ardupilot/archive/ArducopterNG/Arducopter.h

750 lines
25 KiB
C

/*
www.ArduCopter.com - www.DIYDrones.com
Copyright (c) 2010. All rights reserved.
An Open Source Arduino based multicopter.
File : Arducopter.h
Version : v1.0, Aug 27, 2010
Author(s): ArduCopter Team
Ted Carancho (aeroquad), Jose Julio, Jordi Muñoz,
Jani Hirvinen, Ken McEwans, Roberto Navoni,
Sandro Benigno, Chris Anderson
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
* ************************************************************** *
ChangeLog:
* ************************************************************** *
TODO:
* ************************************************************** */
#include "WProgram.h"
/* ************************************************************** */
/* APM Hardware definitions */
#define LED_Yellow 36 // A_LED
#define LED_Green 37 // B_LED
#define LED_Red 35 // C_LED
#define A_LED_PIN LED_Green // For legacy issues
#define B_LED_PIN LED_Yellow
#define C_LED_PIN LED_Red
// Programmable hardware switches/relays
#define RELAY 47 // Onboard relay (PL2)
#define SW1 41 // Push button close to I2C port (PG0)
#define SW2 40 // Slide switch next to DIP switched (PG1)
// Due limitations of Arduino libraries, these pins needs to be controlled differently so no real PIN numbers
//#define DIP1 (PE7)
//#define DIP2 (PE6)
//#define DIP3 (PL6)
//#define DIP4 (PL/)
/* ************************************************************** */
/* Expansion PIN's that people can use for various things. */
// AN0 - 7 are located at edge of IMU PCB "above" pressure sensor and Expansion port
// AN0 - 5 are also located next to voltage dividers and sliding SW2 switch
// AN0 - 3 has 10kOhm resistor in serial, include 3.9kOhm to make it as voltage divider
// AN4 - 5 are direct GPIO pins from atmega1280 and they are the latest pins next to SW2 switch
// Look more ArduCopter Wiki for voltage dividers and other ports
#define AN0 54 // resistor, vdiv use, divider 1 closest to relay
#define AN1 55 // resistor, vdiv use, divider 2
#define AN2 56 // resistor, vdiv use, divider 3
#define AN3 57 // resistor, vdiv use, divider 4 closest to SW2
#define AN4 58 // direct GPIO pin, default as analog input, next to SW2 switch
#define AN5 59 // direct GPIO pin, default as analog input, next to SW2 switch
#define AN6 60 // direct GPIO pin, default as analog input, close to Pressure sensor, Expansion Ports
#define AN7 61 // direct GPIO pin, default as analog input, close to Pressure sensor, Expansion Ports
// AN8 - 15 are located at edge of IMU PCB "above" pressure sensor and Expansion port
// AN8 - 15 PINs are not connected anywhere, they are located as last 8 pins on edge of the board above Expansion Ports
// even pins (8,10,12,14) are at edge of board, Odd pins (9,11,13,15) are on inner row
#define AN8 62 // NC
#define AN9 63 // NC
#define AN10 64 // NC
#define AN11 65 // NC
#define AN12 66 // NC
#define AN13 67 // NC
#define AN14 68 // NC
#define AN15 69 // NC
// Defines for Voltage Dividers
#define VDIV1 AN0 // AN0 as default and primary
#define VDIV2 AN1 // AN1 for secondary battery
#define VDIV3 AN2
#define VDIV4 AN3
