_usec);
return;
}
_stopped_clock_usec = time_usec;
_run_io();
}
#else
void Scheduler::stop_clock(uint64_t time_usec)
{
// stop_clock() is not called outside of Replay, but we can't
// guard it in the header because of the vehicle-dependent-library
// checks in waf.
}
#endif
bool Scheduler::SchedulerThread::_run()
{
_sched._wait_all_threads();
return PeriodicThread::_run();
}
void Scheduler::teardown()
{
_timer_thread.stop();
_io_thread.stop();
_rcin_thread.stop();
_uart_thread.stop();
_timer_thread.join();
_io_thread.join();
_rcin_thread.join();
_uart_thread.join();
}
// calculates an integer to be used as the priority for a newly-created thread
uint8_t Scheduler::calculate_thread_priority(priority_base base, int8_t priority) const
{
uint8_t thread_priority = APM_LINUX_IO_PRIORITY;
static const struct {
priority_base base;
uint8_t p;
} priority_map[] = {
{ PRIORITY_BOOST, APM_LINUX_MAIN_PRIORITY},
{ PRIORITY_MAIN, APM_LINUX_MAIN_PRIORITY},
{ PRIORITY_SPI, AP_LINUX_SENSORS_SCHED_PRIO},
{ PRIORITY_I2C, AP_LINUX_SENSORS_SCHED_PRIO},
{ PRIORITY_CAN, APM_LINUX_TIMER_PRIORITY},
{ PRIORITY_TIMER, APM_LINUX_TIMER_PRIORITY},
{ PRIORITY_RCIN, APM_LINUX_RCIN_PRIORITY},
{ PRIORITY_IO, APM_LINUX_IO_PRIORITY},
{ PRIORITY_UART, APM_LINUX_UART_PRIORITY},
{ PRIORITY_STORAGE, APM_LINUX_IO_PRIORITY},
{ PRIORITY_SCRIPTING, APM_LINUX_SCRIPTING_PRIORITY},
};
for (uint8_t i=0; i<ARRAY_SIZE(priority_map); i++) {
if (priority_map[i].base == base) {
thread_priority = constrain_int16(priority_map[i].p + priority, 1, APM_LINUX_MAX_PRIORITY);
break;
}
}
return thread_priority;
}
/*
create a new thread
*/
bool Scheduler::thread_create(AP_HAL::MemberProc proc, const char *name, uint32_t stack_size, priority_base base, int8_t priority)
{
Thread *thread = new Thread{(Thread::task_t)proc};
if (!thread) {
return false;
}
const uint8_t thread_priority = calculate_thread_priority(base, priority);
// Add 256k to HAL-independent requested stack size
thread->set_stack_size(256 * 1024 + stack_size);
/*
* We should probably store the thread handlers and join() when exiting,
* but let's the thread manage itself for now.
*/
thread->set_auto_free(true);
if (!thread->start(name, SCHED_FIFO, thread_priority)) {
delete thread;
return false;
}
return true;
}