mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-14 04:38:30 -04:00
f9fa2565c4
This is also from the older version of the generator. Note that as documented, some of the equations have been removed and rearranged slightly as it is assumed their terms are zero. Additionally, the result is taken as the sum of the diagonal entries of the matrix.
696 lines
28 KiB
Python
Executable File
696 lines
28 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copied from https://github.com/PX4/ecl/commit/264c8c4e8681704e4719d0a03b848df8617c0863
|
|
# and modified for ArduPilot
|
|
# this file was originally from ArduPilot commit f81abd73d6bf73dd1cd1d009f355f6f8c025325b
|
|
from sympy import __version__ as __sympy__version__
|
|
from sympy import *
|
|
from code_gen import *
|
|
import numpy as np
|
|
|
|
# version required to generate the exact code currently present in ArduPilot.
|
|
# sympy version upgrades must ensure generated code doesn't pose any problems
|
|
# and must not have any other changes to the generator.
|
|
assert __sympy__version__ == "1.9", "expected sympy version 1.9, not "+__sympy__version__
|
|
|
|
# q: quaternion describing rotation from frame 1 to frame 2
|
|
# returns a rotation matrix derived form q which describes the same
|
|
# rotation
|
|
def quat2Rot(q):
|
|
q0 = q[0]
|
|
q1 = q[1]
|
|
q2 = q[2]
|
|
q3 = q[3]
|
|
|
|
Rot = Matrix([[q0**2 + q1**2 - q2**2 - q3**2, 2*(q1*q2 - q0*q3), 2*(q1*q3 + q0*q2)],
|
|
[2*(q1*q2 + q0*q3), q0**2 - q1**2 + q2**2 - q3**2, 2*(q2*q3 - q0*q1)],
|
|
[2*(q1*q3-q0*q2), 2*(q2*q3 + q0*q1), q0**2 - q1**2 - q2**2 + q3**2]])
|
|
|
|
return Rot
|
|
|
|
def create_cov_matrix(i, j):
|
|
if j >= i:
|
|
# return Symbol("P(" + str(i) + "," + str(j) + ")", real=True)
|
|
# legacy array format
|
|
return Symbol("P[" + str(i) + "][" + str(j) + "]", real=True)
|
|
else:
|
|
return 0
|
|
|
|
def create_yaw_estimator_cov_matrix():
|
|
# define a symbolic covariance matrix
|
|
P = Matrix(3,3,create_cov_matrix)
|
|
|
|
for index in range(3):
|
|
for j in range(3):
|
|
if index > j:
|
|
P[index,j] = P[j,index]
|
|
|
|
return P
|
|
|
|
def create_Tbs_matrix(i, j):
|
|
# return Symbol("Tbs(" + str(i) + "," + str(j) + ")", real=True)
|
|
# legacy array format
|
|
return Symbol("Tbs[" + str(i) + "][" + str(j) + "]", real=True)
|
|
|
|
def quat_mult(p,q):
|
|
r = Matrix([p[0] * q[0] - p[1] * q[1] - p[2] * q[2] - p[3] * q[3],
|
|
p[0] * q[1] + p[1] * q[0] + p[2] * q[3] - p[3] * q[2],
|
|
p[0] * q[2] - p[1] * q[3] + p[2] * q[0] + p[3] * q[1],
|
|
p[0] * q[3] + p[1] * q[2] - p[2] * q[1] + p[3] * q[0]])
|
|
|
|
return r
|
|
|
|
def create_symmetric_cov_matrix(n):
|
|
# define a symbolic covariance matrix
|
|
P = Matrix(n,n,create_cov_matrix)
|
|
|
|
for index in range(n):
|
|
for j in range(n):
|
|
if index > j:
|
|
P[index,j] = P[j,index]
|
|
|
|
return P
|
|
|
|
# generate equations for observation vector innovation variances
|
|
def generate_observation_vector_innovation_variances(P,state,observation,variance,n_obs):
|
|
H = observation.jacobian(state)
|
|
innovation_variance = zeros(n_obs,1)
|
|
for index in range(n_obs):
|
|
H[index,:] = Matrix([observation[index]]).jacobian(state)
|
|
innovation_variance[index] = H[index,:] * P * H[index,:].T + Matrix([variance])
|
|
|
|
IV_simple = cse(innovation_variance, symbols("IV0:1000"), optimizations='basic')
|
|
|
|
return IV_simple
|
|
|
|
# generate equations for observation Jacobian and Kalman gain
|
|
def generate_observation_equations(P,state,observation,variance,varname="HK"):
|
|
H = Matrix([observation]).jacobian(state)
|
|
innov_var = H * P * H.T + Matrix([variance])
|
|
assert(innov_var.shape[0] == 1)
|
|
assert(innov_var.shape[1] == 1)
|
|
K = P * H.T / innov_var[0,0]
|
|
extension="0:1000"
|
|
var_string = varname+extension
|
|
HK_simple = cse(Matrix([H.transpose(), K]), symbols(var_string), optimizations='basic')
