mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-21 16:18:29 -04:00
1132 lines
36 KiB
C++
1132 lines
36 KiB
C++
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2014 Pavel Kirienko
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
* this software and associated documentation files (the "Software"), to deal in
|
|
* the Software without restriction, including without limitation the rights to
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
* the Software, and to permit persons to whom the Software is furnished to do so,
|
|
* subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
/*
|
|
* This file is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Code by Siddharth Bharat Purohit
|
|
*/
|
|
|
|
#include <hal.h>
|
|
#include "AP_HAL_ChibiOS.h"
|
|
|
|
#if HAL_NUM_CAN_IFACES
|
|
#include <cassert>
|
|
#include <cstring>
|
|
#include <AP_Math/AP_Math.h>
|
|
# include <hal.h>
|
|
#include <AP_CANManager/AP_CANManager.h>
|
|
#include <AP_Common/ExpandingString.h>
|
|
|
|
# if defined(STM32H7XX) || defined(STM32G4)
|
|
#include "CANFDIface.h"
|
|
|
|
#define FDCAN1_IT0_IRQHandler STM32_FDCAN1_IT0_HANDLER
|
|
#define FDCAN1_IT1_IRQHandler STM32_FDCAN1_IT1_HANDLER
|
|
#define FDCAN2_IT0_IRQHandler STM32_FDCAN2_IT0_HANDLER
|
|
#define FDCAN2_IT1_IRQHandler STM32_FDCAN2_IT1_HANDLER
|
|
|
|
#if defined(STM32G4)
|
|
// on G4 FIFO elements are spaced at 18 words
|
|
#define FDCAN_FRAME_BUFFER_SIZE 18
|
|
#else
|
|
// on H7 they are spaced at 4 words
|
|
#define FDCAN_FRAME_BUFFER_SIZE 4
|
|
#endif
|
|
|
|
//Message RAM Allocations in Word lengths
|
|
|
|
#if defined(STM32H7)
|
|
#define MAX_FILTER_LIST_SIZE 80U //80 element Standard Filter List elements or 40 element Extended Filter List
|
|
#define FDCAN_NUM_RXFIFO0_SIZE 104U //26 Frames
|
|
#define FDCAN_TX_FIFO_BUFFER_SIZE 128U //32 Frames
|
|
#define MESSAGE_RAM_END_ADDR 0x4000B5FC
|
|
|
|
#elif defined(STM32G4)
|
|
#define MAX_FILTER_LIST_SIZE 80U //80 element Standard Filter List elements or 40 element Extended Filter List
|
|
#define FDCAN_NUM_RXFIFO0_SIZE 104U //26 Frames
|
|
#define FDCAN_TX_FIFO_BUFFER_SIZE 128U //32 Frames
|
|
#define FDCAN_MESSAGERAM_STRIDE 0x350 // separation of messageram areas
|
|
#define FDCAN_EXFILTER_OFFSET 0x70
|
|
#define FDCAN_RXFIFO0_OFFSET 0xB0
|
|
#define FDCAN_RXFIFO1_OFFSET 0x188
|
|
#define FDCAN_TXFIFO_OFFSET 0x278
|
|
|
|
#define MESSAGE_RAM_END_ADDR 0x4000B5FC
|
|
|
|
#else
|
|
#error "Unsupported MCU for FDCAN"
|
|
#endif
|
|
|
|
extern AP_HAL::HAL& hal;
|
|
|
|
static_assert(STM32_FDCANCLK <= 80U*1000U*1000U, "FDCAN clock must be max 80MHz");
|
|
|
|
using namespace ChibiOS;
|
|
|
|
#if HAL_CANMANAGER_ENABLED
|
|
#define Debug(fmt, args...) do { AP::can().log_text(AP_CANManager::LOG_DEBUG, "CANFDIface", fmt, ##args); } while (0)
|
|
#else
|
|
#define Debug(fmt, args...)
|
|
#endif
|
|
|
|
constexpr CANIface::CanType* const CANIface::Can[];
|
|
static ChibiOS::CANIface* can_ifaces[HAL_NUM_CAN_IFACES];
|
|
|
|
uint8_t CANIface::next_interface;
|
|
|
|
// mapping from logical interface to physical. First physical is 0, first logical is 0
|
|
static constexpr uint8_t can_interfaces[HAL_NUM_CAN_IFACES] = { HAL_CAN_INTERFACE_LIST };
|
|
|
|
// mapping from physical interface back to logical. First physical is 0, first logical is 0
|
|
static constexpr int8_t can_iface_to_idx[3] = { HAL_CAN_INTERFACE_REV_LIST };
|
|
|
|
#define REG_SET_TIMEOUT 250 // if it takes longer than 250ms for setting a register we have failed
|
|
|
|
static inline bool driver_initialised(uint8_t iface_index)
|
|
{
|
|
if (can_ifaces[iface_index] == nullptr) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline void handleCANInterrupt(uint8_t phys_index, uint8_t line_index)
|
|
{
|
|
const int8_t iface_index = can_iface_to_idx[phys_index];
