ardupilot/libraries/AP_Proximity/AP_Proximity.h
2024-03-14 11:42:43 +11:00

250 lines
8.0 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "AP_Proximity_config.h"
#if HAL_PROXIMITY_ENABLED
#include <AP_Common/AP_Common.h>
#include <AP_Param/AP_Param.h>
#include <AP_Math/AP_Math.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
#include "AP_Proximity_Params.h"
#include "AP_Proximity_Boundary_3D.h"
#include <AP_Vehicle/AP_Vehicle_Type.h>
#include <AP_HAL/Semaphores.h>
#define PROXIMITY_MAX_INSTANCES 3 // Maximum number of proximity sensor instances available on this platform
#define PROXIMITY_SENSOR_ID_START 10
class AP_Proximity_Backend;
class AP_Proximity
{
public:
friend class AP_Proximity_Backend;
friend class AP_Proximity_DroneCAN;
AP_Proximity();
/* Do not allow copies */
CLASS_NO_COPY(AP_Proximity);
// Proximity driver types
enum class Type {
None = 0,
// 1 was SF40C_v09
#if AP_PROXIMITY_MAV_ENABLED
MAV = 2,
#endif
#if AP_PROXIMITY_TERARANGERTOWER_ENABLED
TRTOWER = 3,
#endif
#if AP_PROXIMITY_RANGEFINDER_ENABLED
RangeFinder = 4,
#endif
#if AP_PROXIMITY_RPLIDARA2_ENABLED
RPLidarA2 = 5,
#endif
#if AP_PROXIMITY_TERARANGERTOWEREVO_ENABLED
TRTOWEREVO = 6,
#endif
#if AP_PROXIMITY_LIGHTWARE_SF40C_ENABLED
SF40C = 7,
#endif
#if AP_PROXIMITY_LIGHTWARE_SF45B_ENABLED
SF45B = 8,
#endif
#if AP_PROXIMITY_SITL_ENABLED
SITL = 10,
#endif
#if AP_PROXIMITY_AIRSIMSITL_ENABLED
AirSimSITL = 12,
#endif
#if AP_PROXIMITY_CYGBOT_ENABLED
CYGBOT_D1 = 13,
#endif
#if AP_PROXIMITY_DRONECAN_ENABLED
DroneCAN = 14,
#endif
#if AP_PROXIMITY_SCRIPTING_ENABLED
Scripting = 15,
#endif
#if AP_PROXIMITY_LD06_ENABLED
LD06 = 16,
#endif
#if AP_PROXIMITY_MR72_ENABLED
MR72 = 17,
#endif
};
enum class Status {
NotConnected = 0,
NoData,
Good
};
// detect and initialise any available proximity sensors
void init();
// update state of all proximity sensors. Should be called at high rate from main loop
void update();
// return the number of proximity sensor backends
uint8_t num_sensors() const { return num_instances; }
// return sensor type of a given instance
Type get_type(uint8_t instance) const;
// return distance filter frequency
float get_filter_freq() const { return _filt_freq; }
// return sensor health
Status get_instance_status(uint8_t instance) const;
// Returns status of first good sensor. If no good sensor found, returns status of last instance sensor
Status get_status() const;
// prearm checks
bool prearm_healthy(char *failure_msg, const uint8_t failure_msg_len) const;
// get maximum and minimum distances (in meters)
float distance_max() const;
float distance_min() const;
//
// 3D boundary related methods
//
// get distances in PROXIMITY_MAX_DIRECTION directions. used for sending distances to ground station
bool get_horizontal_distances(Proximity_Distance_Array &prx_dist_array) const;
// get total number of obstacles, used in GPS based Simple Avoidance
uint8_t get_obstacle_count() const;
// get vector to obstacle based on obstacle_num passed, used in GPS based Simple Avoidance
bool get_obstacle(uint8_t obstacle_num, Vector3f& vec_to_obstacle) const;
// returns shortest distance to "obstacle_num" obstacle, from a line segment formed between "seg_start" and "seg_end"
// returns FLT_MAX if it's an invalid instance.
