ardupilot/libraries/AP_DCM/AP_DCM.cpp

336 lines
12 KiB
C++

/*
APM_DCM_FW.cpp - DCM AHRS Library, fixed wing version, for Ardupilot Mega
Code by Doug Weibel, Jordi Muñoz and Jose Julio. DIYDrones.com
This library works with the ArduPilot Mega and "Oilpan"
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Methods:
update_DCM(_G_Dt) : Updates the AHRS by integrating the rotation matrix over time _G_Dt using the IMU object data
get_gyro() : Returns gyro vector corrected for bias
get_accel() : Returns accelerometer vector
get_dcm_matrix() : Returns dcm matrix
*/
#include <AP_DCM.h>
#define OUTPUTMODE 1 // This is just used for debugging, remove later
#define ToRad(x) (x*0.01745329252) // *pi/180
#define ToDeg(x) (x*57.2957795131) // *180/pi
#define Kp_ROLLPITCH 0.05967 // .0014 * 418/9.81 Pitch&Roll Drift Correction Proportional Gain
#define Ki_ROLLPITCH 0.00001278 // 0.0000003 * 418/9.81 Pitch&Roll Drift Correction Integrator Gain
#define Kp_YAW 0.8 // Yaw Drift Correction Porportional Gain
#define Ki_YAW 0.00004 // Yaw Drift CorrectionIntegrator Gain
#define SPEEDFILT 300 // centimeters/second
#define ADC_CONSTRAINT 900
void
AP_DCM::set_compass(Compass *compass)
{
_compass = compass;
}
/**************************************************/
void
AP_DCM::update_DCM(float _G_Dt)
{
_imu->update();
_gyro_vector = _imu->get_gyro(); // Get current values for IMU sensors
_accel_vector = _imu->get_accel(); // Get current values for IMU sensors
matrix_update(_G_Dt); // Integrate the DCM matrix
normalize(); // Normalize the DCM matrix
drift_correction(); // Perform drift correction
euler_angles(); // Calculate pitch, roll, yaw for stabilization and navigation
}
/**************************************************/
//For Debugging
/*
void
printm(const char *l, Matrix3f &m)
{ Serial.println(" "); Serial.println(l);
Serial.print(m.a.x, 12); Serial.print(" "); Serial.print(m.a.y, 12); Serial.print(" "); Serial.println(m.a.z, 12);
Serial.print(m.b.x, 12); Serial.print(" "); Serial.print(m.b.y, 12); Serial.print(" "); Serial.println(m.b.z, 12);
Serial.print(m.c.x, 12); Serial.print(" "); Serial.print(m.c.y, 12); Serial.print(" "); Serial.println(m.c.z, 12);
Serial.print(*(uint32_t *)&(m.a.x), HEX); Serial.print(" "); Serial.print(*(uint32_t *)&(m.a.y), HEX); Serial.print(" "); Serial.println(*(uint32_t *)&(m.a.z), HEX);
Serial.print(*(uint32_t *)&(m.b.x), HEX); Serial.print(" "); Serial.print(*(uint32_t *)&(m.b.y), HEX); Serial.print(" "); Serial.println(*(uint32_t *)&(m.b.z), HEX);
Serial.print(*(uint32_t *)&(m.c.x), HEX); Serial.print(" "); Serial.print(*(uint32_t *)&(m.c.y), HEX); Serial.print(" "); Serial.println(*(uint32_t *)&(m.c.z), HEX);
}
*/
/**************************************************/
void
AP_DCM::matrix_update(float _G_Dt)
{
Matrix3f update_matrix;
Matrix3f temp_matrix;
//Record when you saturate any of the gyros.
if((fabs(_gyro_vector.x) >= radians(300)) ||
(fabs(_gyro_vector.y) >= radians(300)) ||
(fabs(_gyro_vector.z) >= radians(300))){
gyro_sat_count++;
}
_omega_integ_corr = _gyro_vector + _omega_I; // Used for _centripetal correction (theoretically better than _omega)
_omega = _omega_integ_corr + _omega_P; // Equation 16, adding proportional and integral correction terms
if(_centripetal){
accel_adjust(); // Remove _centripetal acceleration.