|
|
if (iface_index < 0 || iface_index >= HAL_NUM_CAN_IFACES) {
|
|
return;
|
|
}
|
|
if (!driver_initialised(iface_index)) {
|
|
//Just reset all the interrupts and return
|
|
CANIface::Can[iface_index]->IR = FDCAN_IR_RF0N;
|
|
CANIface::Can[iface_index]->IR = FDCAN_IR_RF1N;
|
|
CANIface::Can[iface_index]->IR = FDCAN_IR_TEFN;
|
|
return;
|
|
}
|
|
if (line_index == 0) {
|
|
if ((CANIface::Can[iface_index]->IR & FDCAN_IR_RF0N) ||
|
|
(CANIface::Can[iface_index]->IR & FDCAN_IR_RF0F)) {
|
|
CANIface::Can[iface_index]->IR = FDCAN_IR_RF0N | FDCAN_IR_RF0F;
|
|
can_ifaces[iface_index]->handleRxInterrupt(0);
|
|
}
|
|
if ((CANIface::Can[iface_index]->IR & FDCAN_IR_RF1N) ||
|
|
(CANIface::Can[iface_index]->IR & FDCAN_IR_RF1F)) {
|
|
CANIface::Can[iface_index]->IR = FDCAN_IR_RF1N | FDCAN_IR_RF1F;
|
|
can_ifaces[iface_index]->handleRxInterrupt(1);
|
|
}
|
|
} else {
|
|
if (CANIface::Can[iface_index]->IR & FDCAN_IR_TC) {
|
|
CANIface::Can[iface_index]->IR = FDCAN_IR_TC;
|
|
uint64_t timestamp_us = AP_HAL::micros64();
|
|
if (timestamp_us > 0) {
|
|
timestamp_us--;
|
|
}
|
|
can_ifaces[iface_index]->handleTxCompleteInterrupt(timestamp_us);
|
|
}
|
|
|
|
if ((CANIface::Can[iface_index]->IR & FDCAN_IR_BO)) {
|
|
CANIface::Can[iface_index]->IR = FDCAN_IR_BO;
|
|
can_ifaces[iface_index]->handleBusOffInterrupt();
|
|
}
|
|
}
|
|
can_ifaces[iface_index]->pollErrorFlagsFromISR();
|
|
}
|
|
|
|
uint32_t CANIface::FDCANMessageRAMOffset_ = 0;
|
|
|
|
CANIface::CANIface(uint8_t index) :
|
|
self_index_(index),
|
|
rx_bytebuffer_((uint8_t*)rx_buffer, sizeof(rx_buffer)),
|
|
rx_queue_(&rx_bytebuffer_)
|
|
{
|
|
if (index >= HAL_NUM_CAN_IFACES) {
|
|
AP_HAL::panic("Bad CANIface index.");
|
|
} else {
|
|
can_ = Can[index];
|
|
}
|
|
}
|
|
|
|
// constructor suitable for array
|
|
CANIface::CANIface() :
|
|
CANIface(next_interface++)
|
|
{}
|
|
|
|
void CANIface::handleBusOffInterrupt()
|
|
{
|
|
_detected_bus_off = true;
|
|
}
|
|
|
|
bool CANIface::computeTimings(const uint32_t target_bitrate, Timings& out_timings)
|
|
{
|
|
if (target_bitrate < 1) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Hardware configuration
|
|
*/
|
|
const uint32_t pclk = STM32_FDCANCLK;
|
|
|
|
static const int MaxBS1 = 16;
|
|
static const int MaxBS2 = 8;
|
|
|
|
/*
|
|
* Ref. "Automatic Baudrate Detection in CANopen Networks", U. Koppe, MicroControl GmbH & Co. KG
|
|
* CAN in Automation, 2003
|
|
*
|
|
* According to the source, optimal quanta per bit are:
|
|
* Bitrate Optimal Maximum
|
|
* 1000 kbps 8 10
|
|
* 500 kbps 16 17
|
|
* 250 kbps 16 17
|
|
* 125 kbps 16 17
|
|
*/
|
|
const int max_quanta_per_bit = (target_bitrate >= 1000000) ? 10 : 17;
|
|
|
|
static const int MaxSamplePointLocation = 900;
|
|
|
|
/*
|
|
* Computing (prescaler * BS):
|
|
* BITRATE = 1 / (PRESCALER * (1 / PCLK) * (1 + BS1 + BS2)) -- See the Reference Manual
|
|
* BITRATE = PCLK / (PRESCALER * (1 + BS1 + BS2)) -- Simplified
|
|
* let:
|
|
* BS = 1 + BS1 + BS2 -- Number of time quanta per bit
|
|
* PRESCALER_BS = PRESCALER * BS
|
|
* ==>
|
|
* PRESCALER_BS = PCLK / BITRATE
|
|
*/
|
|
const uint32_t prescaler_bs = pclk / target_bitrate;
|
|
|
|
/*
|
|
* Searching for such prescaler value so that the number of quanta per bit is highest.
|
|
*/
|
|
uint8_t bs1_bs2_sum = uint8_t(max_quanta_per_bit - 1);
|
|
|
|
while ((prescaler_bs % (1 + bs1_bs2_sum)) != 0) {
|
|
if (bs1_bs2_sum <= 2) {
|
|
return false; // No solution
|
|
}
|
|
bs1_bs2_sum--;
|
|
}
|
|
|
|
const uint32_t prescaler = prescaler_bs / (1 + bs1_bs2_sum);
|
|
if ((prescaler < 1U) || (prescaler > 1024U)) {
|
|
return false; // No solution
|
|
}
|
|
|
|
/*
|
|
* Now we have a constraint: (BS1 + BS2) == bs1_bs2_sum.
|
|
* We need to find the values so that the sample point is as close as possible to the optimal value.
