mirror of https://github.com/ArduPilot/ardupilot
159 lines
5.0 KiB
C++
159 lines
5.0 KiB
C++
/*
|
||
AP_ADC_ADS7844.cpp - ADC ADS7844 Library for Ardupilot Mega
|
||
Code by Jordi Mu<4D>oz and Jose Julio. DIYDrones.com
|
||
|
||
Modified by John Ihlein 6 / 19 / 2010 to:
|
||
1)Prevent overflow of adc_counter when more than 8 samples collected between reads. Probably
|
||
only an issue on initial read of ADC at program start.
|
||
2)Reorder analog read order as follows:
|
||
p, q, r, ax, ay, az
|
||
|
||
This library is free software; you can redistribute it and / or
|
||
modify it under the terms of the GNU Lesser General Public
|
||
License as published by the Free Software Foundation; either
|
||
version 2.1 of the License, or (at your option) any later version.
|
||
|
||
External ADC ADS7844 is connected via Serial port 2 (in SPI mode)
|
||
TXD2 = MOSI = pin PH1
|
||
RXD2 = MISO = pin PH0
|
||
XCK2 = SCK = pin PH2
|
||
Chip Select pin is PC4 (33) [PH6 (9)]
|
||
We are using the 16 clocks per conversion timming to increase efficiency (fast)
|
||
The sampling frequency is 400Hz (Timer2 overflow interrupt)
|
||
So if our loop is at 50Hz, our needed sampling freq should be 100Hz, so
|
||
we have an 4x oversampling and averaging.
|
||
|
||
Methods:
|
||
Init() : Initialization of interrupts an Timers (Timer2 overflow interrupt)
|
||
Ch(ch_num) : Return the ADC channel value
|
||
|
||
// HJI - Input definitions. USB connector assumed to be on the left, Rx and servo
|
||
// connector pins to the rear. IMU shield components facing up. These are board
|
||
// referenced sensor inputs, not device referenced.
|
||
On Ardupilot Mega Hardware, oriented as described above:
|
||
Chennel 0 : yaw rate, r
|
||
Channel 1 : roll rate, p
|
||
Channel 2 : pitch rate, q
|
||
Channel 3 : x / y gyro temperature
|
||
Channel 4 : x acceleration, aX
|
||
Channel 5 : y acceleration, aY
|
||
Channel 6 : z acceleration, aZ
|
||
Channel 7 : Differential pressure sensor port
|
||
|
||
*/
|
||
extern "C" {
|
||
// AVR LibC Includes
|
||
#include <inttypes.h>
|
||
#include <avr/interrupt.h>
|
||
#include "WConstants.h"
|
||
}
|
||
|
||
#include "AP_ADC_ADS7844.h"
|
||
|
||
|
||
// Commands for reading ADC channels on ADS7844
|
||
static const unsigned char adc_cmd[9] = { 0x87, 0xC7, 0x97, 0xD7, 0xA7, 0xE7, 0xB7, 0xF7, 0x00 };
|
||
static volatile uint16_t _filter[8][ADC_FILTER_SIZE];
|
||
static volatile uint8_t _filter_index;
|
||
|
||
static unsigned char ADC_SPI_transfer(unsigned char data)
|
||
{
|
||
/* Wait for empty transmit buffer */
|
||
while ( !( UCSR2A & (1 << UDRE2)) );
|
||
/* Put data into buffer, sends the data */
|
||
UDR2 = data;
|
||
/* Wait for data to be received */
|
||
while ( !(UCSR2A & (1 << RXC2)) );
|
||
/* Get and return received data from buffer */
|
||
return UDR2;
|
||
}
|
||
|
||
|
||
ISR (TIMER2_OVF_vect)
|
||
{
|
||
uint8_t ch;
|
||
uint16_t adc_tmp;
|
||
|
||
//bit_set(PORTL,6); // To test performance
|
||
|
||
bit_clear(PORTC, 4); // Enable Chip Select (PIN PC4)
|
||
ADC_SPI_transfer(adc_cmd[0]); // Command to read the first channel
|
||
|
||
for (ch = 0; ch < 8; ch++){
|
||
adc_tmp = ADC_SPI_transfer(0) << 8; // Read first byte
|
||
adc_tmp |= ADC_SPI_transfer(adc_cmd[ch + 1]); // Read second byte and send next command
|
||
|
||
// Fill our Moving average filter
|
||
_filter[ch][_filter_index] = adc_tmp >> 3;
|
||
}
|
||
|
||
// increment our filter
|
||
_filter_index++;
|
||
|
||
// loop our filter
|
||
if(_filter_index == ADC_FILTER_SIZE)
|
||
_filter_index = 0;
|
||
|
||
|
||
bit_set(PORTC, 4); // Disable Chip Select (PIN PC4)
|
||
//bit_clear(PORTL,6); // To test performance
|
||
TCNT2 = 104; // 400 Hz
|
||
}
|
||
|
||
|
||
// Constructors ////////////////////////////////////////////////////////////////
|
||
AP_ADC_ADS7844::AP_ADC_ADS7844()
|
||
{
|
||
}
|
||
|
||
// Public Methods //////////////////////////////////////////////////////////////
|
||
void AP_ADC_ADS7844::Init(void)
|
||
{
|
||
pinMode(ADC_CHIP_SELECT, OUTPUT);
|
||
|
||
digitalWrite(ADC_CHIP_SELECT, HIGH); // Disable device (Chip select is active low)
|
||
|
||
// Setup Serial Port2 in SPI mode
|
||
UBRR2 = 0;
|
||
DDRH |= (1 << PH2); // SPI clock XCK2 (PH2) as output. This enable SPI Master mode
|
||
// Set MSPI mode of operation and SPI data mode 0.
|
||
UCSR2C = (1 << UMSEL21) | (1 << UMSEL20); // |(0 << UCPHA2) | (0 << UCPOL2);
|
||
// Enable receiver and transmitter.
|
||
UCSR2B = (1 << RXEN2) | (1 << TXEN2);
|
||
// Set Baud rate
|
||
UBRR2 = 2; // SPI clock running at 2.6MHz
|
||
|
||
|
||
// Enable Timer2 Overflow interrupt to capture ADC data
|
||
TIMSK2 = 0; // Disable interrupts
|
||
TCCR2A = 0; // normal counting mode
|
||
TCCR2B = _BV(CS21) | _BV(CS22); // Set prescaler of 256
|
||
TCNT2 = 0;
|
||
TIFR2 = _BV(TOV2); // clear pending interrupts;
|
||
TIMSK2 = _BV(TOIE2) ; // enable the overflow interrupt
|
||
}
|
||
|
||
// Read one channel value
|
||
int AP_ADC_ADS7844::Ch(unsigned char ch_num)
|
||
{
|
||
uint16_t result = 0;
|
||
|
||
//while(adc_counter[ch_num] < 2) { } // Wait for at least 2 samples in accumlator
|
||
|
||
// stop interrupts
|
||
cli();
|
||
|
||
// sum our filter
|
||
for(uint8_t i = 0; i < ADC_FILTER_SIZE; i++){
|
||
result += _filter[ch_num][i];
|
||
}
|
||
|
||
// resume interrupts
|
||
sei();
|
||
|
||
// average our sampels
|
||
result /= ADC_FILTER_SIZE;
|
||
|
||
return(result);
|
||
}
|