ardupilot/libraries/AP_ExternalAHRS/AP_ExternalAHRS_LORD.cpp
Peter Barker 74e651e5d7 AP_ExternalAHRS: stop using GCS_MAVLINK.h in header files
... by passing through a reference to a link object instead
2022-08-16 09:45:51 +10:00

580 lines
18 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
suppport for LORD Microstrain CX5/GX5-45 serially connected AHRS Systems
*/
#define ALLOW_DOUBLE_MATH_FUNCTIONS
#include "AP_ExternalAHRS_LORD.h"
#if HAL_EXTERNAL_AHRS_LORD_ENABLED
#include <AP_Baro/AP_Baro.h>
#include <AP_Compass/AP_Compass.h>
#include <AP_GPS/AP_GPS.h>
#include <AP_InertialSensor/AP_InertialSensor.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_Logger/AP_Logger.h>
#include <AP_HAL/utility/sparse-endian.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
enum class DescriptorSet {
BaseCommand = 0x01,
DMCommand = 0x0C,
SystemCommand = 0x7F,
IMUData = 0x80,
GNSSData = 0x81,
EstimationData = 0x82
};
enum class INSPacketField {
ACCEL = 0x04,
GYRO = 0x05,
QUAT = 0x0A,
MAG = 0x06,
PRESSURE = 0x17
};
enum class GNSSPacketField {
LLH_POSITION = 0x03,
NED_VELOCITY = 0x05,
DOP_DATA = 0x07,
GPS_TIME = 0x09,
FIX_INFO = 0x0B
};
enum class GNSSFixType {
FIX_3D = 0x00,
FIX_2D = 0x01,
TIME_ONLY = 0x02,
NONE = 0x03,
INVALID = 0x04
};
enum class FilterPacketField {
FILTER_STATUS = 0x10,
GPS_TIME = 0x11,
LLH_POSITION = 0x01,
NED_VELOCITY = 0x02
};
extern const AP_HAL::HAL &hal;
AP_ExternalAHRS_LORD::AP_ExternalAHRS_LORD(AP_ExternalAHRS *_frontend,
AP_ExternalAHRS::state_t &_state): AP_ExternalAHRS_backend(_frontend, _state)
{
auto &sm = AP::serialmanager();
uart = sm.find_serial(AP_SerialManager::SerialProtocol_AHRS, 0);
baudrate = sm.find_baudrate(AP_SerialManager::SerialProtocol_AHRS, 0);
port_num = sm.find_portnum(AP_SerialManager::SerialProtocol_AHRS, 0);
if (!uart) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "ExternalAHRS no UART");
return;
}
if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_ExternalAHRS_LORD::update_thread, void), "AHRS", 2048, AP_HAL::Scheduler::PRIORITY_SPI, 0)) {
AP_BoardConfig::allocation_error("Failed to allocate ExternalAHRS update thread");
}
hal.scheduler->delay(5000);
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "LORD ExternalAHRS initialised");
}
void AP_ExternalAHRS_LORD::update_thread(void)
{
if (!port_open) {
port_open = true;
uart->begin(baudrate);
}
while (true) {
build_packet();
hal.scheduler->delay_microseconds(100);
}
}
// Builds packets by looking at each individual byte, once a full packet has been read in it checks the checksum then handles the packet.