|
|
*
|
|
* Solve[(1 + bs1)/(1 + bs1 + bs2) == 7/8, bs2] (* Where 7/8 is 0.875, the recommended sample point location *)
|
|
* {{bs2 -> (1 + bs1)/7}}
|
|
*
|
|
* Hence:
|
|
* bs2 = (1 + bs1) / 7
|
|
* bs1 = (7 * bs1_bs2_sum - 1) / 8
|
|
*
|
|
* Sample point location can be computed as follows:
|
|
* Sample point location = (1 + bs1) / (1 + bs1 + bs2)
|
|
*
|
|
* Since the optimal solution is so close to the maximum, we prepare two solutions, and then pick the best one:
|
|
* - With rounding to nearest
|
|
* - With rounding to zero
|
|
*/
|
|
struct BsPair {
|
|
uint8_t bs1;
|
|
uint8_t bs2;
|
|
uint16_t sample_point_permill;
|
|
|
|
BsPair() :
|
|
bs1(0),
|
|
bs2(0),
|
|
sample_point_permill(0)
|
|
{ }
|
|
|
|
BsPair(uint8_t bs1_bs2_sum, uint8_t arg_bs1) :
|
|
bs1(arg_bs1),
|
|
bs2(uint8_t(bs1_bs2_sum - bs1)),
|
|
sample_point_permill(uint16_t(1000 * (1 + bs1) / (1 + bs1 + bs2)))
|
|
{}
|
|
|
|
bool isValid() const
|
|
{
|
|
return (bs1 >= 1) && (bs1 <= MaxBS1) && (bs2 >= 1) && (bs2 <= MaxBS2);
|
|
}
|
|
};
|
|
|
|
// First attempt with rounding to nearest
|
|
BsPair solution(bs1_bs2_sum, uint8_t(((7 * bs1_bs2_sum - 1) + 4) / 8));
|
|
|
|
if (solution.sample_point_permill > MaxSamplePointLocation) {
|
|
// Second attempt with rounding to zero
|
|
solution = BsPair(bs1_bs2_sum, uint8_t((7 * bs1_bs2_sum - 1) / 8));
|
|
}
|
|
|
|
/*
|
|
* Final validation
|
|
* Helpful Python:
|
|
* def sample_point_from_btr(x):
|
|
* assert 0b0011110010000000111111000000000 & x == 0
|
|
* ts2,ts1,brp = (x>>20)&7, (x>>16)&15, x&511
|
|
* return (1+ts1+1)/(1+ts1+1+ts2+1)
|
|
*
|
|
*/
|
|
if ((target_bitrate != (pclk / (prescaler * (1 + solution.bs1 + solution.bs2)))) || !solution.isValid()) {
|
|
return false;
|
|
}
|
|
|
|
Debug("Timings: quanta/bit: %d, sample point location: %.1f%%\n",
|
|
int(1 + solution.bs1 + solution.bs2), float(solution.sample_point_permill) / 10.F);
|
|
|
|
out_timings.prescaler = uint16_t(prescaler - 1U);
|
|
out_timings.sjw = 0; // Which means one
|
|
out_timings.bs1 = uint8_t(solution.bs1 - 1);
|
|
out_timings.bs2 = uint8_t(solution.bs2 - 1);
|
|
return true;
|
|
}
|
|
|
|
int16_t CANIface::send(const AP_HAL::CANFrame& frame, uint64_t tx_deadline,
|
|
CanIOFlags flags)
|
|
{
|
|
stats.tx_requests++;
|
|
if (frame.isErrorFrame() || frame.dlc > 8 || !initialised_) {
|
|
stats.tx_rejected++;
|
|
return -1;
|
|
}
|
|
|
|
{
|
|
CriticalSectionLocker lock;
|
|
|
|
/*
|
|
* Seeking for an empty slot
|
|
*/
|
|
uint8_t index;
|
|
|
|
if ((can_->TXFQS & FDCAN_TXFQS_TFQF) != 0) {
|
|
stats.tx_rejected++;
|
|
return 0; //we don't have free space
|
|
}
|
|
index = ((can_->TXFQS & FDCAN_TXFQS_TFQPI) >> FDCAN_TXFQS_TFQPI_Pos);
|
|
|
|
// Copy Frame to RAM
|
|
// Calculate Tx element address
|
|
uint32_t* buffer = (uint32_t *)(MessageRam_.TxFIFOQSA + (index * FDCAN_FRAME_BUFFER_SIZE * 4));
|
|
|
|
//Setup Frame ID
|
|
if (frame.isExtended()) {
|
|
buffer[0] = (IDE | frame.id);
|
|
} else {
|
|
buffer[0] = (frame.id << 18);
|
|
}
|
|
if (frame.isRemoteTransmissionRequest()) {
|
|
buffer[0] |= RTR;
|
|
}
|
|
//Write Data Length Code, and Message Marker
|
|
buffer[1] = frame.dlc << 16 | index << 24;
|
|
|
|
// Write Frame to the message RAM
|
|
buffer[2] = frame.data_32[0];
|
|
buffer[3] = frame.data_32[1];
|
|
|
|
//Set Add Request
|
|
can_->TXBAR = (1 << index);
|
|
|
|
//Registering the pending transmission so we can track its deadline and loopback it as needed
|
|
pending_tx_[index].deadline = tx_deadline;
|
|
pending_tx_[index].frame = frame;
|
|
pending_tx_[index].loopback = (flags & AP_HAL::CANIface::Loopback) != 0;
|
|
pending_tx_[index].abort_on_error = (flags & AP_HAL::CANIface::AbortOnError) != 0;
|
|
pending_tx_[index].index = index;
|
|
// setup frame initial state
|
|
pending_tx_[index].aborted = false;
|
|
pending_tx_[index].setup = true;
|
|
pending_tx_[index].pushed = false;
|
|
}
|
|
|
|
return AP_HAL::CANIface::send(frame, tx_deadline, flags);
|
|
}
|
|
|
|
int16_t CANIface::receive(AP_HAL::CANFrame& out_frame, uint64_t& out_timestamp_us, CanIOFlags& out_flags)
|
|
{
|
|
{
|
|
CriticalSectionLocker lock;
|
|
CanRxItem rx_item;
|
|
if (!rx_queue_.pop(rx_item) || !initialised_) {
|
|
return 0;
|
|
}
|
|
out_frame = rx_item.frame;
|
|
out_timestamp_us = rx_item.timestamp_us;
|
|
out_flags = rx_item.flags;
|
|
}
|
|
|
|