|
|
|
|
return HK_simple
|
|
|
|
# generate equations for observation vector Jacobian and Kalman gain
|
|
# n_obs is the vector dimension and must be >= 2
|
|
def generate_observation_vector_equations(P,state,observation,variance,n_obs):
|
|
K = zeros(24,n_obs)
|
|
H = observation.jacobian(state)
|
|
HK = zeros(n_obs*48,1)
|
|
for index in range(n_obs):
|
|
H[index,:] = Matrix([observation[index]]).jacobian(state)
|
|
innov_var = H[index,:] * P * H[index,:].T + Matrix([variance])
|
|
assert(innov_var.shape[0] == 1)
|
|
assert(innov_var.shape[1] == 1)
|
|
K[:,index] = P * H[index,:].T / innov_var[0,0]
|
|
HK[index*48:(index+1)*48,0] = Matrix([H[index,:].transpose(), K[:,index]])
|
|
|
|
HK_simple = cse(HK, symbols("HK0:1000"), optimizations='basic')
|
|
|
|
return HK_simple
|
|
|
|
# write single observation equations to file
|
|
def write_equations_to_file(equations,code_generator_id,n_obs):
|
|
if (n_obs < 1):
|
|
return
|
|
|
|
if (n_obs == 1):
|
|
code_generator_id.print_string("Sub Expressions")
|
|
code_generator_id.write_subexpressions(equations[0])
|
|
code_generator_id.print_string("Observation Jacobians")
|
|
code_generator_id.write_matrix(Matrix(equations[1][0][0:24]), "Hfusion", False)
|
|
code_generator_id.print_string("Kalman gains")
|
|
code_generator_id.write_matrix(Matrix(equations[1][0][24:]), "Kfusion", False)
|
|
else:
|
|
code_generator_id.print_string("Sub Expressions")
|
|
code_generator_id.write_subexpressions(equations[0])
|
|
for axis_index in range(n_obs):
|
|
start_index = axis_index*48
|
|
code_generator_id.print_string("Observation Jacobians - axis %i" % axis_index)
|
|
code_generator_id.write_matrix(Matrix(equations[1][0][start_index:start_index+24]), "Hfusion", False)
|
|
code_generator_id.print_string("Kalman gains - axis %i" % axis_index)
|
|
code_generator_id.write_matrix(Matrix(equations[1][0][start_index+24:start_index+48]), "Kfusion", False)
|
|
|
|
return
|
|
|
|
# derive equations for sequential fusion of optical flow measurements
|
|
def optical_flow_observation(P,state,R_to_body,vx,vy,vz):
|
|
flow_code_generator = CodeGenerator("./generated/flow_generated.cpp")
|
|
range = symbols("range", real=True) # range from camera focal point to ground along sensor Z axis
|
|
obs_var = symbols("R_LOS", real=True) # optical flow line of sight rate measurement noise variance
|
|
|
|
# Define rotation matrix from body to sensor frame
|
|
Tbs = Matrix(3,3,create_Tbs_matrix)
|
|
|
|
# Calculate earth relative velocity in a non-rotating sensor frame
|
|
relVelSensor = Tbs * R_to_body * Matrix([vx,vy,vz])
|
|
|
|
# Divide by range to get predicted angular LOS rates relative to X and Y
|
|
# axes. Note these are rates in a non-rotating sensor frame
|
|
losRateSensorX = +relVelSensor[1]/range
|
|
losRateSensorY = -relVelSensor[0]/range
|
|
|
|
# calculate the observation Jacobian and Kalman gains for the X axis
|
|
equations = generate_observation_equations(P,state,losRateSensorX,obs_var)
|
|
|
|
flow_code_generator.print_string("X Axis Equations")
|
|
write_equations_to_file(equations,flow_code_generator,1)
|
|
|
|
# calculate the observation Jacobian and Kalman gains for the Y axis
|
|
equations = generate_observation_equations(P,state,losRateSensorY,obs_var)
|
|
|
|
flow_code_generator.print_string("Y Axis Equations")
|
|
write_equations_to_file(equations,flow_code_generator,1)
|
|
|
|
flow_code_generator.close()
|
|
|
|
# calculate a combined result for a possible reduction in operations, but will use more stack
|
|
observation = Matrix([relVelSensor[1]/range,-relVelSensor[0]/range])
|
|
equations = generate_observation_vector_equations(P,state,observation,obs_var,2)
|
|
flow_code_generator_alt = CodeGenerator("./generated/flow_generated_alt.cpp")
|
|
write_equations_to_file(equations,flow_code_generator_alt,2)