void AP_ExternalAHRS_LORD::build_packet()
{
WITH_SEMAPHORE(sem);
uint32_t nbytes = MIN(uart->available(), 2048u);
while (nbytes--> 0) {
const int16_t b = uart->read();
if (b < 0) {
break;
}
switch (message_in.state) {
case ParseState::WaitingFor_SyncOne:
if (b == SYNC_ONE) {
message_in.packet.header[0] = b;
message_in.state = ParseState::WaitingFor_SyncTwo;
}
break;
case ParseState::WaitingFor_SyncTwo:
if (b == SYNC_TWO) {
message_in.packet.header[1] = b;
message_in.state = ParseState::WaitingFor_Descriptor;
} else {
message_in.state = ParseState::WaitingFor_SyncOne;
}
break;
case ParseState::WaitingFor_Descriptor:
message_in.packet.header[2] = b;
message_in.state = ParseState::WaitingFor_PayloadLength;
break;
case ParseState::WaitingFor_PayloadLength:
message_in.packet.header[3] = b;
message_in.state = ParseState::WaitingFor_Data;
message_in.index = 0;
break;
case ParseState::WaitingFor_Data:
message_in.packet.payload[message_in.index++] = b;
if (message_in.index >= message_in.packet.header[3]) {
message_in.state = ParseState::WaitingFor_Checksum;
message_in.index = 0;
}
break;
case ParseState::WaitingFor_Checksum:
message_in.packet.checksum[message_in.index++] = b;
if (message_in.index >= 2) {
message_in.state = ParseState::WaitingFor_SyncOne;
message_in.index = 0;
if (valid_packet(message_in.packet)) {
handle_packet(message_in.packet);
}
}
break;
}
}
}
// returns true if the fletcher checksum for the packet is valid, else false.
bool AP_ExternalAHRS_LORD::valid_packet(const LORD_Packet & packet) const
{
uint8_t checksum_one = 0;
uint8_t checksum_two = 0;
for (int i = 0; i < 4; i++) {
checksum_one += packet.header[i];
checksum_two += checksum_one;
}
for (int i = 0; i < packet.header[3]; i++) {
checksum_one += packet.payload[i];
checksum_two += checksum_one;
}
return packet.checksum[0] == checksum_one && packet.checksum[1] == checksum_two;
}
// Calls the correct functions based on the packet descriptor of the packet
void AP_ExternalAHRS_LORD::handle_packet(const LORD_Packet& packet)
{
switch ((DescriptorSet) packet.header[2]) {
case DescriptorSet::IMUData:
handle_imu(packet);
post_imu();
break;
case DescriptorSet::GNSSData:
handle_gnss(packet);
break;
case DescriptorSet::EstimationData:
handle_filter(packet);
post_filter();
break;
case DescriptorSet::BaseCommand:
case DescriptorSet::DMCommand:
case DescriptorSet::SystemCommand:
break;
}
}
// Collects data from an imu packet into `imu_data`
void AP_ExternalAHRS_LORD::handle_imu(const LORD_Packet& packet)
{
last_ins_pkt = AP_HAL::millis();
// Iterate through fields of varying lengths in INS packet
for (uint8_t i = 0; i < packet.header[3]; i += packet.payload[i]) {
switch ((INSPacketField) packet.payload[i+1]) {
// Scaled Ambient Pressure
case INSPacketField::PRESSURE: {
imu_data.pressure = extract_float(packet.payload, i+2) * 100; // Convert millibar to pascals
break;
}
// Scaled Magnetometer Vector
case INSPacketField::MAG: {
imu_data.mag = populate_vector3f(packet.payload, i+2) * 1000; // Convert gauss to milligauss
break;
}
// Scaled Accelerometer Vector
case INSPacketField::ACCEL: {
imu_data.accel = populate_vector3f(packet.payload, i+2) * GRAVITY_MSS; // Convert g's to m/s^2