return AP_HAL::CANIface::receive(out_frame, out_timestamp_us, out_flags);
|
|
}
|
|
|
|
bool CANIface::configureFilters(const CanFilterConfig* filter_configs,
|
|
uint16_t num_configs)
|
|
{
|
|
// only enable filters in AP_Periph. It makes no sense on the flight controller
|
|
#if !defined(HAL_BUILD_AP_PERIPH) || defined(STM32G4)
|
|
// no filtering
|
|
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode
|
|
uint32_t while_start_ms = AP_HAL::millis();
|
|
while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) {
|
|
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) {
|
|
return false;
|
|
}
|
|
}
|
|
initialised_ = true;
|
|
return true;
|
|
#else
|
|
uint32_t num_extid = 0, num_stdid = 0;
|
|
uint32_t total_available_list_size = MAX_FILTER_LIST_SIZE;
|
|
uint32_t* filter_ptr;
|
|
if (initialised_ || mode_ != FilteredMode) {
|
|
// we are already initialised can't do anything here
|
|
return false;
|
|
}
|
|
//count number of frames of each type
|
|
for (uint8_t i = 0; i < num_configs; i++) {
|
|
const CanFilterConfig* const cfg = filter_configs + i;
|
|
if ((cfg->id & AP_HAL::CANFrame::FlagEFF) || !(cfg->mask & AP_HAL::CANFrame::FlagEFF)) {
|
|
num_extid++;
|
|
} else {
|
|
num_stdid++;
|
|
}
|
|
}
|
|
CriticalSectionLocker lock;
|
|
//Allocate Message RAM for Standard ID Filter List
|
|
if (num_stdid == 0) { //No Frame with Standard ID is to be accepted
|
|
#if defined(STM32G4)
|
|
can_->RXGFC |= 0x2; //Reject All Standard ID Frames
|
|
#else
|
|
can_->GFC |= 0x2; //Reject All Standard ID Frames
|
|
#endif
|
|
} else if ((num_stdid < total_available_list_size) && (num_stdid <= 128)) {
|
|
can_->SIDFC = (FDCANMessageRAMOffset_ << 2) | (num_stdid << 16);
|
|
MessageRam_.StandardFilterSA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U);
|
|
FDCANMessageRAMOffset_ += num_stdid;
|
|
total_available_list_size -= num_stdid;
|
|
can_->GFC |= (0x3U << 4); //Reject non matching Standard frames
|
|
} else { //The List is too big, return fail
|
|
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode
|
|
uint32_t while_start_ms = AP_HAL::millis();
|
|
while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) {
|
|
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) {
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (num_stdid) {
|
|
num_stdid = 0; //reset list count
|
|
filter_ptr = (uint32_t*)MessageRam_.StandardFilterSA;
|
|
//Run through the filter list and setup standard id filter list
|
|
for (uint8_t i = 0; i < num_configs; i++) {
|
|
uint32_t id = 0;
|
|
uint32_t mask = 0;
|
|
const CanFilterConfig* const cfg = filter_configs + i;
|
|
if (!((cfg->id & AP_HAL::CANFrame::FlagEFF) || !(cfg->mask & AP_HAL::CANFrame::FlagEFF))) {
|
|
id = (cfg->id & AP_HAL::CANFrame::MaskStdID); // Regular std frames, nothing fancy.
|
|
mask = (cfg->mask & 0x7F);
|
|
filter_ptr[num_stdid] = 0x2U << 30 | //Classic CAN Filter
|
|
0x1U << 27 | //Store in Rx FIFO0 if filter matches
|
|
id << 16 |
|
|
mask;
|
|
num_stdid++;
|
|
}
|
|
}
|
|
}
|
|
|
|
//Allocate Message RAM for Extended ID Filter List
|
|
if (num_extid == 0) { //No Frame with Extended ID is to be accepted
|
|
can_->GFC |= 0x1; //Reject All Extended ID Frames
|
|
} else if ((num_extid < (total_available_list_size/2)) && (num_extid <= 64)) {
|
|
can_->XIDFC = (FDCANMessageRAMOffset_ << 2) | (num_extid << 16);
|
|
MessageRam_.ExtendedFilterSA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U);
|
|
FDCANMessageRAMOffset_ += num_extid*2;
|
|
can_->GFC |= (0x3U << 2); // Reject non matching Extended frames
|
|
} else { //The List is too big, return fail
|
|
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode
|
|
uint32_t while_start_ms = AP_HAL::millis();
|
|
while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) {
|
|
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) {
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (num_extid) {
|
|
num_extid = 0;
|
|
filter_ptr = (uint32_t*)MessageRam_.ExtendedFilterSA;
|
|
//Run through the filter list and setup extended id filter list
|
|
for (uint8_t i = 0; i < num_configs; i++) {
|
|
uint32_t id = 0;
|
|
uint32_t mask = 0;
|
|
const CanFilterConfig* const cfg = filter_configs + i;
|
|
if ((cfg->id & AP_HAL::CANFrame::FlagEFF) || !(cfg->mask & AP_HAL::CANFrame::FlagEFF)) {
|
|
id = (cfg->id & AP_HAL::CANFrame::MaskExtID);
|
|
mask = (cfg->mask & AP_HAL::CANFrame::MaskExtID);