/* ************************************************** */
#define EE_LAST_LOG_PAGE 0xE00
#define EE_LAST_LOG_NUM 0xE02
#define EE_LOG_1_START 0xE04
/* ************************************************** */
/* Serial port definitions */
#define SERIAL0_BAUD 38400 // this is the main USB out 38400 57600 115200
#define SERIAL1_BAUD 115200
#define SERIAL2_BAUD 115200
#define SERIAL3_BAUD 115200
#ifdef SerXbee // Xbee/Telemetry port
//#define SerBau 115200 // Baud setting moved close next to port selection
#define SerPri Serial3.print
#define SerPrln Serial3.println
#define SerPriln Serial3.println
#define SerRea Serial3.read
#define SerAva Serial3.available
#define SerRea Serial3.read
#define SerFlu Serial3.flush
#define SerBeg Serial3.begin
#define SerP Serial3.printf_P
#define SerPor "FTDI"
#endif
#ifndef SerXbee // If we don't have SerXbee set, it means we have are using Serial0
//#define SerBau 115200 // Baud setting moved close next to port selection
#define SerPri Serial.print
#define SerPrln Serial.println
#define SerPriln Serial.println
#define SerRea Serial.read
#define SerAva Serial.available
#define SerRea Serial.read
#define SerFlu Serial.flush
#define SerBeg Serial.begin
#define SerP Serial.printf_P
#define SerPor "Telemetry"
#endif
/* *********************************************** */
// IMU definitions
// Sensor: GYROX, GYROY, GYROZ, ACCELX, ACCELY, ACCELZ
uint8_t sensors[6] = {1, 2, 0, 4, 5, 6}; // For ArduPilot Mega Sensor Shield Hardware
// Sensor: GYROX, GYROY, GYROZ, ACCELX, ACCELY, ACCELZ, MAGX, MAGY, MAGZ
int SENSOR_SIGN[]={
1, -1, -1, -1, 1, 1, -1, -1, -1};
//{-1,1,-1,1,-1,1,-1,-1,-1};
/* APM Hardware definitions, END */
/* *********************************************** */
/* General definitions */
#define TRUE 1
#define FALSE 0
#define ON 1
#define OFF 0
// ADC : Voltage reference 3.3v / 12bits(4096 steps) => 0.8mV/ADC step
// ADXL335 Sensitivity(from datasheet) => 330mV/g, 0.8mV/ADC step => 330/0.8 = 412
// Tested value : 408
#define GRAVITY 408 //this equivalent to 1G in the raw data coming from the accelerometer
#define Accel_Scale(x) x*(GRAVITY/9.81)//Scaling the raw data of the accel to actual acceleration in meters for seconds square
#define ROLL_DEF 0 // Level values for roll, used to calculate roll_acc_offset
#define PITCH_DEF 0 // Level values for pitch, used to calculate pitch_acc_offset
#define Z_DEF GRAVITY // Stable level value for Z, used to calculate z_acc_offset, same as GRAVITY
#define ToRad(x) radians(x) // *pi/180
#define ToDeg(x) degrees(x) // *180/pi
// IDG500 Sensitivity (from datasheet) => 2.0mV/º/s, 0.8mV/ADC step => 0.8/3.33 = 0.4
// Tested values :
#define Gyro_Gain_X 0.4 //X axis Gyro gain
#define Gyro_Gain_Y 0.4 //Y axis Gyro gain
#define Gyro_Gain_Z 0.4 //Z axis Gyro gain
#define Gyro_Scaled_X(x) x*ToRad(Gyro_Gain_X) //Return the scaled ADC raw data of the gyro in radians for second
#define Gyro_Scaled_Y(x) x*ToRad(Gyro_Gain_Y) //Return the scaled ADC raw data of the gyro in radians for second
#define Gyro_Scaled_Z(x) x*ToRad(Gyro_Gain_Z) //Return the scaled ADC raw data of the gyro in radians for second
