ardupilot/libraries/AP_ToshibaCAN/AP_ToshibaCAN.cpp
2019-08-14 13:29:14 +09:00

508 lines
19 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_HAL/AP_HAL.h>
#if HAL_WITH_UAVCAN
#include <AP_HAL/utility/sparse-endian.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_BoardConfig/AP_BoardConfig_CAN.h>
#include <AP_Common/AP_Common.h>
#include <AP_Scheduler/AP_Scheduler.h>
#include <AP_HAL/utility/sparse-endian.h>
#include <SRV_Channel/SRV_Channel.h>
#include <GCS_MAVLink/GCS.h>
#include "AP_ToshibaCAN.h"
#include <AP_Logger/AP_Logger.h>
extern const AP_HAL::HAL& hal;
#define debug_can(level_debug, fmt, args...) do { if ((level_debug) <= AP::can().get_debug_level_driver(_driver_index)) { printf(fmt, ##args); }} while (0)
// data format for messages from flight controller
static const uint8_t COMMAND_STOP = 0x0;
static const uint8_t COMMAND_LOCK = 0x10;
static const uint8_t COMMAND_REQUEST_DATA = 0x20;
static const uint8_t COMMAND_MOTOR3 = 0x3B;
static const uint8_t COMMAND_MOTOR2 = 0x3D;
static const uint8_t COMMAND_MOTOR1 = 0x3F;
// data format for messages from ESC
static const uint8_t MOTOR_DATA1 = 0x40;
static const uint8_t MOTOR_DATA2 = 0x50;
static const uint8_t MOTOR_DATA3 = 0x60;
static const uint8_t MOTOR_DATA5 = 0x80;
// processing definitions
static const uint16_t TOSHIBACAN_OUTPUT_MIN = 6300;
static const uint16_t TOSHIBACAN_OUTPUT_MAX = 32000;
static const uint16_t TOSHIBACAN_SEND_TIMEOUT_US = 500;
static const uint8_t CAN_IFACE_INDEX = 0;
// telemetry definitions
static const uint32_t TOSHIBA_CAN_ESC_UPDATE_MS = 100;
AP_ToshibaCAN::AP_ToshibaCAN()
{
debug_can(2, "ToshibaCAN: constructed\n\r");
}
AP_ToshibaCAN *AP_ToshibaCAN::get_tcan(uint8_t driver_index)
{
if (driver_index >= AP::can().get_num_drivers() ||
AP::can().get_protocol_type(driver_index) != AP_BoardConfig_CAN::Protocol_Type_ToshibaCAN) {
return nullptr;
}
return static_cast<AP_ToshibaCAN*>(AP::can().get_driver(driver_index));
}
// initialise ToshibaCAN bus
void AP_ToshibaCAN::init(uint8_t driver_index, bool enable_filters)
{
_driver_index = driver_index;
debug_can(2, "ToshibaCAN: starting init\n\r");
if (_initialized) {
debug_can(1, "ToshibaCAN: already initialized\n\r");
return;
}
AP_HAL::CANManager* can_mgr = hal.can_mgr[driver_index];
if (can_mgr == nullptr) {
debug_can(1, "ToshibaCAN: no mgr for this driver\n\r");
return;
}
if (!can_mgr->is_initialized()) {
debug_can(1, "ToshibaCAN: mgr not initialized\n\r");
return;
}
_can_driver = can_mgr->get_driver();
if (_can_driver == nullptr) {
debug_can(1, "ToshibaCAN: no CAN driver\n\r");
return;
}
// start calls to loop in separate thread
if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_ToshibaCAN::loop, void), _thread_name, 4096, AP_HAL::Scheduler::PRIORITY_MAIN, 1)) {
debug_can(1, "ToshibaCAN: couldn't create thread\n\r");
return;
}
_initialized = true;
debug_can(2, "ToshibaCAN: init done\n\r");
return;
}
// loop to send output to ESCs in background thread
void AP_ToshibaCAN::loop()
{