|
|
filter_ptr[num_extid*2] = 0x1U << 29 | id; //Store in Rx FIFO0 if filter matches
|
|
filter_ptr[num_extid*2 + 1] = 0x2U << 30 | mask; // Classic CAN Filter
|
|
num_extid++;
|
|
}
|
|
}
|
|
}
|
|
|
|
MessageRam_.EndAddress = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U);
|
|
if (MessageRam_.EndAddress > MESSAGE_RAM_END_ADDR) {
|
|
//We are overflowing the limit of Allocated Message RAM
|
|
AP_HAL::panic("CANFDIface: Message RAM Overflow!");
|
|
}
|
|
|
|
// Finally get out of Config Mode
|
|
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode
|
|
uint32_t while_start_ms = AP_HAL::millis();
|
|
while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) {
|
|
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) {
|
|
return false;
|
|
}
|
|
}
|
|
initialised_ = true;
|
|
return true;
|
|
#endif // AP_Periph, STM32G4
|
|
}
|
|
|
|
uint16_t CANIface::getNumFilters() const
|
|
{
|
|
return MAX_FILTER_LIST_SIZE;
|
|
}
|
|
|
|
bool CANIface::clock_init_ = false;
|
|
bool CANIface::init(const uint32_t bitrate, const OperatingMode mode)
|
|
{
|
|
Debug("Bitrate %lu mode %d", static_cast<unsigned long>(bitrate), static_cast<int>(mode));
|
|
if (self_index_ > HAL_NUM_CAN_IFACES) {
|
|
Debug("CAN drv init failed");
|
|
return false;
|
|
}
|
|
if (can_ifaces[self_index_] == nullptr) {
|
|
can_ifaces[self_index_] = this;
|
|
#if !defined(HAL_BOOTLOADER_BUILD)
|
|
hal.can[self_index_] = this;
|
|
#endif
|
|
}
|
|
|
|
bitrate_ = bitrate;
|
|
mode_ = mode;
|
|
//Only do it once
|
|
//Doing it second time will reset the previously initialised bus
|
|
if (!clock_init_) {
|
|
CriticalSectionLocker lock;
|
|
#if defined(STM32G4)
|
|
RCC->APB1ENR1 |= RCC_APB1ENR1_FDCANEN;
|
|
RCC->APB1RSTR1 |= RCC_APB1RSTR1_FDCANRST;
|
|
RCC->APB1RSTR1 &= ~RCC_APB1RSTR1_FDCANRST;
|
|
#else
|
|
RCC->APB1HENR |= RCC_APB1HENR_FDCANEN;
|
|
RCC->APB1HRSTR |= RCC_APB1HRSTR_FDCANRST;
|
|
RCC->APB1HRSTR &= ~RCC_APB1HRSTR_FDCANRST;
|
|
#endif
|
|
clock_init_ = true;
|
|
}
|
|
|
|
/*
|
|
* IRQ
|
|
*/
|
|
if (!irq_init_) {
|
|
CriticalSectionLocker lock;
|
|
switch (can_interfaces[self_index_]) {
|
|
case 0:
|
|
nvicEnableVector(FDCAN1_IT0_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
|
|
nvicEnableVector(FDCAN1_IT1_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
|
|
break;
|
|
#ifdef FDCAN2
|
|
case 1:
|
|
nvicEnableVector(FDCAN2_IT0_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
|
|
nvicEnableVector(FDCAN2_IT1_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
|
|
break;
|
|
#endif
|
|
#ifdef FDCAN3
|
|
case 2:
|
|
nvicEnableVector(FDCAN3_IT0_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
|
|
nvicEnableVector(FDCAN3_IT1_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
|
|
break;
|
|
#endif
|
|
}
|
|
irq_init_ = true;
|
|
}
|
|
|
|
// Setup FDCAN for configuration mode and disable all interrupts
|
|
{
|
|
CriticalSectionLocker lock;
|
|
|
|
can_->CCCR &= ~FDCAN_CCCR_CSR; // Exit sleep mode
|
|
uint32_t while_start_ms = AP_HAL::millis();
|
|
while ((can_->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA) {
|
|
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) {
|
|
return false;
|
|
}
|
|
} //Wait for wake up ack
|
|
can_->CCCR |= FDCAN_CCCR_INIT; // Request init
|
|
while_start_ms = AP_HAL::millis();
|
|
while ((can_->CCCR & FDCAN_CCCR_INIT) == 0) {
|
|
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) {
|
|
return false;
|
|
}
|
|
}
|
|
can_->CCCR |= FDCAN_CCCR_CCE; //Enable Config change
|
|
can_->IE = 0; // Disable interrupts while initialization is in progress
|
|
}
|
|
|
|
/*
|
|
* Object state - interrupts are disabled, so it's safe to modify it now
|
|
*/
|
|
rx_queue_.clear();
|
|
for (uint32_t i=0; i < NumTxMailboxes; i++) {
|
|
pending_tx_[i] = CanTxItem();
|
|
}
|
|
peak_tx_mailbox_index_ = 0;
|
|
had_activity_ = false;
|
|
|
|
/*
|
|
* CAN timings for this bitrate
|
|
*/
|
|
Timings timings;
|
|
|
|
if (!computeTimings(bitrate, timings)) {
|
|
can_->CCCR &= ~FDCAN_CCCR_INIT;
|
|
uint32_t while_start_ms = AP_HAL::millis();
|
|
while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) {
|
|
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) {
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
Debug("Timings: presc=%u sjw=%u bs1=%u bs2=%u\n",
|
|