|
|
flow_code_generator_alt.close()
|
|
|
|
return
|
|
|
|
# Derive equations for sequential fusion of body frame velocity measurements
|
|
def body_frame_velocity_observation(P,state,R_to_body,vx,vy,vz):
|
|
obs_var = symbols("R_VEL", real=True) # measurement noise variance
|
|
|
|
# Calculate earth relative velocity in a non-rotating sensor frame
|
|
vel_bf = R_to_body * Matrix([vx,vy,vz])
|
|
|
|
vel_bf_code_generator = CodeGenerator("./generated/vel_bf_generated.cpp")
|
|
axes = [0,1,2]
|
|
H_obs = vel_bf.jacobian(state) # observation Jacobians
|
|
K_gain = zeros(24,3)
|
|
for index in axes:
|
|
equations = generate_observation_equations(P,state,vel_bf[index],obs_var)
|
|
|
|
vel_bf_code_generator.print_string("axis %i" % index)
|
|
vel_bf_code_generator.write_subexpressions(equations[0])
|
|
vel_bf_code_generator.write_matrix(Matrix(equations[1][0][0:24]), "H_VEL", False)
|
|
vel_bf_code_generator.write_matrix(Matrix(equations[1][0][24:]), "Kfusion", False)
|
|
|
|
vel_bf_code_generator.close()
|
|
|
|
# calculate a combined result for a possible reduction in operations, but will use more stack
|
|
equations = generate_observation_vector_equations(P,state,vel_bf,obs_var,3)
|
|
|
|
vel_bf_code_generator_alt = CodeGenerator("./generated/vel_bf_generated_alt.cpp")
|
|
write_equations_to_file(equations,vel_bf_code_generator_alt,3)
|
|
vel_bf_code_generator_alt.close()
|
|
|
|
# derive equations for fusion of dual antenna yaw measurement
|
|
def gps_yaw_observation(P,state,R_to_body):
|
|
obs_var = symbols("R_YAW", real=True) # measurement noise variance
|
|
ant_yaw = symbols("ant_yaw", real=True) # yaw angle of antenna array axis wrt X body axis
|
|
|
|
# define antenna vector in body frame
|
|
ant_vec_bf = Matrix([cos(ant_yaw),sin(ant_yaw),0])
|
|
|
|
# rotate into earth frame
|
|
ant_vec_ef = R_to_body.T * ant_vec_bf
|
|
|
|
# Calculate the yaw angle from the projection
|
|
observation = atan(ant_vec_ef[1]/ant_vec_ef[0])
|
|
|
|
equations = generate_observation_equations(P,state,observation,obs_var)
|
|
|
|
gps_yaw_code_generator = CodeGenerator("./generated/gps_yaw_generated.cpp")
|
|
write_equations_to_file(equations,gps_yaw_code_generator,1)
|
|
gps_yaw_code_generator.close()
|
|
|
|
return
|
|
|
|
# derive equations for fusion of declination
|
|
def declination_observation(P,state,ix,iy):
|
|
obs_var = symbols("R_DECL", real=True) # measurement noise variance
|
|
|
|
# the predicted measurement is the angle wrt magnetic north of the horizontal
|
|
# component of the measured field
|
|
observation = atan(iy/ix)
|
|
|
|
equations = generate_observation_equations(P,state,observation,obs_var)
|
|
|
|
mag_decl_code_generator = CodeGenerator("./generated/mag_decl_generated.cpp")
|
|
write_equations_to_file(equations,mag_decl_code_generator,1)
|
|
mag_decl_code_generator.close()
|
|
|
|
return
|
|
|
|
# derive equations for fusion of lateral body acceleration (multirotors only)
|
|
def body_frame_accel_observation(P,state,R_to_body,vx,vy,vz,wx,wy):
|
|
obs_var = symbols("R_ACC", real=True) # measurement noise variance
|
|
Kaccx = symbols("Kaccx", real=True) # measurement noise variance
|
|
Kaccy = symbols("Kaccy", real=True) # measurement noise variance
|
|
|
|
# use relationship between airspeed along the X and Y body axis and the
|
|
# drag to predict the lateral acceleration for a multirotor vehicle type
|
|
# where propulsion forces are generated primarily along the Z body axis
|
|
|
|
vrel = R_to_body*Matrix([vx-wx,vy-wy,vz]) # predicted wind relative velocity
|
|
|
|
# Use this nonlinear model for the prediction in the implementation only
|
|
# It uses a ballistic coefficient for each axis
|
|
# accXpred = -0.5*rho*vrel[0]*vrel[0]*BCXinv # predicted acceleration measured along X body axis
|
|
# accYpred = -0.5*rho*vrel[1]*vrel[1]*BCYinv # predicted acceleration measured along Y body axis
|