uavcan::MonotonicTime timeout;
const uint32_t timeout_us = MIN(AP::scheduler().get_loop_period_us(), TOSHIBACAN_SEND_TIMEOUT_US);
while (true) {
if (!_initialized) {
// if not initialised wait 2ms
debug_can(2, "ToshibaCAN: not initialized\n\r");
hal.scheduler->delay_microseconds(2000);
continue;
}
// check for updates
if (update_count == update_count_sent) {
hal.scheduler->delay_microseconds(50);
continue;
}
// prepare commands and frames
if (send_stage == 0) {
motor_lock_cmd_t unlock_cmd = {};
motor_rotation_cmd_t mot_rot_cmd1;
motor_rotation_cmd_t mot_rot_cmd2;
motor_rotation_cmd_t mot_rot_cmd3;
{
// take semaphore to read scaled motor outputs
WITH_SEMAPHORE(_rc_out_sem);
// prepare command to lock or unlock motors
unlock_cmd.motor1 = (_scaled_output[0] == 0) ? 2 : 1;
unlock_cmd.motor2 = (_scaled_output[1] == 0) ? 2 : 1;
unlock_cmd.motor3 = (_scaled_output[2] == 0) ? 2 : 1;
unlock_cmd.motor4 = (_scaled_output[3] == 0) ? 2 : 1;
unlock_cmd.motor5 = (_scaled_output[4] == 0) ? 2 : 1;
unlock_cmd.motor6 = (_scaled_output[5] == 0) ? 2 : 1;
unlock_cmd.motor7 = (_scaled_output[6] == 0) ? 2 : 1;
unlock_cmd.motor8 = (_scaled_output[7] == 0) ? 2 : 1;
unlock_cmd.motor9 = (_scaled_output[8] == 0) ? 2 : 1;
unlock_cmd.motor10 = (_scaled_output[9] == 0) ? 2 : 1;
unlock_cmd.motor11 = (_scaled_output[10] == 0) ? 2 : 1;
unlock_cmd.motor12 = (_scaled_output[11] == 0) ? 2 : 1;
// prepare command to spin motors in bank1
mot_rot_cmd1.motor1 = htobe16(_scaled_output[0]);
mot_rot_cmd1.motor2 = htobe16(_scaled_output[1]);
mot_rot_cmd1.motor3 = htobe16(_scaled_output[2]);
mot_rot_cmd1.motor4 = htobe16(_scaled_output[3]);
// prepare message to spin motors in bank2
mot_rot_cmd2.motor1 = htobe16(_scaled_output[4]);
mot_rot_cmd2.motor2 = htobe16(_scaled_output[5]);
mot_rot_cmd2.motor3 = htobe16(_scaled_output[6]);
mot_rot_cmd2.motor4 = htobe16(_scaled_output[7]);
// prepare message to spin motors in bank3
mot_rot_cmd3.motor1 = htobe16(_scaled_output[8]);
mot_rot_cmd3.motor2 = htobe16(_scaled_output[9]);
mot_rot_cmd3.motor3 = htobe16(_scaled_output[10]);
mot_rot_cmd3.motor4 = htobe16(_scaled_output[11]);
// copy update time
update_count_buffered = update_count;
}
unlock_frame = {(uint8_t)COMMAND_LOCK, unlock_cmd.data, sizeof(unlock_cmd.data)};
mot_rot_frame1 = {((uint8_t)COMMAND_MOTOR1 & uavcan::CanFrame::MaskStdID), mot_rot_cmd1.data, sizeof(mot_rot_cmd1.data)};
mot_rot_frame2 = {((uint8_t)COMMAND_MOTOR2 & uavcan::CanFrame::MaskStdID), mot_rot_cmd2.data, sizeof(mot_rot_cmd2.data)};
mot_rot_frame3 = {((uint8_t)COMMAND_MOTOR3 & uavcan::CanFrame::MaskStdID), mot_rot_cmd3.data, sizeof(mot_rot_cmd3.data)};
// advance to next stage
send_stage++;
}
// send unlock command
if (send_stage == 1) {
timeout = uavcan::MonotonicTime::fromUSec(AP_HAL::micros64() + timeout_us);
if (!write_frame(unlock_frame, timeout)) {
continue;
}
send_stage++;
}
// send output to motor bank3
if (send_stage == 2) {
timeout = uavcan::MonotonicTime::fromUSec(AP_HAL::micros64() + timeout_us);