unsigned(timings.prescaler), unsigned(timings.sjw), unsigned(timings.bs1), unsigned(timings.bs2));
|
|
|
|
//setup timing register
|
|
//TODO: Do timing calculations for FDCAN
|
|
can_->NBTP = ((timings.sjw << FDCAN_NBTP_NSJW_Pos) |
|
|
(timings.bs1 << FDCAN_NBTP_NTSEG1_Pos) |
|
|
(timings.bs2 << FDCAN_NBTP_NTSEG2_Pos) |
|
|
(timings.prescaler << FDCAN_NBTP_NBRP_Pos));
|
|
|
|
can_->DBTP = ((timings.bs1 << FDCAN_DBTP_DTSEG1_Pos) |
|
|
(timings.bs2 << FDCAN_DBTP_DTSEG2_Pos) |
|
|
(timings.prescaler << FDCAN_DBTP_DBRP_Pos));
|
|
|
|
//RX Config
|
|
#if defined(STM32H7)
|
|
can_->RXESC = 0; //Set for 8Byte Frames
|
|
#endif
|
|
|
|
//Setup Message RAM
|
|
setupMessageRam();
|
|
// Reset Bus Off
|
|
_detected_bus_off = false;
|
|
//Clear all Interrupts
|
|
can_->IR = 0x3FFFFFFF;
|
|
//Enable Interrupts
|
|
can_->IE = FDCAN_IE_TCE | // Transmit Complete interrupt enable
|
|
FDCAN_IE_BOE | // Bus off Error Interrupt enable
|
|
FDCAN_IE_RF0NE | // RX FIFO 0 new message
|
|
FDCAN_IE_RF0FE | // Rx FIFO 0 FIFO Full
|
|
FDCAN_IE_RF1NE | // RX FIFO 1 new message
|
|
FDCAN_IE_RF1FE; // Rx FIFO 1 FIFO Full
|
|
#if defined(STM32G4)
|
|
can_->ILS = FDCAN_ILS_PERR | FDCAN_ILS_SMSG;
|
|
#else
|
|
can_->ILS = FDCAN_ILS_TCL | FDCAN_ILS_BOE; //Set Line 1 for Transmit Complete Event Interrupt and Bus Off Interrupt
|
|
#endif
|
|
// And Busoff error
|
|
#if defined(STM32G4)
|
|
can_->TXBTIE = 0x7;
|
|
#else
|
|
can_->TXBTIE = 0xFFFFFFFF;
|
|
#endif
|
|
can_->ILE = 0x3;
|
|
|
|
// If mode is Filtered then we finish the initialisation in configureFilter method
|
|
// otherwise we finish here
|
|
if (mode != FilteredMode) {
|
|
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode
|
|
uint32_t while_start_ms = AP_HAL::millis();
|
|
while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) {
|
|
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//initialised
|
|
initialised_ = true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void CANIface::clear_rx()
|
|
{
|
|
CriticalSectionLocker lock;
|
|
rx_queue_.clear();
|
|
}
|
|
|
|
void CANIface::setupMessageRam()
|
|
{
|
|
#if defined(STM32G4)
|
|
const uint32_t base = SRAMCAN_BASE + FDCAN_MESSAGERAM_STRIDE * can_interfaces[self_index_];
|
|
memset((void*)base, 0, FDCAN_MESSAGERAM_STRIDE);
|
|
MessageRam_.StandardFilterSA = base;
|
|
MessageRam_.ExtendedFilterSA = base + FDCAN_EXFILTER_OFFSET;
|
|
MessageRam_.RxFIFO0SA = base + FDCAN_RXFIFO0_OFFSET;
|
|
MessageRam_.RxFIFO1SA = base + FDCAN_RXFIFO1_OFFSET;
|
|
MessageRam_.TxFIFOQSA = base + FDCAN_TXFIFO_OFFSET;
|
|
|
|
can_->TXBC = 0; // fifo mode
|
|
#else
|
|
uint32_t num_elements = 0;
|
|
|
|
// Rx FIFO 0 start address and element count
|
|
num_elements = MIN((FDCAN_NUM_RXFIFO0_SIZE/FDCAN_FRAME_BUFFER_SIZE), 64U);
|
|
if (num_elements) {
|
|
can_->RXF0C = (FDCANMessageRAMOffset_ << 2) | (num_elements << 16);
|
|
MessageRam_.RxFIFO0SA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U);
|
|
FDCANMessageRAMOffset_ += num_elements*FDCAN_FRAME_BUFFER_SIZE;
|
|
}
|
|
|
|
// Tx FIFO/queue start address and element count
|
|
num_elements = MIN((FDCAN_TX_FIFO_BUFFER_SIZE/FDCAN_FRAME_BUFFER_SIZE), 32U);
|
|
if (num_elements) {
|
|
can_->TXBC = (FDCANMessageRAMOffset_ << 2) | (num_elements << 24);
|
|
MessageRam_.TxFIFOQSA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U);
|
|
FDCANMessageRAMOffset_ += num_elements*FDCAN_FRAME_BUFFER_SIZE;
|
|
}
|
|
MessageRam_.EndAddress = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U);
|
|
if (MessageRam_.EndAddress > MESSAGE_RAM_END_ADDR) {
|
|
//We are overflowing the limit of Allocated Message RAM
|
|
AP_HAL::panic("CANFDIface: Message RAM Overflow!");
|
|
return;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void CANIface::handleTxCompleteInterrupt(const uint64_t timestamp_us)
|
|
{
|
|
for (uint8_t i = 0; i < NumTxMailboxes; i++) {
|
|
if ((can_->TXBTO & (1UL << i))) {
|
|
|
|
if (!pending_tx_[i].pushed) {
|
|
stats.tx_success++;
|
|
pending_tx_[i].pushed = true;
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
if (pending_tx_[i].loopback && had_activity_) {
|
|
CanRxItem rx_item;
|
|
rx_item.frame = pending_tx_[i].frame;
|
|
rx_item.timestamp_us = timestamp_us;
|
|
rx_item.flags = AP_HAL::CANIface::Loopback;
|
|
add_to_rx_queue(rx_item);
|
|
}
|
|
if (event_handle_ != nullptr) {
|
|
stats.num_events++;
|
|
#if CH_CFG_USE_EVENTS == TRUE
|
|