break;
}
// Scaled Gyro Vector
case INSPacketField::GYRO: {
imu_data.gyro = populate_vector3f(packet.payload, i+2);
break;
}
// Quaternion
case INSPacketField::QUAT: {
imu_data.quat = populate_quaternion(packet.payload, i+2);
break;
}
}
}
}
// Posts data from an imu packet to `state` and `handle_external` methods
void AP_ExternalAHRS_LORD::post_imu() const
{
{
WITH_SEMAPHORE(state.sem);
state.accel = imu_data.accel;
state.gyro = imu_data.gyro;
state.quat = imu_data.quat;
state.have_quaternion = true;
}
{
AP_ExternalAHRS::ins_data_message_t ins {
accel: imu_data.accel,
gyro: imu_data.gyro,
temperature: -300
};
AP::ins().handle_external(ins);
}
{
AP_ExternalAHRS::mag_data_message_t mag {
field: imu_data.mag
};
AP::compass().handle_external(mag);
}
#if AP_BARO_EXTERNALAHRS_ENABLED
{
const AP_ExternalAHRS::baro_data_message_t baro {
instance: 0,
pressure_pa: imu_data.pressure,
// setting temp to 25 effectively disables barometer temperature calibrations - these are already performed by lord
temperature: 25,
};
AP::baro().handle_external(baro);
}
#endif
}
// Collects data from a gnss packet into `gnss_data`
void AP_ExternalAHRS_LORD::handle_gnss(const LORD_Packet &packet)
{
last_gps_pkt = AP_HAL::millis();
// Iterate through fields of varying lengths in GNSS packet
for (uint8_t i = 0; i < packet.header[3]; i += packet.payload[i]) {
switch ((GNSSPacketField) packet.payload[i+1]) {
// GPS Time
case GNSSPacketField::GPS_TIME: {
gnss_data.tow_ms = extract_double(packet.payload, i+2) * 1000; // Convert seconds to ms
gnss_data.week = be16toh_ptr(&packet.payload[i+10]);
break;
}
// GNSS Fix Information
case GNSSPacketField::FIX_INFO: {
switch ((GNSSFixType) packet.payload[i+2]) {
case (GNSSFixType::FIX_3D): {
gnss_data.fix_type = GPS_FIX_TYPE_3D_FIX;
break;
}
case (GNSSFixType::FIX_2D): {
gnss_data.fix_type = GPS_FIX_TYPE_2D_FIX;
break;
}
case (GNSSFixType::TIME_ONLY):
case (GNSSFixType::NONE): {
gnss_data.fix_type = GPS_FIX_TYPE_NO_FIX;
break;
}
default:
case (GNSSFixType::INVALID): {
gnss_data.fix_type = GPS_FIX_TYPE_NO_GPS;
break;
}
}
gnss_data.satellites = packet.payload[i+3];
break;
}
// LLH Position
case GNSSPacketField::LLH_POSITION: {
gnss_data.lat = extract_double(packet.payload, i+2) * 1.0e7; // Decimal degrees to degrees
gnss_data.lon = extract_double(packet.payload, i+10) * 1.0e7;
gnss_data.msl_altitude = extract_double(packet.payload, i+26) * 1.0e2; // Meters to cm
gnss_data.horizontal_position_accuracy = extract_float(packet.payload, i+34);
gnss_data.vertical_position_accuracy = extract_float(packet.payload, i+38);
break;
}
// DOP Data
case GNSSPacketField::DOP_DATA: {
gnss_data.hdop = extract_float(packet.payload, i+10);
gnss_data.vdop = extract_float(packet.payload, i+14);
break;
}
// NED Velocity
case GNSSPacketField::NED_VELOCITY: {
gnss_data.ned_velocity_north = extract_float(packet.payload, i+2);
gnss_data.ned_velocity_east = extract_float(packet.payload, i+6);
gnss_data.ned_velocity_down = extract_float(packet.payload, i+10);
gnss_data.speed_accuracy = extract_float(packet.payload, i+26);
break;
}
}
}
}
void AP_ExternalAHRS_LORD::handle_filter(const LORD_Packet &packet)