/*For debugging purposes*/
#define OUTPUTMODE 1 //If value = 1 will print the corrected data, 0 will print uncorrected data of the gyros (with drift), 2 Accel only data
// Altitude control methods
#define ALTITUDE_CONTROL_NONE 0
#define ALTITUDE_CONTROL_BARO 1
#define ALTITUDE_CONTROL_SONAR 2
#define SONAR_STATUS_BAD 0
#define SONAR_STATUS_OK 1
int AN[6]; //array that store the 6 ADC channels
int AN_OFFSET[6]; //Array that store the Offset of the gyros and accelerometers
int gyro_temp;
float G_Dt=0.02; // Integration time for the gyros (DCM algorithm)
float Accel_Vector[3]= {0, 0, 0}; // Store the acceleration in a vector
float Accel_Vector_unfiltered[3]= {0, 0, 0}; // Store the acceleration in a vector
float Gyro_Vector[3]= {0, 0, 0}; // Store the gyros rutn rate in a vector
float Omega_Vector[3]= {0, 0, 0}; // Corrected Gyro_Vector data
float Omega_P[3]= {0, 0, 0}; // Omega Proportional correction
float Omega_I[3]= {0, 0, 0}; // Omega Integrator
float Omega[3]= {0, 0, 0};
//float Accel_magnitude;
//float Accel_weight;
float errorRollPitch[3] = {0, 0, 0};
float errorYaw[3] = {0, 0, 0};
float errorCourse = 0;
float COGX = 0; // Course overground X axis
float COGY = 1; // Course overground Y axis
float roll = 0;
float pitch = 0;
float yaw = 0;
unsigned int counter = 0;
float DCM_Matrix[3][3]= {
{ 1,0,0 },
{ 0,1,0 },
{ 0,0,1 }};
float Update_Matrix[3][3]={
{ 0,1,2 },
{ 3,4,5 },
{ 6,7,8 }}; //Gyros here
float Temporary_Matrix[3][3]={
{ 0,0,0 },
{ 0,0,0 },
{ 0,0,0 }};
// GPS variables
float speed_3d=0;
int GPS_ground_speed=0;
// Main timers
long timer=0;
long timer_old;
long GPS_timer;
long GPS_timer_old;
float GPS_Dt=0.2; // GPS Dt
// Attitude control variables
float command_rx_roll=0; // User commands
float command_rx_roll_old;
float command_rx_roll_diff;
float command_rx_pitch=0;
float command_rx_pitch_old;
float command_rx_pitch_diff;
float command_rx_yaw=0;
float command_rx_yaw_diff;
int control_roll; // PID control results
int control_pitch;
int control_yaw;
//float K_aux;
boolean SW_DIP1; // closest to SW2 slider switch
boolean SW_DIP2;
boolean SW_DIP3;
boolean SW_DIP4; // closest to header pins
boolean BATTLOW = FALSE; // We should be always FALSE, if we are TRUE.. it means destruction is close,
// shut down all secondary systems that uses our precious mAh's
// Attitude PID controls
float roll_I=0;
float roll_D;
float err_roll;
float pitch_I=0;
float pitch_D;
float err_pitch;
float yaw_I=0;
float yaw_D;
float err_yaw;
float heading_I=0; // used only by heli
//Position control
long target_longitude;
long target_lattitude;
byte target_position;
float gps_err_roll;
float gps_err_roll_old;
float gps_roll_D;
float gps_roll_I=0;
float gps_err_pitch;
float gps_err_pitch_old;
float gps_pitch_D;
float gps_pitch_I=0;
float command_gps_roll;
float command_gps_pitch;
float gps_err_lat;
float gps_err_lat_old;
float gps_lat_D;
float gps_lat_I=0;
float gps_err_lon;
float gps_err_lon_old;
float gps_lon_D;
float gps_lon_I=0;
// object avoidance
float RF_roll_I=0;
float RF_pitch_I=0;
float RF_throttle_I=0;
float command_RF_roll = 0;
float command_RF_pitch = 0;
float command_RF_throttle = 0;