if (!write_frame(mot_rot_frame3, timeout)) {
continue;
}
send_stage++;
}
// send output to motor bank2
if (send_stage == 3) {
timeout = uavcan::MonotonicTime::fromUSec(AP_HAL::micros64() + timeout_us);
if (!write_frame(mot_rot_frame2, timeout)) {
continue;
}
send_stage++;
}
// send output to motor bank1
if (send_stage == 4) {
timeout = uavcan::MonotonicTime::fromUSec(AP_HAL::micros64() + timeout_us);
if (!write_frame(mot_rot_frame1, timeout)) {
continue;
}
send_stage++;
}
// check if we should request update from ESCs
if (send_stage == 5) {
uint32_t now_ms = AP_HAL::millis();
uint32_t diff_ms = now_ms - _telemetry_req_ms;
// check if 100ms has passed since last update request
if (diff_ms >= TOSHIBA_CAN_ESC_UPDATE_MS) {
// set _telem_req_ms to time we ideally should have requested update
if (diff_ms >= 2 * TOSHIBA_CAN_ESC_UPDATE_MS) {
_telemetry_req_ms = now_ms;
} else {
_telemetry_req_ms += TOSHIBA_CAN_ESC_UPDATE_MS;
}
// prepare command to request data1 (rpm and voltage) from all ESCs
motor_request_data_cmd_t request_data_cmd = {};
request_data_cmd.motor1 = 1;
request_data_cmd.motor2 = 1;
request_data_cmd.motor3 = 1;
request_data_cmd.motor4 = 1;
request_data_cmd.motor5 = 1;
request_data_cmd.motor6 = 1;
request_data_cmd.motor7 = 1;
request_data_cmd.motor8 = 1;
request_data_cmd.motor9 = 1;
request_data_cmd.motor10 = 1;
request_data_cmd.motor11 = 1;
request_data_cmd.motor12 = 1;
uavcan::CanFrame request_data_frame;
request_data_frame = {(uint8_t)COMMAND_REQUEST_DATA, request_data_cmd.data, sizeof(request_data_cmd.data)};
// send request data command
timeout = uavcan::MonotonicTime::fromUSec(AP_HAL::micros64() + timeout_us);
if (!write_frame(request_data_frame, timeout)) {
continue;
}
// increment count to request temperature
_telemetry_temp_req_counter++;
}
send_stage++;
}
// check if we should request temperature from ESCs
if (send_stage == 6) {
if (_telemetry_temp_req_counter > 10) {
_telemetry_temp_req_counter = 0;
// prepare command to request data2 (temperature) from all ESCs
motor_request_data_cmd_t request_data_cmd = {};
request_data_cmd.motor1 = 2;
request_data_cmd.motor2 = 2;
request_data_cmd.motor3 = 2;
request_data_cmd.motor4 = 2;
request_data_cmd.motor5 = 2;
request_data_cmd.motor6 = 2;
request_data_cmd.motor7 = 2;
request_data_cmd.motor8 = 2;
request_data_cmd.motor9 = 2;
request_data_cmd.motor10 = 2;
request_data_cmd.motor11 = 2;
request_data_cmd.motor12 = 2;
uavcan::CanFrame request_data_frame;
request_data_frame = {(uint8_t)COMMAND_REQUEST_DATA, request_data_cmd.data, sizeof(request_data_cmd.data)};
// send request data command
timeout = uavcan::MonotonicTime::fromUSec(AP_HAL::micros64() + timeout_us);
if (!write_frame(request_data_frame, timeout)) {
continue;
}
}
send_stage++;
}
// check for replies from ESCs
if (send_stage == 7) {
uavcan::CanFrame recv_frame;
while (read_frame(recv_frame, timeout)) {
// decode rpm and voltage data
if ((recv_frame.id >= MOTOR_DATA1) && (recv_frame.id <= MOTOR_DATA1 + 12)) {