{
last_filter_pkt = AP_HAL::millis();
// Iterate through fields of varying lengths in filter packet
for (uint8_t i = 0; i < packet.header[3]; i += packet.payload[i]) {
switch ((FilterPacketField) packet.payload[i+1]) {
// GPS Timestamp
case FilterPacketField::GPS_TIME: {
filter_data.tow_ms = extract_double(packet.payload, i+2) * 1000; // Convert seconds to ms
filter_data.week = be16toh_ptr(&packet.payload[i+10]);
break;
}
// LLH Position
case FilterPacketField::LLH_POSITION: {
filter_data.lat = extract_double(packet.payload, i+2) * 1.0e7; // Decimal degrees to degrees
filter_data.lon = extract_double(packet.payload, i+10) * 1.0e7;
filter_data.hae_altitude = extract_double(packet.payload, i+26) * 1.0e2; // Meters to cm
break;
}
// NED Velocity
case FilterPacketField::NED_VELOCITY: {
filter_data.ned_velocity_north = extract_float(packet.payload, i+2);
filter_data.ned_velocity_east = extract_float(packet.payload, i+6);
filter_data.ned_velocity_down = extract_float(packet.payload, i+10);
break;
}
// Filter Status
case FilterPacketField::FILTER_STATUS: {
filter_status.state = be16toh_ptr(&packet.payload[i+2]);
filter_status.mode = be16toh_ptr(&packet.payload[i+4]);
filter_status.flags = be16toh_ptr(&packet.payload[i+6]);
break;
}
}
}
}
void AP_ExternalAHRS_LORD::post_filter() const
{
{
WITH_SEMAPHORE(state.sem);
state.velocity = Vector3f{filter_data.ned_velocity_north, filter_data.ned_velocity_east, filter_data.ned_velocity_down};
state.have_velocity = true;
state.location = Location{filter_data.lat, filter_data.lon, gnss_data.msl_altitude, Location::AltFrame::ABSOLUTE};
state.have_location = true;
}
AP_ExternalAHRS::gps_data_message_t gps {
gps_week: filter_data.week,
ms_tow: filter_data.tow_ms,
fix_type: (uint8_t) gnss_data.fix_type,
satellites_in_view: gnss_data.satellites,
horizontal_pos_accuracy: gnss_data.horizontal_position_accuracy,
vertical_pos_accuracy: gnss_data.vertical_position_accuracy,
horizontal_vel_accuracy: gnss_data.speed_accuracy,
hdop: gnss_data.hdop,
vdop: gnss_data.vdop,
longitude: filter_data.lon,
latitude: filter_data.lat,
msl_altitude: gnss_data.msl_altitude,
ned_vel_north: filter_data.ned_velocity_north,
ned_vel_east: filter_data.ned_velocity_east,
ned_vel_down: filter_data.ned_velocity_down,
};
if (gps.fix_type >= 3 && !state.have_origin) {
WITH_SEMAPHORE(state.sem);
state.origin = Location{int32_t(filter_data.lat),
int32_t(filter_data.lon),
int32_t(gnss_data.msl_altitude),
Location::AltFrame::ABSOLUTE};
state.have_origin = true;
}
AP::gps().handle_external(gps);
}
int8_t AP_ExternalAHRS_LORD::get_port(void) const
{
if (!uart) {
return -1;
}
return port_num;
};
bool AP_ExternalAHRS_LORD::healthy(void) const
{
uint32_t now = AP_HAL::millis();
return (now - last_ins_pkt < 40 && now - last_gps_pkt < 500 && now - last_filter_pkt < 500);
}
bool AP_ExternalAHRS_LORD::initialised(void) const
{
return last_ins_pkt != 0 && last_gps_pkt != 0 && last_filter_pkt != 0;
}
bool AP_ExternalAHRS_LORD::pre_arm_check(char *failure_msg, uint8_t failure_msg_len) const
{
if (!healthy()) {
hal.util->snprintf(failure_msg, failure_msg_len, "LORD unhealthy");
return false;