byte RF_new_data = 0;
//Altitude control variables
int altitude_control_method = ALTITUDE_CONTROL_NONE; // switch to indicate whether we are using Sonar or Barometer
int initial_throttle; // the base throttle value used for the control PIDs. captured when user switched into autopilot
int err_altitude;
int err_altitude_old;
int ch_throttle_altitude_hold; // throttle value passed to motor_output function
//Barometer Sensor variables
long target_baro_altitude; // target altitude in cm
long press_baro_altitude = 0;
byte baro_new_data = 0;
float baro_altitude_I;
float baro_altitude_D;
// Sonar Sensor variables
int target_sonar_altitude; // target altitude in cm
long press_sonar_altitude = 0;
int sonar_status = SONAR_STATUS_BAD; // indicates if sonar values can be trusted
int sonar_valid_count = 0; // from -5 ~ 5 -ve = number of invalid readings, +ve = number of valid readings (in a row)
long sonar_threshold; // threshold at which we should transfer control to barometer (normally 80% of sonar's max distance)
byte sonar_new_data = 0;
float sonar_altitude_I;
float sonar_altitude_D;
#define BATTERY_VOLTAGE(x) (x*(INPUT_VOLTAGE/1024.0))*VOLT_DIV_RATIO
#define AIRSPEED_PIN 1 // Need to correct value
#define BATTERY_PIN 1 // Need to correct value
#define RELAY_PIN 47
#define LOW_VOLTAGE 11.4 // Pack voltage at which to trigger alarm
#define INPUT_VOLTAGE 5.2 // (Volts) voltage your power regulator is feeding your ArduPilot to have an accurate pressure and battery
// level readings. (you need a multimeter to measure and set this of course)
#define VOLT_DIV_RATIO 1.0 // Voltage divider ratio set with thru-hole resistor (see manual)
float battery_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage, initialized above threshold for filter
// AP_mode : 1=> Position hold 2=>Stabilization assist mode (normal mode)
byte AP_mode = 2;
//byte cam_mode = 0; // moved to general settings, 31-10-10, jp
// Mode LED timers and variables, used to blink LED_Green
byte gled_status = HIGH;
long gled_timer;
int gled_speed;
long cli_timer;
byte cli_status = LOW;
byte cli_step;
long t0;
int num_iter;
float aux_debug;
// Radio definitions
int roll_mid;
int pitch_mid;
int yaw_mid;
int Neutro_yaw;
int ch_roll;
int ch_pitch;
int ch_throttle;
int ch_yaw;
int ch_aux;
int ch_aux2;
int frontMotor;
int backMotor;
int leftMotor;
int rightMotor;
byte motorArmed = 0; // 0 = motors disarmed, 1 = motors armed
byte motorSafety = 1; // 0 = safety off, 1 = on. When On, sudden increases in throttle not allowed
int minThrottle = 0;
boolean flightOrientation = 0; // 0 = +, 1 = x this is read from DIP1 switch during system bootup
// Serial communication
char queryType;
long tlmTimer = 0;
// Arming/Disarming
uint8_t Arming_counter=0;
uint8_t Disarming_counter=0;
uint8_t Safety_counter=0;
// Performance monitoring
// ----------------------
long perf_mon_timer = 0;
float imu_health = 0; //Metric based on accel gain deweighting
int G_Dt_max = 0; //Max main loop cycle time in milliseconds
byte gyro_sat_count = 0;
byte adc_constraints = 0;
byte renorm_sqrt_count = 0;
byte renorm_blowup_count = 0;
int gps_fix_count = 0;