|
|
|
# Use a simple viscous drag model for the linear estimator equations
|
|
# Use the the derivative from speed to acceleration averaged across the
|
|
# speed range. This avoids the generation of a dirac function in the derivation
|
|
# The nonlinear equation will be used to calculate the predicted measurement in implementation
|
|
observation = Matrix([-Kaccx*vrel[0],-Kaccy*vrel[1]])
|
|
|
|
acc_bf_code_generator = CodeGenerator("./generated/acc_bf_generated.cpp")
|
|
H = observation.jacobian(state)
|
|
K = zeros(24,2)
|
|
axes = [0,1]
|
|
for index in axes:
|
|
equations = generate_observation_equations(P,state,observation[index],obs_var)
|
|
acc_bf_code_generator.print_string("Axis %i equations" % index)
|
|
write_equations_to_file(equations,acc_bf_code_generator,1)
|
|
|
|
acc_bf_code_generator.close()
|
|
|
|
# # calculate a combined result for a possible reduction in operations, but will use more stack
|
|
# equations = generate_observation_vector_equations(P,state,observation,obs_var,2)
|
|
|
|
# acc_bf_code_generator_alt = CodeGenerator("./generated/acc_bf_generated_alt.cpp")
|
|
# write_equations_to_file(equations,acc_bf_code_generator_alt,3)
|
|
# acc_bf_code_generator_alt.close()
|
|
|
|
return
|
|
|
|
# yaw fusion
|
|
def yaw_observation(P,state,R_to_earth):
|
|
yaw_code_generator = CodeGenerator("./generated/yaw_generated.cpp")
|
|
|
|
# Derive observation Jacobian for fusion of 321 sequence yaw measurement
|
|
# Calculate the yaw (first rotation) angle from the 321 rotation sequence
|
|
# Provide alternative angle that avoids singularity at +-pi/2 yaw
|
|
angMeasA = atan(R_to_earth[1,0]/R_to_earth[0,0])
|
|
H_YAW321_A = Matrix([angMeasA]).jacobian(state)
|
|
H_YAW321_A_simple = cse(H_YAW321_A, symbols('SA0:200'))
|
|
|
|
angMeasB = pi/2 - atan(R_to_earth[0,0]/R_to_earth[1,0])
|
|
H_YAW321_B = Matrix([angMeasB]).jacobian(state)
|
|
H_YAW321_B_simple = cse(H_YAW321_B, symbols('SB0:200'))
|
|
|
|
yaw_code_generator.print_string("calculate 321 yaw observation matrix - option A")
|
|
yaw_code_generator.write_subexpressions(H_YAW321_A_simple[0])
|
|
yaw_code_generator.write_matrix(Matrix(H_YAW321_A_simple[1]).T, "H_YAW", False)
|
|
|
|
yaw_code_generator.print_string("calculate 321 yaw observation matrix - option B")
|
|
yaw_code_generator.write_subexpressions(H_YAW321_B_simple[0])
|
|
yaw_code_generator.write_matrix(Matrix(H_YAW321_B_simple[1]).T, "H_YAW", False)
|
|
|
|
# Derive observation Jacobian for fusion of 312 sequence yaw measurement
|
|
# Calculate the yaw (first rotation) angle from an Euler 312 sequence
|
|
# Provide alternative angle that avoids singularity at +-pi/2 yaw
|
|
angMeasA = atan(-R_to_earth[0,1]/R_to_earth[1,1])
|
|
H_YAW312_A = Matrix([angMeasA]).jacobian(state)
|
|
H_YAW312_A_simple = cse(H_YAW312_A, symbols('SA0:200'))
|
|
|
|
angMeasB = pi/2 - atan(-R_to_earth[1,1]/R_to_earth[0,1])
|
|
H_YAW312_B = Matrix([angMeasB]).jacobian(state)
|
|
H_YAW312_B_simple = cse(H_YAW312_B, symbols('SB0:200'))
|
|
|
|
yaw_code_generator.print_string("calculate 312 yaw observation matrix - option A")
|
|
yaw_code_generator.write_subexpressions(H_YAW312_A_simple[0])
|
|
yaw_code_generator.write_matrix(Matrix(H_YAW312_A_simple[1]).T, "H_YAW", False)
|
|
|
|
yaw_code_generator.print_string("calculate 312 yaw observation matrix - option B")
|
|
yaw_code_generator.write_subexpressions(H_YAW312_B_simple[0])
|
|
yaw_code_generator.write_matrix(Matrix(H_YAW312_B_simple[1]).T, "H_YAW", False)
|
|
|
|
yaw_code_generator.close()
|
|
|
|
return
|
|
|
|
# 3D magnetometer fusion
|
|
def mag_observation_variance(P,state,R_to_body,i,ib):
|
|
obs_var = symbols("R_MAG", real=True) # magnetometer measurement noise variance
|
|
|
|
m_mag = R_to_body * i + ib
|
|
|
|
# separate calculation of innovation variance equations for the y and z axes
|