}
#if OUTPUTMODE == 1
update_matrix.a.x = 0;
update_matrix.a.y = -_G_Dt * _omega.z; // -delta Theta z
update_matrix.a.z = _G_Dt * _omega.y; // delta Theta y
update_matrix.b.x = _G_Dt * _omega.z; // delta Theta z
update_matrix.b.y = 0;
update_matrix.b.z = -_G_Dt * _omega.x; // -delta Theta x
update_matrix.c.x = -_G_Dt * _omega.y; // -delta Theta y
update_matrix.c.y = _G_Dt * _omega.x; // delta Theta x
update_matrix.c.z = 0;
#else // Uncorrected data (no drift correction)
update_matrix.a.x = 0;
update_matrix.a.y = -_G_Dt * _gyro_vector.z;
update_matrix.a.z = _G_Dt * _gyro_vector.y;
update_matrix.b.x = _G_Dt * _gyro_vector.z;
update_matrix.b.y = 0;
update_matrix.b.z = -_G_Dt * _gyro_vector.x;
update_matrix.c.x = -_G_Dt * _gyro_vector.y;
update_matrix.c.y = _G_Dt * _gyro_vector.x;
update_matrix.c.z = 0;
#endif
temp_matrix = _dcm_matrix * update_matrix;
_dcm_matrix = _dcm_matrix + temp_matrix; // Equation 17
}
/**************************************************/
void
AP_DCM::accel_adjust(void)
{
Vector3f veloc, temp;
float vel;
veloc.x = _gps->ground_speed / 100; // We are working with acceleration in m/s^2 units
// We are working with a modified version of equation 26 as our IMU object reports acceleration in the positive axis direction as positive
//_accel_vector -= _omega_integ_corr % _veloc; // Equation 26 This line is giving the compiler a problem so we break it up below
temp.x = 0;
temp.y = _omega_integ_corr.z * veloc.x; // only computing the non-zero terms
temp.z = -1.0f * _omega_integ_corr.y * veloc.x; // After looking at the compiler issue lets remove _veloc and simlify
_accel_vector -= temp;
}
/*************************************************
Direction Cosine Matrix IMU: Theory
William Premerlani and Paul Bizard
Numerical errors will gradually reduce the orthogonality conditions expressed by equation 5
to approximations rather than identities. In effect, the axes in the two frames of reference no
longer describe a rigid body. Fortunately, numerical error accumulates very slowly, so it is a
simple matter to stay ahead of it.
We call the process of enforcing the orthogonality conditions ÒrenormalizationÓ.
*/
void
AP_DCM::normalize(void)
{
float error = 0;
Vector3f temporary[3];
int problem = 0;
error = _dcm_matrix.a * _dcm_matrix.b; // eq.18
temporary[0] = _dcm_matrix.b;
temporary[1] = _dcm_matrix.a;
temporary[0] = _dcm_matrix.a - (temporary[0] * (0.5f * error)); // eq.19
temporary[1] = _dcm_matrix.b - (temporary[1] * (0.5f * error)); // eq.19
temporary[2] = temporary[0] % temporary[1]; // c= a x b // eq.20
_dcm_matrix.a = renorm(temporary[0], problem);
_dcm_matrix.b = renorm(temporary[1], problem);
_dcm_matrix.c = renorm(temporary[2], problem);
if (problem == 1) { // Our solution is blowing up and we will force back to initial condition. Hope we are not upside down!
_dcm_matrix.a.x = 1.0f;
_dcm_matrix.a.y = 0.0f;
_dcm_matrix.a.z = 0.0f;
_dcm_matrix.b.x = 0.0f;
_dcm_matrix.b.y = 1.0f;
_dcm_matrix.b.z = 0.0f;
_dcm_matrix.c.x = 0.0f;
_dcm_matrix.c.y = 0.0f;
_dcm_matrix.c.z = 1.0f;
}
}
/**************************************************/
Vector3f
AP_DCM::renorm(Vector3f const &a, int &problem)
{
float renorm;
renorm = a * a;
if (renorm < 1.5625f && renorm > 0.64f) { // Check if we are OK to use Taylor expansion
renorm = 0.5 * (3 - renorm); // eq.21
} else if (renorm < 100.0f && renorm > 0.01f) {
renorm = 1.0 / sqrt(renorm);
renorm_sqrt_count++;
} else {
problem = 1;
renorm_blowup_count++;
}
return(a * renorm);
}
/**************************************************/
void
AP_DCM::drift_correction(void)
{
//Compensation the Roll, Pitch and Yaw drift.
//float mag_heading_x;
//float mag_heading_y;
float error_course;
float accel_magnitude;
float accel_weight;
float integrator_magnitude;
//static float scaled_omega_P[3];
//static float scaled_omega_I[3];
static bool in_motion = false;
Matrix3f rot_mat;
//*****Roll and Pitch***************
// Calculate the magnitude of the accelerometer vector
accel_magnitude = _accel_vector.length() / 9.80665f;
// Dynamic weighting of accelerometer info (reliability filter)
// Weight for accelerometer info (<0.5G = 0.0, 1G = 1.0 , >1.5G = 0.0)
accel_weight = constrain(1 - 2 * fabs(1 - accel_magnitude), 0, 1); //
// We monitor the amount that the accelerometer based drift correction is deweighted for performance reporting
_health = constrain(_health+(0.02 * (accel_weight - .5)), 0, 1);
// adjust the ground of reference
_error_roll_pitch = _dcm_matrix.c % _accel_vector; // Equation 27 *** sign changed from prev implementation???