byte gcs_messages_sent = 0;
// System Timers
// --------------
unsigned long fast_loopTimer = 0; // Time in miliseconds of main control loop
unsigned long medium_loopTimer = 0; // Time in miliseconds of navigation control loop
byte medium_loopCounter = 0; // Counters for branching from main control loop to slower loops
byte slow_loopCounter = 0; //
unsigned long deltaMiliSeconds = 0; // Delta Time in miliseconds
unsigned long dTnav = 0; // Delta Time in milliseconds for navigation computations
int mainLoop_count = 0;
unsigned long elapsedTime = 0; // for doing custom events
//unsigned int GPS_timer = 0;
/* ******************************************************** */
/* Logging Stuff - These should be 1 (on) or 0 (off) */
#define LOG_ATTITUDE 1 // Logs basic attitude info
#define LOG_GPS 1 // Logs GPS info
#define LOG_PM 1 // Logs IMU performance monitoring info£
#define LOG_CTUN 0 // Logs control loop tuning info
#define LOG_NTUN 0 // Logs navigation loop tuning info
#define LOG_MODE 1 // Logs mode changes
#define LOG_RAW 0 // Logs raw accel/gyro data
#define LOG_SEN 1 // Logs sensor data
#define LOG_RANGEFINDER 0 // Logs data from range finders
// GCS Message ID's
#define MSG_ACKNOWLEDGE 0x00
#define MSG_HEARTBEAT 0x01
#define MSG_ATTITUDE 0x02
#define MSG_LOCATION 0x03
#define MSG_PRESSURE 0x04
#define MSG_STATUS_TEXT 0x05
#define MSG_PERF_REPORT 0x06
#define MSG_COMMAND 0x22
#define MSG_VALUE 0x32
#define MSG_PID 0x42
#define MSG_TRIMS 0x50
#define MSG_MINS 0x51
#define MSG_MAXS 0x52
#define MSG_IMU_OUT 0x53
#define SEVERITY_LOW 1
#define SEVERITY_MEDIUM 2
#define SEVERITY_HIGH 3
#define SEVERITY_CRITICAL 4
// Debug options - set only one of these options to 1 at a time, set the others to 0
#define DEBUG_SUBSYSTEM 0 // 0 = no debug
// 1 = Debug the Radio input
// 2 = Debug the Servo output
// 3 = Debug the Sensor input
// 4 = Debug the GPS input
// 5 = Debug the GPS input - RAW HEX OUTPUT
// 6 = Debug the IMU
// 7 = Debug the Control Switch
// 8 = Debug the Servo DIP switches
// 9 = Debug the Relay out
// 10 = Debug the Magnetometer
// 11 = Debug the ABS pressure sensor
// 12 = Debug the stored waypoints
// 13 = Debug the Throttle
// 14 = Debug the Radio Min Max
// 15 = Debug the EEPROM - Hex Dump
#define DEBUG_LEVEL SEVERITY_LOW
// SEVERITY_LOW
// SEVERITY_MEDIUM
// SEVERITY_HIGH
// SEVERITY_CRITICAL
// Different GPS devices,
#define GPSDEV_DIYMTEK 1
#define GPSDEV_DIYUBLOX 2
#define GPSDEV_FPUBLOX 3
#define GPSDEV_IMU 4
#define GPSDEV_NMEA 5
// Radio Modes, mainly just Mode2
#define MODE1 1
#define MODE2 2
#define MODE3 3
#define MODE4 4
// Frame models
#define QUAD 0 // Normal Quad
#define QUADCOAX 1 // Quad with double motors as coax
#define HEXA 2 // Hexa
#define HEXARADIAL 3
#define HEXACOAX 4
#define OCTO 5
#define PWM 0
#define I2C 1
#define UART 2
// Following variables stored in EEPROM
float KP_QUAD_ROLL;
float KI_QUAD_ROLL;
float STABLE_MODE_KP_RATE_ROLL;
float KP_QUAD_PITCH;
float KI_QUAD_PITCH;
float STABLE_MODE_KP_RATE_PITCH;
float KP_QUAD_YAW;
float KI_QUAD_YAW;
float STABLE_MODE_KP_RATE_YAW;
float STABLE_MODE_KP_RATE; //NOT USED NOW
float KP_GPS_ROLL;