evt_src_.signalI(1 << self_index_);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool CANIface::readRxFIFO(uint8_t fifo_index)
|
|
{
|
|
uint32_t *frame_ptr;
|
|
uint32_t index;
|
|
uint64_t timestamp_us = AP_HAL::micros64();
|
|
if (fifo_index == 0) {
|
|
#if !defined(STM32G4)
|
|
//Check if RAM allocated to RX FIFO
|
|
if ((can_->RXF0C & FDCAN_RXF0C_F0S) == 0) {
|
|
return false;
|
|
}
|
|
#endif
|
|
//Register Message Lost as a hardware error
|
|
if ((can_->RXF0S & FDCAN_RXF0S_RF0L) != 0) {
|
|
stats.rx_errors++;
|
|
}
|
|
|
|
if ((can_->RXF0S & FDCAN_RXF0S_F0FL) == 0) {
|
|
return false; //No More messages in FIFO
|
|
} else {
|
|
index = ((can_->RXF0S & FDCAN_RXF0S_F0GI) >> 8);
|
|
frame_ptr = (uint32_t *)(MessageRam_.RxFIFO0SA + (index * FDCAN_FRAME_BUFFER_SIZE * 4));
|
|
}
|
|
} else if (fifo_index == 1) {
|
|
#if !defined(STM32G4)
|
|
//Check if RAM allocated to RX FIFO
|
|
if ((can_->RXF1C & FDCAN_RXF1C_F1S) == 0) {
|
|
return false;
|
|
}
|
|
#endif
|
|
//Register Message Lost as a hardware error
|
|
if ((can_->RXF1S & FDCAN_RXF1S_RF1L) != 0) {
|
|
stats.rx_errors++;
|
|
}
|
|
|
|
if ((can_->RXF1S & FDCAN_RXF1S_F1FL) == 0) {
|
|
return false;
|
|
} else {
|
|
index = ((can_->RXF1S & FDCAN_RXF1S_F1GI) >> 8);
|
|
frame_ptr = (uint32_t *)(MessageRam_.RxFIFO1SA + (index * FDCAN_FRAME_BUFFER_SIZE * 4));
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// Read the frame contents
|
|
AP_HAL::CANFrame frame;
|
|
uint32_t id = frame_ptr[0];
|
|
if ((id & IDE) == 0) {
|
|
//Standard ID
|
|
frame.id = ((id & STID_MASK) >> 18) & AP_HAL::CANFrame::MaskStdID;
|
|
} else {
|
|
//Extended ID
|
|
frame.id = (id & EXID_MASK) & AP_HAL::CANFrame::MaskExtID;
|
|
frame.id |= AP_HAL::CANFrame::FlagEFF;
|
|
}
|
|
|
|
if ((id & RTR) != 0) {
|
|
frame.id |= AP_HAL::CANFrame::FlagRTR;
|
|
}
|
|
frame.dlc = (frame_ptr[1] & DLC_MASK) >> 16;
|
|
uint8_t *data = (uint8_t*)&frame_ptr[2];
|
|
//We only handle Data Length of 8 Bytes for now
|
|
for (uint8_t i = 0; i < 8; i++) {
|
|
frame.data[i] = data[i];
|
|
}
|
|
|
|
//Acknowledge the FIFO entry we just read
|
|
if (fifo_index == 0) {
|
|
can_->RXF0A = index;
|
|
} else if (fifo_index == 1) {
|
|
can_->RXF1A = index;
|
|
}
|
|
|
|
/*
|
|
* Store with timeout into the FIFO buffer
|
|
*/
|
|
|
|
CanRxItem rx_item;
|
|
rx_item.frame = frame;
|
|
rx_item.timestamp_us = timestamp_us;
|
|
rx_item.flags = 0;
|
|
if (add_to_rx_queue(rx_item)) {
|
|
stats.rx_received++;
|
|
} else {
|
|
stats.rx_overflow++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void CANIface::handleRxInterrupt(uint8_t fifo_index)
|
|
{
|
|
while (readRxFIFO(fifo_index)) {
|
|
had_activity_ = true;
|
|
}
|
|
if (event_handle_ != nullptr) {
|
|
stats.num_events++;
|
|
#if CH_CFG_USE_EVENTS == TRUE
|
|
evt_src_.signalI(1 << self_index_);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This method is used to count errors and abort transmission on error if necessary.
|
|
* This functionality used to be implemented in the SCE interrupt handler, but that approach was
|
|
* generating too much processing overhead, especially on disconnected interfaces.
|
|
*
|
|
* Should be called from RX ISR, TX ISR, and select(); interrupts must be enabled.
|
|
*/
|
|
void CANIface::pollErrorFlagsFromISR()
|
|
{
|
|
const uint8_t cel = can_->ECR >> 16;
|
|
|
|
if (cel != 0) {
|
|
stats.ecr = can_->ECR;
|
|
for (int i = 0; i < NumTxMailboxes; i++) {
|
|
if (!pending_tx_[i].abort_on_error || pending_tx_[i].aborted) {
|
|
continue;
|
|
}
|
|
if (((1 << pending_tx_[i].index) & can_->TXBRP)) {
|
|
can_->TXBCR = 1 << pending_tx_[i].index; // Goodnight sweet transmission
|
|
pending_tx_[i].aborted = true;
|
|
stats.tx_abort++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CANIface::pollErrorFlags()
|
|
{
|
|
CriticalSectionLocker cs_locker;
|
|
pollErrorFlagsFromISR();
|
|
}
|
|
|
|
bool CANIface::canAcceptNewTxFrame() const
|
|
{
|
|
#if !defined(STM32G4)
|
|
//Check if Tx FIFO is allocated
|
|
if ((can_->TXBC & FDCAN_TXBC_TFQS) == 0) {
|
|
return false;
|
|
}
|
|
#endif
|
|
if ((can_->TXFQS & FDCAN_TXFQS_TFQF) != 0) {
|
|
return false; //we don't have free space
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Total number of hardware failures and other kinds of errors (e.g. queue overruns).
|
|
* May increase continuously if the interface is not connected to the bus.