|
m_mag[0]=0
|
|
innov_var_equations = generate_observation_vector_innovation_variances(P,state,m_mag,obs_var,3)
|
|
mag_innov_var_code_generator = CodeGenerator("./generated/3Dmag_innov_var_generated.cpp")
|
|
write_equations_to_file(innov_var_equations,mag_innov_var_code_generator,3)
|
|
mag_innov_var_code_generator.close()
|
|
|
|
return
|
|
|
|
# 3D magnetometer fusion
|
|
def mag_observation(P,state,R_to_body,i,ib):
|
|
obs_var = symbols("R_MAG", real=True) # magnetometer measurement noise variance
|
|
|
|
m_mag = R_to_body * i + ib
|
|
|
|
# calculate a separate set of equations for each axis
|
|
mag_code_generator = CodeGenerator("./generated/3Dmag_generated.cpp")
|
|
|
|
axes = [0,1,2]
|
|
label="HK"
|
|
for index in axes:
|
|
if (index==0):
|
|
label="HKX"
|
|
elif (index==1):
|
|
label="HKY"
|
|
elif (index==2):
|
|
label="HKZ"
|
|
else:
|
|
return
|
|
equations = generate_observation_equations(P,state,m_mag[index],obs_var,varname=label)
|
|
mag_code_generator.print_string("Axis %i equations" % index)
|
|
write_equations_to_file(equations,mag_code_generator,1)
|
|
|
|
mag_code_generator.close()
|
|
|
|
# calculate a combined set of equations for a possible reduction in operations, but will use slighlty more stack
|
|
equations = generate_observation_vector_equations(P,state,m_mag,obs_var,3)
|
|
|
|
mag_code_generator_alt = CodeGenerator("./generated/3Dmag_generated_alt.cpp")
|
|
write_equations_to_file(equations,mag_code_generator_alt,3)
|
|
mag_code_generator_alt.close()
|
|
|
|
return
|
|
|
|
# airspeed fusion
|
|
def tas_observation(P,state,vx,vy,vz,wx,wy):
|
|
obs_var = symbols("R_TAS", real=True) # true airspeed measurement noise variance
|
|
|
|
observation = sqrt((vx-wx)*(vx-wx)+(vy-wy)*(vy-wy)+vz*vz)
|
|
|
|
equations = generate_observation_equations(P,state,observation,obs_var)
|
|
|
|
tas_code_generator = CodeGenerator("./generated/tas_generated.cpp")
|
|
write_equations_to_file(equations,tas_code_generator,1)
|
|
tas_code_generator.close()
|
|
|
|
return
|
|
|
|
# sideslip fusion
|
|
def beta_observation(P,state,R_to_body,vx,vy,vz,wx,wy):
|
|
obs_var = symbols("R_BETA", real=True) # sideslip measurement noise variance
|
|
|
|
v_rel_ef = Matrix([vx-wx,vy-wy,vz])
|
|
v_rel_bf = R_to_body * v_rel_ef
|
|
observation = v_rel_bf[1]/v_rel_bf[0]
|
|
|
|
equations = generate_observation_equations(P,state,observation,obs_var)
|
|
|
|
beta_code_generator = CodeGenerator("./generated/beta_generated.cpp")
|
|
write_equations_to_file(equations,beta_code_generator,1)
|
|
beta_code_generator.close()
|
|
|
|
return
|
|
|
|
# yaw estimator prediction and observation code
|
|
def yaw_estimator():
|
|
dt = symbols("dt", real=True) # dt (sec)
|
|
psi = symbols("psi", real=True) # yaw angle of body frame wrt earth frame
|
|
vn, ve = symbols("vn ve", real=True) # velocity in world frame (north/east) - m/sec
|
|
daz = symbols("daz", real=True) # IMU z axis delta angle measurement in body axes - rad
|
|
dazVar = symbols("dazVar", real=True) # IMU Z axis delta angle measurement variance (rad^2)
|
|
dvx, dvy = symbols("dvx dvy", real=True) # IMU x and y axis delta velocity measurement in body axes - m/sec
|
|
dvxVar, dvyVar = symbols("dvxVar dvyVar", real=True) # IMU x and y axis delta velocity measurement variance (m/s)^2
|
|
|
|
# derive the body to nav direction transformation matrix
|
|
Tbn = Matrix([[cos(psi) , -sin(psi)],
|
|
[sin(psi) , cos(psi)]])
|
|
|
|
# attitude update equation
|
|
psiNew = psi + daz
|
|
|
|
# velocity update equations
|
|
velNew = Matrix([vn,ve]) + Tbn*Matrix([dvx,dvy])
|
|
|
|
# Define the state vectors
|
|
stateVector = Matrix([vn,ve,psi])
|
|
|
|
# Define vector of process equations
|
|
newStateVector = Matrix([velNew,psiNew])
|
|
|
|
# Calculate state transition matrix
|
|
F = newStateVector.jacobian(stateVector)