bool closest_point_from_segment_to_obstacle(uint8_t obstacle_num, const Vector3f& seg_start, const Vector3f& seg_end, Vector3f& closest_point) const;
// get distance and angle to closest object (used for pre-arm check)
// returns true on success, false if no valid readings
bool get_closest_object(float& angle_deg, float &distance) const;
// get number of objects
uint8_t get_object_count() const;
bool get_object_angle_and_distance(uint8_t object_number, float& angle_deg, float &distance) const;
// get obstacle pitch and angle for a particular obstacle num
bool get_obstacle_info(uint8_t obstacle_num, float &angle_deg, float &pitch, float &distance) const;
//
// mavlink related methods
//
// handle mavlink messages
void handle_msg(const mavlink_message_t &msg);
// methods for mavlink SYS_STATUS message (send_sys_status)
bool sensor_present() const;
bool sensor_enabled() const;
bool sensor_failed() const;
//
// support for upwards and downwards facing sensors
//
// get distance upwards in meters. returns true on success
bool get_upward_distance(uint8_t instance, float &distance) const;
bool get_upward_distance(float &distance) const;
// set alt as read from downward facing rangefinder. Tilt is already adjusted for
void set_rangefinder_alt(bool use, bool healthy, float alt_cm);
// method called by vehicle to have AP_Proximity write onboard log messages
void log();
// The Proximity_State structure is filled in by the backend driver
struct Proximity_State {
uint8_t instance; // the instance number of this proximity sensor
Status status; // sensor status
const struct AP_Param::GroupInfo *var_info; // stores extra parameter information for the sensor (if it exists)
};
static const struct AP_Param::GroupInfo *backend_var_info[PROXIMITY_MAX_INSTANCES];
// parameter list
static const struct AP_Param::GroupInfo var_info[];
static AP_Proximity *get_singleton(void) { return _singleton; };
// return backend object for Lua scripting
AP_Proximity_Backend *get_backend(uint8_t id) const;
// 3D boundary
AP_Proximity_Boundary_3D boundary;
// Check if Obstacle defined by body-frame yaw and pitch is near ground
bool check_obstacle_near_ground(float pitch, float yaw, float distance) const;
// get proximity address (for AP_Periph CAN)
uint8_t get_address(uint8_t id) const {
return id >= PROXIMITY_MAX_INSTANCES? 0 : uint8_t(params[id].address.get());
}
protected:
// parameters for backends
AP_Proximity_Params params[PROXIMITY_MAX_INSTANCES];
private:
static AP_Proximity *_singleton;
Proximity_State state[PROXIMITY_MAX_INSTANCES];
AP_Proximity_Backend *drivers[PROXIMITY_MAX_INSTANCES];
uint8_t num_instances;
// return true if the given instance exists
bool valid_instance(uint8_t i) const;
// parameters for all instances
AP_Int8 _raw_log_enable; // enable logging raw distances
AP_Int8 _ign_gnd_enable; // true if land detection should be enabled
AP_Float _filt_freq; // cutoff frequency for low pass filter
AP_Float _alt_min; // Minimum altitude -in meters- below which proximity should not work.
// get alt from rangefinder in meters. This reading is corrected for vehicle tilt
bool get_rangefinder_alt(float &alt_m) const;
struct RangeFinderState {
bool use; // true if enabled
bool healthy; // true if we can trust the altitude from the rangefinder
int16_t alt_cm; // tilt compensated altitude (in cm) from rangefinder
uint32_t last_downward_update_ms; // last update ms
} _rangefinder_state;
HAL_Semaphore detect_sem;
};
namespace AP {
AP_Proximity *proximity();
};
#endif // HAL_PROXIMITY_ENABLED