}
if (gnss_data.fix_type < 3) {
hal.util->snprintf(failure_msg, failure_msg_len, "LORD no GPS lock");
return false;
}
if (filter_status.state != 0x02) {
hal.util->snprintf(failure_msg, failure_msg_len, "LORD filter not running");
return false;
}
return true;
}
void AP_ExternalAHRS_LORD::get_filter_status(nav_filter_status &status) const
{
memset(&status, 0, sizeof(status));
if (last_ins_pkt != 0 && last_gps_pkt != 0) {
status.flags.initalized = 1;
}
if (healthy() && last_ins_pkt != 0) {
status.flags.attitude = 1;
status.flags.vert_vel = 1;
status.flags.vert_pos = 1;
if (gnss_data.fix_type >= 3) {
status.flags.horiz_vel = 1;
status.flags.horiz_pos_rel = 1;
status.flags.horiz_pos_abs = 1;
status.flags.pred_horiz_pos_rel = 1;
status.flags.pred_horiz_pos_abs = 1;
status.flags.using_gps = 1;
}
}
}
void AP_ExternalAHRS_LORD::send_status_report(GCS_MAVLINK &link) const
{
// prepare flags
uint16_t flags = 0;
nav_filter_status filterStatus;
get_filter_status(filterStatus);
if (filterStatus.flags.attitude) {
flags |= EKF_ATTITUDE;
}
if (filterStatus.flags.horiz_vel) {
flags |= EKF_VELOCITY_HORIZ;
}
if (filterStatus.flags.vert_vel) {
flags |= EKF_VELOCITY_VERT;
}
if (filterStatus.flags.horiz_pos_rel) {
flags |= EKF_POS_HORIZ_REL;
}
if (filterStatus.flags.horiz_pos_abs) {
flags |= EKF_POS_HORIZ_ABS;
}
if (filterStatus.flags.vert_pos) {
flags |= EKF_POS_VERT_ABS;
}
if (filterStatus.flags.terrain_alt) {
flags |= EKF_POS_VERT_AGL;
}
if (filterStatus.flags.const_pos_mode) {
flags |= EKF_CONST_POS_MODE;
}
if (filterStatus.flags.pred_horiz_pos_rel) {
flags |= EKF_PRED_POS_HORIZ_REL;
}
if (filterStatus.flags.pred_horiz_pos_abs) {
flags |= EKF_PRED_POS_HORIZ_ABS;
}
if (!filterStatus.flags.initalized) {
flags |= EKF_UNINITIALIZED;
}
// send message
const float vel_gate = 4; // represents hz value data is posted at
const float pos_gate = 4; // represents hz value data is posted at
const float hgt_gate = 4; // represents hz value data is posted at
const float mag_var = 0; //we may need to change this to be like the other gates, set to 0 because mag is ignored by the ins filter in vectornav
mavlink_msg_ekf_status_report_send(link.get_chan(), flags,
gnss_data.speed_accuracy/vel_gate, gnss_data.horizontal_position_accuracy/pos_gate, gnss_data.vertical_position_accuracy/hgt_gate,
mag_var, 0, 0);
}
Vector3f AP_ExternalAHRS_LORD::populate_vector3f(const uint8_t *data, uint8_t offset) const
{
return Vector3f {
extract_float(data, offset),
extract_float(data, offset+4),
extract_float(data, offset+8)
};
}
Quaternion AP_ExternalAHRS_LORD::populate_quaternion(const uint8_t *data, uint8_t offset) const
{
return Quaternion {
extract_float(data, offset),
extract_float(data, offset+4),
extract_float(data, offset+8),
extract_float(data, offset+12)
};
}
float AP_ExternalAHRS_LORD::extract_float(const uint8_t *data, uint8_t offset) const
{
uint32_t tmp = be32toh_ptr(&data[offset]);
return *reinterpret_cast<float*>(&tmp);
}
double AP_ExternalAHRS_LORD::extract_double(const uint8_t *data, uint8_t offset) const
{
uint64_t tmp = be64toh_ptr(&data[offset]);
return *reinterpret_cast<double*>(&tmp);
}
#endif // HAL_EXTERNAL_AHRS_ENABLED