// copy contents to our structure
motor_reply_data1_t reply_data;
memcpy(reply_data.data, recv_frame.data, sizeof(reply_data.data));
// store response in telemetry array
const uint8_t esc_id = recv_frame.id - MOTOR_DATA1;
if (esc_id < TOSHIBACAN_MAX_NUM_ESCS) {
WITH_SEMAPHORE(_telem_sem);
_telemetry[esc_id].rpm = be16toh(reply_data.rpm);
_telemetry[esc_id].millivolts = be16toh(reply_data.millivolts);
_telemetry[esc_id].count++;
_telemetry[esc_id].new_data = true;
_esc_present_bitmask |= ((uint32_t)1 << esc_id);
}
}
// decode temperature data
if ((recv_frame.id >= MOTOR_DATA2) && (recv_frame.id <= MOTOR_DATA2 + 12)) {
// motor data2 data format is 8 bytes (64 bits)
// 10 bits: U temperature
// 10 bits: V temperature
// 10 bits: W temperature
// 10 bits: motor temperature
// remaining 24 bits: reserved
const uint16_t u_temp = ((uint16_t)recv_frame.data[0] << 2) | ((uint16_t)recv_frame.data[1] >> 6);
const uint16_t v_temp = (((uint16_t)recv_frame.data[1] & (uint16_t)0x3F) << 4) | (((uint16_t)recv_frame.data[2] & (uint16_t)0xF0) >> 4);
const uint16_t w_temp = (((uint16_t)recv_frame.data[2] & (uint16_t)0x0F) << 6) | (((uint16_t)recv_frame.data[3] & (uint16_t)0xFC) >> 2);
const uint16_t temp_max = MAX(u_temp, MAX(v_temp, w_temp));
// store repose in telemetry array
uint8_t esc_id = recv_frame.id - MOTOR_DATA2;
if (esc_id < TOSHIBACAN_MAX_NUM_ESCS) {
WITH_SEMAPHORE(_telem_sem);
_telemetry[esc_id].temperature = temp_max < 20 ? 0 : temp_max / 5 - 20;
_esc_present_bitmask |= ((uint32_t)1 << esc_id);
}
}
}
}
// success!
send_stage = 0;
// record success so we don't send this frame again
update_count_sent = update_count_buffered;
}
}
// write frame on CAN bus
bool AP_ToshibaCAN::write_frame(uavcan::CanFrame &out_frame, uavcan::MonotonicTime timeout)
{
// wait for space in buffer to send command
uavcan::CanSelectMasks inout_mask;
do {
inout_mask.read = 0;
inout_mask.write = 1 << CAN_IFACE_INDEX;
_select_frames[CAN_IFACE_INDEX] = &out_frame;
_can_driver->select(inout_mask, _select_frames, timeout);
// delay if no space is available to send
if (!inout_mask.write) {
hal.scheduler->delay_microseconds(50);
}
} while (!inout_mask.write);
// send frame and return success
return (_can_driver->getIface(CAN_IFACE_INDEX)->send(out_frame, timeout, uavcan::CanIOFlagAbortOnError) == 1);
}
// read frame on CAN bus, returns true on success
bool AP_ToshibaCAN::read_frame(uavcan::CanFrame &recv_frame, uavcan::MonotonicTime timeout)
{
// wait for space in buffer to read
uavcan::CanSelectMasks inout_mask;
inout_mask.read = 1 << CAN_IFACE_INDEX;
inout_mask.write = 0;
_select_frames[CAN_IFACE_INDEX] = &recv_frame;
_can_driver->select(inout_mask, _select_frames, timeout);
// return false if no data is available to read
if (!inout_mask.read) {
return false;
}
uavcan::MonotonicTime time;
uavcan::UtcTime utc_time;
uavcan::CanIOFlags flags {};
// read frame and return success
return (_can_driver->getIface(CAN_IFACE_INDEX)->receive(recv_frame, time, utc_time, flags) == 1);