|
|
|
|
# Derive the covariance prediction equations
|
|
# Error growth in the inertial solution is assumed to be driven by 'noise' in the delta angles and
|
|
# velocities, after bias effects have been removed.
|
|
|
|
# derive the control(disturbance) influence matrix from IMU noise to state noise
|
|
G = newStateVector.jacobian(Matrix([dvx,dvy,daz]))
|
|
|
|
# derive the state error matrix
|
|
distMatrix = Matrix([[dvxVar , 0 , 0],
|
|
[0 , dvyVar , 0],
|
|
[0 , 0 , dazVar]])
|
|
|
|
Q = G * distMatrix * G.T
|
|
|
|
# propagate covariance matrix
|
|
P = create_yaw_estimator_cov_matrix()
|
|
|
|
P_new = F * P * F.T + Q
|
|
|
|
P_new_simple = cse(P_new, symbols("S0:1000"), optimizations='basic')
|
|
|
|
yaw_estimator_covariance_generator = CodeGenerator("./generated/yaw_estimator_covariance_prediction_generated.cpp")
|
|
yaw_estimator_covariance_generator.print_string("Equations for covariance matrix prediction")
|
|
yaw_estimator_covariance_generator.write_subexpressions(P_new_simple[0])
|
|
yaw_estimator_covariance_generator.write_matrix(Matrix(P_new_simple[1]), "_ekf_gsf[model_index].P", True)
|
|
yaw_estimator_covariance_generator.close()
|
|
|
|
# derive the covariance update equation for a NE velocity observation
|
|
velObsVar = symbols("velObsVar", real=True) # velocity observation variance (m/s)^2
|
|
H = Matrix([[1,0,0],
|
|
[0,1,0]])
|
|
|
|
R = Matrix([[velObsVar , 0],
|
|
[0 , velObsVar]])
|
|
|
|
S = H * P * H.T + R
|
|
S_det_inv = 1 / S.det()
|
|
S_inv = S.inv()
|
|
K = (P * H.T) * S_inv
|
|
P_new = P - K * S * K.T
|
|
|
|
# optimize code
|
|
t, [S_det_inv_s, S_inv_s, K_s, P_new_s] = cse([S_det_inv, S_inv, K, P_new], symbols("t0:1000"), optimizations='basic')
|
|
|
|
yaw_estimator_observation_generator = CodeGenerator("./generated/yaw_estimator_measurement_update_generated.cpp")
|
|
yaw_estimator_observation_generator.print_string("Intermediate variables")
|
|
yaw_estimator_observation_generator.write_subexpressions(t)
|
|
yaw_estimator_observation_generator.print_string("Equations for NE velocity innovation variance's determinante inverse")
|
|
yaw_estimator_observation_generator.write_matrix(Matrix([[S_det_inv_s]]), "_ekf_gsf[model_index].S_det_inverse", False)
|
|
yaw_estimator_observation_generator.print_string("Equations for NE velocity innovation variance inverse")
|
|
yaw_estimator_observation_generator.write_matrix(Matrix(S_inv_s), "_ekf_gsf[model_index].S_inverse", True)
|
|
yaw_estimator_observation_generator.print_string("Equations for NE velocity Kalman gain")
|
|
yaw_estimator_observation_generator.write_matrix(Matrix(K_s), "K", False)
|
|
yaw_estimator_observation_generator.print_string("Equations for covariance matrix update")
|
|
yaw_estimator_observation_generator.write_matrix(Matrix(P_new_s), "_ekf_gsf[model_index].P", True)
|
|
yaw_estimator_observation_generator.close()
|
|
|
|
def quaternion_error_propagation():
|
|
# define quaternion state vector
|
|
q0, q1, q2, q3 = symbols("q0 q1 q2 q3", real=True)
|
|
q = Matrix([q0, q1, q2, q3])
|
|
|
|
# define truth gravity unit vector in body frame
|
|
R_to_earth = quat2Rot(q)
|
|
R_to_body = R_to_earth.T
|
|
gravity_ef = Matrix([0,0,1])
|
|
gravity_bf = R_to_body * gravity_ef
|
|
|
|
# define perturbations to quaternion state vector q
|
|
dq0, dq1, dq2, dq3 = symbols("dq0 dq1 dq2 dq3", real=True)
|
|
q_delta = Matrix([dq0, dq1, dq2, dq3])
|
|
|
|
# apply perturbations
|
|
q_perturbed = q + q_delta
|
|
|
|
# gravity unit vector in body frame after quaternion perturbation
|
|
R_to_earth_perturbed = quat2Rot(q_perturbed)
|
|
R_to_body_perturbed = R_to_earth_perturbed.T
|
|
gravity_bf_perturbed = R_to_body_perturbed * gravity_ef
|
|
|
|