|
|
*/
|
|
uint32_t CANIface::getErrorCount() const
|
|
{
|
|
CriticalSectionLocker lock;
|
|
return stats.num_busoff_err +
|
|
stats.rx_errors +
|
|
stats.rx_overflow +
|
|
stats.tx_rejected +
|
|
stats.tx_abort +
|
|
stats.tx_timedout;
|
|
}
|
|
|
|
#if CH_CFG_USE_EVENTS == TRUE
|
|
ChibiOS::EventSource CANIface::evt_src_;
|
|
bool CANIface::set_event_handle(AP_HAL::EventHandle* handle)
|
|
{
|
|
CriticalSectionLocker lock;
|
|
event_handle_ = handle;
|
|
event_handle_->set_source(&evt_src_);
|
|
return event_handle_->register_event(1 << self_index_);
|
|
}
|
|
#endif
|
|
|
|
bool CANIface::isRxBufferEmpty() const
|
|
{
|
|
CriticalSectionLocker lock;
|
|
return rx_queue_.available() == 0;
|
|
}
|
|
|
|
void CANIface::clearErrors()
|
|
{
|
|
if (_detected_bus_off) {
|
|
//Try Recovering from BusOff
|
|
//While in Bus off mode the CAN Peripheral is put
|
|
//into INIT mode, when we ask Peripheral to get out
|
|
//of INIT mode, the bit stream processor (BSP) synchronizes
|
|
//itself to the data transfer on the CAN bus by
|
|
//waiting for the occurrence of a sequence of 11 consecutive
|
|
//recessive bits (Bus_Idle) before it can take part in bus
|
|
//activities and start the message transfer
|
|
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode
|
|
stats.num_busoff_err++;
|
|
_detected_bus_off = false;
|
|
}
|
|
}
|
|
|
|
void CANIface::discardTimedOutTxMailboxes(uint64_t current_time)
|
|
{
|
|
CriticalSectionLocker lock;
|
|
for (int i = 0; i < NumTxMailboxes; i++) {
|
|
if (pending_tx_[i].aborted || !pending_tx_[i].setup) {
|
|
continue;
|
|
}
|
|
if (((1 << pending_tx_[i].index) & can_->TXBRP) && pending_tx_[i].deadline < current_time) {
|
|
can_->TXBCR = 1 << pending_tx_[i].index; // Goodnight sweet transmission
|
|
pending_tx_[i].aborted = true;
|
|
stats.tx_timedout++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CANIface::checkAvailable(bool& read, bool& write, const AP_HAL::CANFrame* pending_tx) const
|
|
{
|
|
write = false;
|
|
read = !isRxBufferEmpty();
|
|
if (pending_tx != nullptr) {
|
|
write = canAcceptNewTxFrame();
|
|
}
|
|
}
|
|
|
|
bool CANIface::select(bool &read, bool &write,
|
|
const AP_HAL::CANFrame* pending_tx,
|
|
uint64_t blocking_deadline)
|
|
{
|
|
const bool in_read = read;
|
|
const bool in_write= write;
|
|
uint64_t time = AP_HAL::micros64();
|
|
|
|
if (!read && !write) {
|
|
//invalid request
|
|
return false;
|
|
}
|
|
|
|
discardTimedOutTxMailboxes(time); // Check TX timeouts - this may release some TX slots
|
|
pollErrorFlags();
|
|
clearErrors();
|
|
|
|
checkAvailable(read, write, pending_tx); // Check if we already have some of the requested events
|
|
if ((read && in_read) || (write && in_write)) {
|
|
return true;
|
|
}
|
|
while (time < blocking_deadline) {
|
|
if (event_handle_ == nullptr) {
|
|
break;
|
|
}
|
|
event_handle_->wait(blocking_deadline - time); // Block until timeout expires or any iface updates
|
|
checkAvailable(read, write, pending_tx); // Check what we got
|
|
if ((read && in_read) || (write && in_write)) {
|
|
return true;
|
|
}
|
|
time = AP_HAL::micros64();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#if !defined(HAL_BOOTLOADER_BUILD)
|
|
void CANIface::get_stats(ExpandingString &str)
|
|
{
|
|
CriticalSectionLocker lock;
|
|
str.printf("tx_requests: %lu\n"
|
|
"tx_rejected: %lu\n"
|
|
"tx_success: %lu\n"
|
|
"tx_timedout: %lu\n"
|
|
"tx_abort: %lu\n"
|
|
"rx_received: %lu\n"
|
|
"rx_overflow: %lu\n"
|
|
"rx_errors: %lu\n"
|
|
"num_busoff_err: %lu\n"
|
|
"num_events: %lu\n"
|
|
"ECR: %lx\n",
|
|
stats.tx_requests,
|
|
stats.tx_rejected,
|
|
stats.tx_success,
|
|
stats.tx_timedout,
|
|
stats.tx_abort,
|
|
stats.rx_received,
|
|
stats.rx_overflow,
|
|
stats.rx_errors,
|
|
stats.num_busoff_err,
|
|
stats.num_events,
|
|
stats.ecr);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Interrupt handlers
|
|
*/
|
|
extern "C"
|
|
{
|
|
#ifdef HAL_CAN_IFACE1_ENABLE
|
|
// FDCAN1
|
|
CH_IRQ_HANDLER(FDCAN1_IT0_IRQHandler);
|
|
CH_IRQ_HANDLER(FDCAN1_IT0_IRQHandler)
|
|
{
|
|
CH_IRQ_PROLOGUE();
|
|
handleCANInterrupt(0, 0);
|
|
CH_IRQ_EPILOGUE();
|
|
}
|
|
|
|
CH_IRQ_HANDLER(FDCAN1_IT1_IRQHandler);
|
|
CH_IRQ_HANDLER(FDCAN1_IT1_IRQHandler)
|
|
{
|
|
CH_IRQ_PROLOGUE();
|
|
handleCANInterrupt(0, 1);
|
|
CH_IRQ_EPILOGUE();
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAL_CAN_IFACE2_ENABLE
|
|
// FDCAN2
|
|
CH_IRQ_HANDLER(FDCAN2_IT0_IRQHandler);
|
|
CH_IRQ_HANDLER(FDCAN2_IT0_IRQHandler)
|
|
{
|
|
CH_IRQ_PROLOGUE();
|
|
handleCANInterrupt(1, 0);
|
|
CH_IRQ_EPILOGUE();
|
|
}
|
|
|
|
CH_IRQ_HANDLER(FDCAN2_IT1_IRQHandler);
|
|
CH_IRQ_HANDLER(FDCAN2_IT1_IRQHandler)
|
|
{
|
|
CH_IRQ_PROLOGUE();
|
|
handleCANInterrupt(1, 1);
|
|
CH_IRQ_EPILOGUE();
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAL_CAN_IFACE3_ENABLE
|
|
// FDCAN3
|
|
CH_IRQ_HANDLER(FDCAN3_IT0_IRQHandler);
|
|
CH_IRQ_HANDLER(FDCAN3_IT0_IRQHandler)
|
|
{
|
|
CH_IRQ_PROLOGUE();
|
|
handleCANInterrupt(2, 0);
|
|
CH_IRQ_EPILOGUE();
|
|
}
|
|
|
|
CH_IRQ_HANDLER(FDCAN3_IT1_IRQHandler);
|
|
CH_IRQ_HANDLER(FDCAN3_IT1_IRQHandler)
|
|
{
|
|
CH_IRQ_PROLOGUE();
|
|
handleCANInterrupt(2, 1);
|
|
CH_IRQ_EPILOGUE();
|
|
}
|
|
#endif
|
|
|
|
} // extern "C"
|
|
|
|
#endif //defined(STM32H7XX) || defined(STM32G4)
|
|
|
|
#endif //HAL_NUM_CAN_IFACES
|