ardupilot/ArduSub/motors.cpp

288 lines
9.1 KiB
C++

#include "Sub.h"
// enable_motor_output() - enable and output lowest possible value to motors
void Sub::enable_motor_output()
{
motors.output_min();
}
// init_arm_motors - performs arming process including initialisation of barometer and gyros
// returns false if arming failed because of pre-arm checks, arming checks or a gyro calibration failure
bool Sub::init_arm_motors(AP_Arming::Method method)
{
static bool in_arm_motors = false;
// exit immediately if already in this function
if (in_arm_motors) {
return false;
}
in_arm_motors = true;
if (!arming.pre_arm_checks(true)) {
AP_Notify::events.arming_failed = true;
in_arm_motors = false;
return false;
}
// let dataflash know that we're armed (it may open logs e.g.)
AP::logger().set_vehicle_armed(true);
// disable cpu failsafe because initialising everything takes a while
mainloop_failsafe_disable();
// notify that arming will occur (we do this early to give plenty of warning)
AP_Notify::flags.armed = true;
// call notify update a few times to ensure the message gets out
for (uint8_t i=0; i<=10; i++) {
notify.update();
}
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
gcs().send_text(MAV_SEVERITY_INFO, "Arming motors");
#endif
initial_armed_bearing = ahrs.yaw_sensor;
if (!ahrs.home_is_set()) {
// Reset EKF altitude if home hasn't been set yet (we use EKF altitude as substitute for alt above home)
// Always use absolute altitude for ROV
// ahrs.resetHeightDatum();
// Log_Write_Event(DATA_EKF_ALT_RESET);
} else if (ahrs.home_is_set() && !ahrs.home_is_locked()) {
// Reset home position if it has already been set before (but not locked)
if (!set_home_to_current_location(false)) {
// ignore this failure
}
}
// enable gps velocity based centrefugal force compensation
ahrs.set_correct_centrifugal(true);
hal.util->set_soft_armed(true);
// enable output to motors
enable_motor_output();
// finally actually arm the motors
motors.armed(true);
// log arming to dataflash
Log_Write_Event(DATA_ARMED);
// log flight mode in case it was changed while vehicle was disarmed
logger.Write_Mode(control_mode, control_mode_reason);
// reenable failsafe
mainloop_failsafe_enable();
// perf monitor ignores delay due to arming
scheduler.perf_info.ignore_this_loop();
// flag exiting this function
in_arm_motors = false;
// return success
return true;
}
// init_disarm_motors - disarm motors
void Sub::init_disarm_motors()
{
// return immediately if we are already disarmed
if (!motors.armed()) {
return;
}
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
gcs().send_text(MAV_SEVERITY_INFO, "Disarming motors");
#endif
// save compass offsets learned by the EKF if enabled
if (ahrs.use_compass() && compass.get_learn_type() == Compass::LEARN_EKF) {
for (uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
Vector3f magOffsets;
if (ahrs.getMagOffsets(i, magOffsets)) {
compass.set_and_save_offsets(i, magOffsets);
}
}
}
// log disarm to the dataflash
Log_Write_Event(DATA_DISARMED);
// send disarm command to motors
motors.armed(false);
// reset the mission
mission.reset();
AP::logger().set_vehicle_armed(false);
// disable gps velocity based centrefugal force compensation
ahrs.set_correct_centrifugal(false);
hal.util->set_soft_armed(false);
// clear input holds
clear_input_hold();
}
// motors_output - send output to motors library which will adjust and send to ESCs and servos
void Sub::motors_output()
{
// check if we are performing the motor test
if (ap.motor_test) {
verify_motor_test();
} else {
motors.set_interlock(true);
motors.output();
}
}
// Initialize new style motor test
// Perform checks to see if it is ok to begin the motor test
// Returns true if motor test has begun
bool Sub::init_motor_test()
{
uint32_t tnow = AP_HAL::millis();
// Ten second cooldown period required with no do_set_motor requests required
// after failure.