# calculate the angular difference between the perturbed and unperturbed body frame gravity unit vectors
|
|
# assuming small angles
|
|
tilt_error_bf = gravity_bf.cross(gravity_bf_perturbed)
|
|
|
|
# calculate the derivative of the perturbation rotation vector wrt the quaternion perturbations
|
|
J = tilt_error_bf.jacobian(q_delta)
|
|
|
|
# remove second order terms
|
|
# we don't want the error deltas to appear in the final result
|
|
J.subs(dq0,0)
|
|
J.subs(dq1,0)
|
|
J.subs(dq2,0)
|
|
J.subs(dq3,0)
|
|
|
|
# define covaraince matrix for quaternion states
|
|
P = create_symmetric_cov_matrix(4)
|
|
|
|
# discard off diagonals
|
|
P_diag = diag(P[0,0],P[1,1],P[2,2],P[3,3])
|
|
|
|
# rotate quaternion covariances into rotation vector state space
|
|
P_rot_vec = J * P_diag * J.transpose()
|
|
P_rot_vec_simple = cse(P_rot_vec, symbols("PS0:400"), optimizations='basic')
|
|
|
|
quat_code_generator = CodeGenerator("./generated/tilt_error_cov_mat_generated.cpp")
|
|
quat_code_generator.write_subexpressions(P_rot_vec_simple[0])
|
|
quat_code_generator.write_matrix(Matrix(P_rot_vec_simple[1]), "tiltErrCovMat", False, "[", "]")
|
|
quat_code_generator.close()
|
|
|
|
def generate_code():
|
|
print('Starting code generation:')
|
|
print('Creating symbolic variables ...')
|
|
|
|
dt = symbols("dt", real=True) # dt
|
|
g = symbols("g", real=True) # gravity constant
|
|
|
|
r_hor_vel = symbols("R_hor_vel", real=True) # horizontal velocity noise variance
|
|
r_ver_vel = symbols("R_vert_vel", real=True) # vertical velocity noise variance
|
|
r_hor_pos = symbols("R_hor_pos", real=True) # horizontal position noise variance
|
|
|
|
# inputs, integrated gyro measurements
|
|
# delta angle x y z
|
|
d_ang_x, d_ang_y, d_ang_z = symbols("dax day daz", real=True) # delta angle x
|
|
d_ang = Matrix([d_ang_x, d_ang_y, d_ang_z])
|
|
|
|
# inputs, integrated accelerometer measurements
|
|
# delta velocity x y z
|
|
d_v_x, d_v_y, d_v_z = symbols("dvx dvy dvz", real=True)
|
|
d_v = Matrix([d_v_x, d_v_y,d_v_z])
|
|
|
|
u = Matrix([d_ang, d_v])
|
|
|
|
# input noise
|
|
d_ang_x_var, d_ang_y_var, d_ang_z_var = symbols("daxVar dayVar dazVar", real=True)
|
|
|
|
d_v_x_var, d_v_y_var, d_v_z_var = symbols("dvxVar dvyVar dvzVar", real=True)
|
|
|
|
var_u = Matrix.diag(d_ang_x_var, d_ang_y_var, d_ang_z_var, d_v_x_var, d_v_y_var, d_v_z_var)
|
|
|
|
# define state vector
|
|
|
|
# attitude quaternion
|
|
qw, qx, qy, qz = symbols("q0 q1 q2 q3", real=True)
|
|
q = Matrix([qw,qx,qy,qz])
|
|
R_to_earth = quat2Rot(q)
|
|
R_to_body = R_to_earth.T
|
|
|
|
# velocity in NED local frame (north, east, down)
|
|
vx, vy, vz = symbols("vn ve vd", real=True)
|
|
v = Matrix([vx,vy,vz])
|
|
|
|
# position in NED local frame (north, east, down)
|
|
px, py, pz = symbols("pn pe pd", real=True)
|
|
p = Matrix([px,py,pz])
|
|
|
|
# delta angle bias x y z
|
|
d_ang_bx, d_ang_by, d_ang_bz = symbols("dax_b day_b daz_b", real=True)
|
|
d_ang_b = Matrix([d_ang_bx, d_ang_by, d_ang_bz])
|
|
d_ang_true = d_ang - d_ang_b
|
|
|
|
# delta velocity bias x y z
|
|
d_vel_bx, d_vel_by, d_vel_bz = symbols("dvx_b dvy_b dvz_b", real=True)
|
|
d_vel_b = Matrix([d_vel_bx, d_vel_by, d_vel_bz])
|
|
d_vel_true = d_v - d_vel_b
|
|
|
|
# earth magnetic field vector x y z
|
|
ix, iy, iz = symbols("magN magE magD", real=True)
|
|
i = Matrix([ix,iy,iz])
|
|
|
|
# earth magnetic field bias in body frame
|
|
ibx, iby, ibz = symbols("ibx iby ibz", real=True)
|
|
|
|
ib = Matrix([ibx,iby,ibz])
|
|
|
|
# wind in local NE frame (north, east)
|
|
wx, wy = symbols("vwn, vwe", real=True)
|
|
w = Matrix([wx,wy])
|
|
|
|
# state vector at arbitrary time t
|
|
state = Matrix([q, v, p, d_ang_b, d_vel_b, i, ib, w])
|
|
|
|
print('Defining state propagation ...')