float KI_GPS_ROLL;
float KD_GPS_ROLL;
float KP_GPS_PITCH;
float KI_GPS_PITCH;
float KD_GPS_PITCH;
float GPS_MAX_ANGLE;
float KP_ALTITUDE;
float KI_ALTITUDE;
float KD_ALTITUDE;
int acc_offset_x;
int acc_offset_y;
int acc_offset_z;
int gyro_offset_roll;
int gyro_offset_pitch;
int gyro_offset_yaw;
float Kp_ROLLPITCH;
float Ki_ROLLPITCH;
float Kp_YAW;
float Ki_YAW;
float GEOG_CORRECTION_FACTOR=0;
int MAGNETOMETER;
float Kp_RateRoll;
float Ki_RateRoll;
float Kd_RateRoll;
float Kp_RatePitch;
float Ki_RatePitch;
float Kd_RatePitch;
float Kp_RateYaw;
float Ki_RateYaw;
float Kd_RateYaw;
float xmitFactor;
float ch_roll_slope = 1;
float ch_pitch_slope = 1;
float ch_throttle_slope = 1;
float ch_yaw_slope = 1;
float ch_aux_slope = 1;
float ch_aux2_slope = 1;
float ch_roll_offset = 0;
float ch_pitch_offset = 0;
float ch_throttle_offset = 0;
float ch_yaw_offset = 0;
float ch_aux_offset = 0;
float ch_aux2_offset = 0;
byte cam_mode = 0;
byte mag_orientation = 0; // mag variables, reserved for future use, 31-10-10, jp
float mag_declination = 0.0;
float mag_offset_x = 0; // is int enough for offsets.. checkit, 31-10-10, jp
float mag_offset_y = 0;
float mag_offset_z = 0;
int MIN_THROTTLE;
//float eeprom_counter; // reserved for eeprom write counter, 31-10-10, jp
//float eeprom_checker; // reserved for eeprom checksums, 01-11-10, jp
// obstacle avoidance
float KP_RF_ROLL;
float KD_RF_ROLL;
float KI_RF_ROLL;
float KP_RF_PITCH;
float KD_RF_PITCH;
float KI_RF_PITCH;
float RF_MAX_ANGLE; // Maximun command roll and pitch angle from obstacle avoiding control
float RF_SAFETY_ZONE; // object avoidance will move away from objects within this distance (in cm)
// sonar for altitude hold
float KP_SONAR_ALTITUDE;
float KI_SONAR_ALTITUDE;
float KD_SONAR_ALTITUDE;
// This function call contains the default values that are set to the ArduCopter
// when a "Default EEPROM Value" command is sent through serial interface
void defaultUserConfig() {
KP_QUAD_ROLL = 4.0;
KI_QUAD_ROLL = 0.15;
STABLE_MODE_KP_RATE_ROLL = 1.2;
KP_QUAD_PITCH = 4.0;
KI_QUAD_PITCH = 0.15;
STABLE_MODE_KP_RATE_PITCH = 1.2;
KP_QUAD_YAW = 3.0;
KI_QUAD_YAW = 0.15;
STABLE_MODE_KP_RATE_YAW = 2.4;
STABLE_MODE_KP_RATE = 0.2; // NOT USED NOW
KP_GPS_ROLL = 0.012; //0.013;
KI_GPS_ROLL = 0.001; //0.005;
KD_GPS_ROLL = 0.015; //0.012;
KP_GPS_PITCH = 0.010; //0.013;
KI_GPS_PITCH = 0.001; //0.005;
KD_GPS_PITCH = 0.015; //0.01;
GPS_MAX_ANGLE = 22;
KP_ALTITUDE = 0.08;
KI_ALTITUDE = 0.05;
KD_ALTITUDE = 0.06;
acc_offset_x = 2048;
acc_offset_y = 2048;
acc_offset_z = 2048;
gyro_offset_roll = 1659;
gyro_offset_pitch = 1650;
gyro_offset_yaw = 1650;
Kp_ROLLPITCH = 0.0014;
Ki_ROLLPITCH = 0.00000015;
Kp_YAW = 1.0;
Ki_YAW = 0.00002;
GEOG_CORRECTION_FACTOR = 0.0; // will be automatically calculated
MAGNETOMETER = 0;
Kp_RateRoll = 1.95;
Ki_RateRoll = 0.0;
Kd_RateRoll = 0.0;
Kp_RatePitch = 1.95;
Ki_RatePitch = 0.0;
Kd_RatePitch = 0.0;
Kp_RateYaw = 3.2;
Ki_RateYaw = 0.0;
Kd_RateYaw = 0.0;
xmitFactor = 0.32;
roll_mid = 1500;
pitch_mid = 1500;
yaw_mid = 1500;
ch_roll_slope = 1;
ch_pitch_slope = 1;
ch_throttle_slope = 1;
ch_yaw_slope = 1;
ch_aux_slope = 1;