if (tnow < last_do_motor_test_fail_ms + 10000 && last_do_motor_test_fail_ms > 0) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "10 second cool down required");
}
// check if safety switch has been pushed
if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) {
gcs().send_text(MAV_SEVERITY_CRITICAL,"Disarm hardware safety switch before testing motors.");
return false;
}
// Make sure we are on the ground
if (!motors.armed()) {
gcs().send_text(MAV_SEVERITY_WARNING, "Arm motors before testing motors.");
return false;
}
enable_motor_output(); // set all motor outputs to zero
ap.motor_test = true;
return true;
}
// Verify new style motor test
// The motor test will fail if the interval between received
// MAV_CMD_DO_SET_MOTOR requests exceeds a timeout period
// Returns true if it is ok to proceed with new style motor test
bool Sub::verify_motor_test()
{
bool pass = true;
// Require at least 2 Hz incoming do_set_motor requests
if (AP_HAL::millis() > last_do_motor_test_ms + 500) {
gcs().send_text(MAV_SEVERITY_WARNING, "Motor test timed out!");
pass = false;
}
if (!pass) {
ap.motor_test = false;
motors.armed(false); // disarm motors
last_do_motor_test_fail_ms = AP_HAL::millis();
return false;
}
return true;
}
bool Sub::handle_do_motor_test(mavlink_command_long_t command) {
last_do_motor_test_ms = AP_HAL::millis();
// If we are not already testing motors, initialize test
if(!ap.motor_test) {
if (!init_motor_test()) {
gcs().send_text(MAV_SEVERITY_WARNING, "motor test initialization failed!");
return false; // init fail
}
}
float motor_number = command.param1;
float throttle_type = command.param2;
float throttle = command.param3;
// float timeout_s = command.param4; // not used
// float motor_count = command.param5; // not used
float test_type = command.param6;
if (!is_equal(test_type, (float)MOTOR_TEST_ORDER_BOARD)) {
gcs().send_text(MAV_SEVERITY_WARNING, "bad test type %0.2f", (double)test_type);
return false; // test type not supported here
}
if (is_equal(throttle_type, (float)MOTOR_TEST_THROTTLE_PILOT)) {
gcs().send_text(MAV_SEVERITY_WARNING, "bad throttle type %0.2f", (double)throttle_type);
return false; // throttle type not supported here
}
if (is_equal(throttle_type, (float)MOTOR_TEST_THROTTLE_PWM)) {
return motors.output_test_num(motor_number, throttle); // true if motor output is set
}
if (is_equal(throttle_type, (float)MOTOR_TEST_THROTTLE_PERCENT)) {
throttle = constrain_float(throttle, 0.0f, 100.0f);
throttle = channel_throttle->get_radio_min() + throttle / 100.0f * (channel_throttle->get_radio_max() - channel_throttle->get_radio_min());
return motors.output_test_num(motor_number, throttle); // true if motor output is set
}
return false;
}
// translate wpnav roll/pitch outputs to lateral/forward
void Sub::translate_wpnav_rp(float &lateral_out, float &forward_out)
{
// get roll and pitch targets in centidegrees
int32_t lateral = wp_nav.get_roll();
int32_t forward = -wp_nav.get_pitch(); // output is reversed
// constrain target forward/lateral values
// The outputs of wp_nav.get_roll and get_pitch should already be constrained to these values
lateral = constrain_int16(lateral, -aparm.angle_max, aparm.angle_max);
forward = constrain_int16(forward, -aparm.angle_max, aparm.angle_max);
// Normalize
lateral_out = (float)lateral/(float)aparm.angle_max;
forward_out = (float)forward/(float)aparm.angle_max;
}
// translate wpnav roll/pitch outputs to lateral/forward
void Sub::translate_circle_nav_rp(float &lateral_out, float &forward_out)
{
// get roll and pitch targets in centidegrees
int32_t lateral = circle_nav.get_roll();
int32_t forward = -circle_nav.get_pitch(); // output is reversed
// constrain target forward/lateral values
lateral = constrain_int16(lateral, -aparm.angle_max, aparm.angle_max);
forward = constrain_int16(forward, -aparm.angle_max, aparm.angle_max);
// Normalize
lateral_out = (float)lateral/(float)aparm.angle_max;
forward_out = (float)forward/(float)aparm.angle_max;
}
// translate pos_control roll/pitch outputs to lateral/forward
void Sub::translate_pos_control_rp(float &lateral_out, float &forward_out)
{
// get roll and pitch targets in centidegrees
int32_t lateral = pos_control.get_roll();
int32_t forward = -pos_control.get_pitch(); // output is reversed
// constrain target forward/lateral values
lateral = constrain_int16(lateral, -aparm.angle_max, aparm.angle_max);
forward = constrain_int16(forward, -aparm.angle_max, aparm.angle_max);
// Normalize
lateral_out = (float)lateral/(float)aparm.angle_max;
forward_out = (float)forward/(float)aparm.angle_max;
}