|
|
# kinematic processes driven by IMU 'control inputs'
|
|
q_new = quat_mult(q, Matrix([1, 0.5 * d_ang_true[0], 0.5 * d_ang_true[1], 0.5 * d_ang_true[2]]))
|
|
v_new = v + R_to_earth * d_vel_true + Matrix([0,0,g]) * dt
|
|
p_new = p + v * dt
|
|
|
|
# static processes
|
|
d_ang_b_new = d_ang_b
|
|
d_vel_b_new = d_vel_b
|
|
i_new = i
|
|
ib_new = ib
|
|
w_new = w
|
|
|
|
# predicted state vector at time t + dt
|
|
state_new = Matrix([q_new, v_new, p_new, d_ang_b_new, d_vel_b_new, i_new, ib_new, w_new])
|
|
|
|
print('Computing state propagation jacobian ...')
|
|
A = state_new.jacobian(state)
|
|
G = state_new.jacobian(u)
|
|
|
|
P = create_symmetric_cov_matrix(24)
|
|
|
|
print('Computing covariance propagation ...')
|
|
P_new = A * P * A.T + G * var_u * G.T
|
|
|
|
for index in range(24):
|
|
for j in range(24):
|
|
if index > j:
|
|
P_new[index,j] = 0
|
|
|
|
print('Simplifying covariance propagation ...')
|
|
P_new_simple = cse(P_new, symbols("PS0:400"), optimizations='basic')
|
|
|
|
# print('Writing covariance propagation to file ...')
|
|
# cov_code_generator = CodeGenerator("./generated/covariance_generated.cpp")
|
|
# cov_code_generator.print_string("Equations for covariance matrix prediction, without process noise!")
|
|
# cov_code_generator.write_subexpressions(P_new_simple[0])
|
|
# cov_code_generator.write_matrix(Matrix(P_new_simple[1]), "nextP", True, "[", "]")
|
|
|
|
# cov_code_generator.close()
|
|
|
|
|
|
# derive autocode for other methods
|
|
print('Computing tilt error covariance matrix ...')
|
|
quaternion_error_propagation()
|
|
print('Generating heading observation code ...')
|
|
yaw_observation(P,state,R_to_earth)
|
|
# print('Generating gps heading observation code ...')
|
|
# gps_yaw_observation(P,state,R_to_body)
|
|
# print('Generating mag observation code ...')
|
|
# mag_observation_variance(P,state,R_to_body,i,ib)
|
|
# mag_observation(P,state,R_to_body,i,ib)
|
|
# print('Generating declination observation code ...')
|
|
# declination_observation(P,state,ix,iy)
|
|
# print('Generating airspeed observation code ...')
|
|
# tas_observation(P,state,vx,vy,vz,wx,wy)
|
|
# print('Generating sideslip observation code ...')
|
|
# beta_observation(P,state,R_to_body,vx,vy,vz,wx,wy)
|
|
# print('Generating optical flow observation code ...')
|
|
# optical_flow_observation(P,state,R_to_body,vx,vy,vz)
|
|
# print('Generating body frame velocity observation code ...')
|
|
# body_frame_velocity_observation(P,state,R_to_body,vx,vy,vz)
|
|
print('Generating body frame acceleration observation code ...')
|
|
body_frame_accel_observation(P,state,R_to_body,vx,vy,vz,wx,wy)
|
|
# print('Generating yaw estimator code ...')
|
|
# yaw_estimator()
|
|
print('Code generation finished!')
|
|
|
|
|
|
if __name__ == "__main__":
|
|
generate_code()
|