ch_aux2_slope = 1;
ch_roll_offset = 0;
ch_pitch_offset = 0;
ch_throttle_offset = 0;
ch_yaw_offset = 0;
ch_aux_offset = 0;
ch_aux2_offset = 0;
cam_mode = 0;
mag_orientation = 0; // reserved for future, 31-10-10, jp
mag_declination = 0.0;
mag_offset_x = 0;
mag_offset_y = 0;
mag_offset_z = 0;
MIN_THROTTLE = 1040; // used to be #define but now in EEPROM
KP_RF_ROLL = 0.10;
KI_RF_ROLL = 0.00;
KD_RF_ROLL = 0.03;
KP_RF_PITCH = 0.10;
KI_RF_PITCH = 0.00;
KD_RF_PITCH = 0.03;
RF_MAX_ANGLE = 10.0;
RF_SAFETY_ZONE = 120.0; // object avoidance will avoid objects within this range (in cm)
KP_SONAR_ALTITUDE = 0.8;
KI_SONAR_ALTITUDE = 0.3;
KD_SONAR_ALTITUDE = 0.7;
}
// EEPROM storage addresses
#define KP_QUAD_ROLL_ADR 0
#define KI_QUAD_ROLL_ADR 8
#define STABLE_MODE_KP_RATE_ROLL_ADR 4
#define KP_QUAD_PITCH_ADR 12
#define KI_QUAD_PITCH_ADR 20
#define STABLE_MODE_KP_RATE_PITCH_ADR 16
#define KP_QUAD_YAW_ADR 24
#define KI_QUAD_YAW_ADR 32
#define STABLE_MODE_KP_RATE_YAW_ADR 28
#define STABLE_MODE_KP_RATE_ADR 36 // NOT USED NOW
#define KP_GPS_ROLL_ADR 40
#define KI_GPS_ROLL_ADR 48
#define KD_GPS_ROLL_ADR 44
#define KP_GPS_PITCH_ADR 52
#define KI_GPS_PITCH_ADR 60
#define KD_GPS_PITCH_ADR 56
#define GPS_MAX_ANGLE_ADR 64
#define KP_ALTITUDE_ADR 68
#define KI_ALTITUDE_ADR 76
#define KD_ALTITUDE_ADR 72
#define acc_offset_x_ADR 80
#define acc_offset_y_ADR 84
#define acc_offset_z_ADR 88
#define gyro_offset_roll_ADR 92
#define gyro_offset_pitch_ADR 96
#define gyro_offset_yaw_ADR 100
#define Kp_ROLLPITCH_ADR 104
#define Ki_ROLLPITCH_ADR 108
#define Kp_YAW_ADR 112
#define Ki_YAW_ADR 116
#define GEOG_CORRECTION_FACTOR_ADR 120
#define MAGNETOMETER_ADR 124
#define XMITFACTOR_ADR 128
#define KP_RATEROLL_ADR 132
#define KI_RATEROLL_ADR 136
#define KD_RATEROLL_ADR 140
#define KP_RATEPITCH_ADR 144
#define KI_RATEPITCH_ADR 148
#define KD_RATEPITCH_ADR 152
#define KP_RATEYAW_ADR 156
#define KI_RATEYAW_ADR 160
#define KD_RATEYAW_ADR 164
#define CHROLL_MID 168
#define CHPITCH_MID 172
#define CHYAW_MID 176
#define ch_roll_slope_ADR 180
#define ch_pitch_slope_ADR 184
#define ch_throttle_slope_ADR 188
#define ch_yaw_slope_ADR 192
#define ch_aux_slope_ADR 196
#define ch_aux2_slope_ADR 200
#define ch_roll_offset_ADR 204
#define ch_pitch_offset_ADR 208
#define ch_throttle_offset_ADR 212
#define ch_yaw_offset_ADR 216
#define ch_aux_offset_ADR 220
#define ch_aux2_offset_ADR 224
#define cam_mode_ADR 228
#define mag_orientation_ADR 232 // reserved for future, 31-10-10, jp
#define mag_declination_ADR 236 // reserved for future, 31-10-10, jp
#define mag_offset_x_ADR 240
#define mag_offset_y_ADR 244
#define mag_offset_z_ADR 248
#define MIN_THROTTLE_ADR 252
#define KP_RF_ROLL_ADR 256
#define KI_RF_ROLL_ADR 260
#define KD_RF_ROLL_ADR 264
#define KP_RF_PITCH_ADR 268
#define KI_RF_PITCH_ADR 272
#define KD_RF_PITCH_ADR 276
#define RF_MAX_ANGLE_ADR 280
#define RF_SAFETY_ZONE_ADR 284
#define KP_SONAR_ALTITUDE_ADR 288
#define KI_SONAR_ALTITUDE_ADR 292
#define KD_SONAR_ALTITUDE_ADR 296
//#define eeprom_counter_ADR 238 // hmm should i move these?!? , 31-10-10, jp
//#define eeprom_checker_ADR 240 // this too... , 31-10-10, jp
// end of file