// error_roll_pitch are in Accel m/s^2 units
// Limit max error_roll_pitch to limit max omega_P and omega_I
_error_roll_pitch.x = constrain(_error_roll_pitch.x, -1.17f, 1.17f);
_error_roll_pitch.y = constrain(_error_roll_pitch.y, -1.17f, 1.17f);
_error_roll_pitch.z = constrain(_error_roll_pitch.z, -1.17f, 1.17f);
_omega_P = _error_roll_pitch * (Kp_ROLLPITCH * accel_weight);
_omega_I += _error_roll_pitch * (Ki_ROLLPITCH * accel_weight);
//*****YAW***************
if (_compass) {
// We make the gyro YAW drift correction based on compass magnetic heading
error_course = (_dcm_matrix.a.x * _compass->heading_y) - (_dcm_matrix.b.x * _compass->heading_x); // Equation 23, Calculating YAW error
} else {
// Use GPS Ground course to correct yaw gyro drift
if (_gps->ground_speed >= SPEEDFILT) {
_course_over_ground_x = cos(ToRad(_gps->ground_course/100.0));
_course_over_ground_y = sin(ToRad(_gps->ground_course/100.0));
if(in_motion) {
error_course = (_dcm_matrix.a.x * _course_over_ground_y) - (_dcm_matrix.b.x * _course_over_ground_x); // Equation 23, Calculating YAW error
} else {
float cos_psi_err, sin_psi_err;
// This is the case for when we first start moving and reset the DCM so that yaw matches the gps ground course
// This is just to get a reasonable estimate faster
yaw = atan2(_dcm_matrix.b.x, _dcm_matrix.a.x);
cos_psi_err = cos(ToRad(_gps->ground_course/100.0) - yaw);
sin_psi_err = sin(ToRad(_gps->ground_course/100.0) - yaw);
// Rxx = cos psi err, Rxy = - sin psi err, Rxz = 0
// Ryx = sin psi err, Ryy = cos psi err, Ryz = 0
// Rzx = Rzy = 0, Rzz = 1
rot_mat.a.x = cos_psi_err;
rot_mat.a.y = -sin_psi_err;
rot_mat.b.x = sin_psi_err;
rot_mat.b.y = cos_psi_err;
rot_mat.a.z = 0;
rot_mat.b.z = 0;
rot_mat.c.x = 0;
rot_mat.c.y = 0;
rot_mat.c.z = 1.0;
_dcm_matrix = rot_mat * _dcm_matrix;
in_motion = true;
error_course = 0;
}
} else {
error_course = 0;
in_motion = false;
}
}
_error_yaw = _dcm_matrix.c * error_course; // Equation 24, Applys the yaw correction to the XYZ rotation of the aircraft, depeding the position.
_omega_P += _error_yaw * Kp_YAW; // Adding yaw correction to proportional correction vector.
_omega_I += _error_yaw * Ki_YAW; // adding yaw correction to integrator correction vector.
// Here we will place a limit on the integrator so that the integrator cannot ever exceed half the saturation limit of the gyros
integrator_magnitude = _omega_I.length();
if (integrator_magnitude > radians(300)) {
_omega_I *= (0.5f * radians(300) / integrator_magnitude); // Why do we have this discontinuous? EG, why the 0.5?
}
//Serial.print("*");
}
/**************************************************/
void
AP_DCM::euler_angles(void)
{
#if (OUTPUTMODE == 2) // Only accelerometer info (debugging purposes)
roll = atan2(_accel_vector.y, -_accel_vector.z); // atan2(acc_y, acc_z)
pitch = asin((_accel_vector.x) / (double)9.81); // asin(acc_x)
yaw = 0;
#else
pitch = -asin(_dcm_matrix.c.x);
roll = atan2(_dcm_matrix.c.y, _dcm_matrix.c.z);
yaw = atan2(_dcm_matrix.b.x, _dcm_matrix.a.x);
#endif
roll_sensor = degrees(roll) * 100;
pitch_sensor = degrees(pitch) * 100;
yaw_sensor = degrees(yaw) * 100;
if (yaw_sensor < 0)
yaw_sensor += 36000;
}
/**************************************************/
float
AP_DCM::get_health(void)
{
return _health;
}