}
// called from SRV_Channels
void AP_ToshibaCAN::update()
{
// take semaphore and update outputs
{
WITH_SEMAPHORE(_rc_out_sem);
const bool armed = hal.util->get_soft_armed();
for (uint8_t i = 0; i < MIN(TOSHIBACAN_MAX_NUM_ESCS, 16); i++) {
const SRV_Channel *c = SRV_Channels::srv_channel(i);
if (!armed || (c == nullptr)) {
_scaled_output[i] = 0;
} else {
const uint16_t pwm_out = c->get_output_pwm();
if (pwm_out <= 1000) {
_scaled_output[i] = 0;
} else if (pwm_out >= 2000) {
_scaled_output[i] = TOSHIBACAN_OUTPUT_MAX;
} else {
_scaled_output[i] = TOSHIBACAN_OUTPUT_MIN + (pwm_out - 1000) * 0.001f * (TOSHIBACAN_OUTPUT_MAX - TOSHIBACAN_OUTPUT_MIN);
}
}
}
update_count++;
}
// log ESCs telemetry info
AP_Logger *logger = AP_Logger::get_singleton();
if (logger && logger->logging_enabled()) {
WITH_SEMAPHORE(_telem_sem);
// log if any new data received. Logging only supports up to 8 ESCs
const uint64_t time_us = AP_HAL::micros64();
for (uint8_t i = 0; i < MIN(TOSHIBACAN_MAX_NUM_ESCS, 8); i++) {
if (_telemetry[i].new_data) {
logger->Write_ESC(i, time_us,
_telemetry[i].rpm * 100U,
_telemetry[i].millivolts * 0.1f,
0,
_telemetry[i].temperature * 100.0f,
0);
_telemetry[i].new_data = false;
}
}
}
}
// send ESC telemetry messages over MAVLink
void AP_ToshibaCAN::send_esc_telemetry_mavlink(uint8_t mav_chan)
{
// compile time check this method handles the correct number of motors
static_assert(TOSHIBACAN_MAX_NUM_ESCS == 12, "update AP_ToshibaCAN::send_esc_telemetry_mavlink only handles 12 motors");
// return immediately if no ESCs have been found
if (_esc_present_bitmask == 0) {
return;
}
// return if no space in output buffer to send mavlink messages
if (!HAVE_PAYLOAD_SPACE((mavlink_channel_t)mav_chan, ESC_TELEMETRY_1_TO_4)) {
return;
}
// output telemetry messages
{
// take semaphore to access telemetry data
WITH_SEMAPHORE(_telem_sem);
// loop through 3 groups of 4 ESCs
for (uint8_t i = 0; i < 3; i++) {
// skip this group of ESCs if no data to send
if ((_esc_present_bitmask & ((uint32_t)0x0F << i*4)) == 0) {
continue;
}
// arrays to hold output
uint8_t temperature[4] {};
uint16_t voltage[4] {};
uint16_t rpm[4] {};
uint16_t count[4] {};
uint16_t nosup[4] {}; // single empty array for unsupported current and current_tot
// fill in output arrays
for (uint8_t j = 0; j < 4; j++) {
uint8_t esc_id = i * 4 + j;
temperature[j] = _telemetry[esc_id].temperature;
voltage[j] = _telemetry[esc_id].millivolts * 0.1f;
rpm[j] = _telemetry[esc_id].rpm;
count[j] = _telemetry[esc_id].count;
}
// send messages
switch (i) {
case 0:
mavlink_msg_esc_telemetry_1_to_4_send((mavlink_channel_t)mav_chan, temperature, voltage, nosup, nosup, rpm, count);
break;
case 1:
mavlink_msg_esc_telemetry_5_to_8_send((mavlink_channel_t)mav_chan, temperature, voltage, nosup, nosup, rpm, count);
break;
case 2:
mavlink_msg_esc_telemetry_9_to_12_send((mavlink_channel_t)mav_chan, temperature, voltage, nosup, nosup, rpm, count);
break;
default:
break;
}
}
}
}
#endif // HAL_WITH_UAVCAN