mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-07 08:28:30 -04:00
132 lines
6.6 KiB
C++
132 lines
6.6 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#pragma once
|
|
|
|
#include "AP_Proximity.h"
|
|
|
|
#if HAL_PROXIMITY_ENABLED
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <AP_Common/AP_Common.h>
|
|
#include <AP_Common/Location.h>
|
|
#include "AP_Proximity_Boundary_3D.h"
|
|
|
|
#define PROXIMITY_GND_DETECT_THRESHOLD 1.0f // set ground detection threshold to be 1 meters
|
|
#define PROXIMITY_ALT_DETECT_TIMEOUT_MS 500 // alt readings should arrive within this much time
|
|
#define PROXIMITY_BOUNDARY_3D_TIMEOUT_MS 750 // we should check the 3D boundary faces after every this many ms
|
|
|
|
class AP_Proximity_Backend
|
|
{
|
|
public:
|
|
// constructor. This incorporates initialisation as well.
|
|
AP_Proximity_Backend(AP_Proximity &_frontend, AP_Proximity::Proximity_State &_state);
|
|
|
|
// we declare a virtual destructor so that Proximity drivers can
|
|
// override with a custom destructor if need be
|
|
virtual ~AP_Proximity_Backend(void) {}
|
|
|
|
// update the state structure
|
|
virtual void update() = 0;
|
|
|
|
// timeout faces that have not received data recently and update filter frequencies
|
|
void boundary_3D_checks();
|
|
|
|
// get maximum and minimum distances (in meters) of sensor
|
|
virtual float distance_max() const = 0;
|
|
virtual float distance_min() const = 0;
|
|
|
|
// get distance upwards in meters. returns true on success
|
|
virtual bool get_upward_distance(float &distance) const { return false; }
|
|
|
|
// handle mavlink DISTANCE_SENSOR messages
|
|
virtual void handle_msg(const mavlink_message_t &msg) {}
|
|
|
|
// get total number of obstacles, used in GPS based Simple Avoidance
|
|
uint8_t get_obstacle_count() { return boundary.get_obstacle_count(); }
|
|
|
|
// get vector to obstacle based on obstacle_num passed, used in GPS based Simple Avoidance
|
|
bool get_obstacle(uint8_t obstacle_num, Vector3f& vec_to_obstacle) const { return boundary.get_obstacle(obstacle_num, vec_to_obstacle); }
|
|
|
|
// returns shortest distance to "obstacle_num" obstacle, from a line segment formed between "seg_start" and "seg_end"
|
|
// used in GPS based Simple Avoidance
|
|
bool closest_point_from_segment_to_obstacle(const uint8_t obstacle_num, const Vector3f& seg_start, const Vector3f& seg_end, Vector3f& closest_point) const { return boundary.closest_point_from_segment_to_obstacle(obstacle_num , seg_start, seg_end, closest_point); }
|
|
|
|
// get distance and angle to closest object (used for pre-arm check)
|
|
// returns true on success, false if no valid readings
|
|
bool get_closest_object(float& angle_deg, float &distance) const { return boundary.get_closest_object(angle_deg, distance); }
|
|
|
|
// get number of objects, angle and distance - used for non-GPS avoidance
|
|
uint8_t get_horizontal_object_count() const {return boundary.get_horizontal_object_count(); }
|
|
bool get_horizontal_object_angle_and_distance(uint8_t object_number, float& angle_deg, float &distance) const { return boundary.get_horizontal_object_angle_and_distance(object_number, angle_deg, distance); }
|
|
|
|
// get distances in 8 directions. used for sending distances to ground station
|
|
bool get_horizontal_distances(AP_Proximity::Proximity_Distance_Array &prx_dist_array) const;
|
|
|
|
// get raw and filtered distances in 8 directions per layer. used for logging
|
|
bool get_active_layer_distances(uint8_t layer, AP_Proximity::Proximity_Distance_Array &prx_dist_array, AP_Proximity::Proximity_Distance_Array &prx_filt_dist_array) const;
|
|
|
|
// get number of layers
|
|
uint8_t get_num_layers() const { return boundary.get_num_layers(); }
|
|
|
|
// store rangefinder values
|
|
void set_rangefinder_alt(bool use, bool healthy, float alt_cm);
|
|
|
|
protected:
|
|
|
|
// set status and update valid_count
|
|
void set_status(AP_Proximity::Status status);
|
|
|
|
// correct an angle (in degrees) based on the orientation and yaw correction parameters
|
|
float correct_angle_for_orientation(float angle_degrees) const;
|
|
|
|
// check if a reading should be ignored because it falls into an ignore area (check_for_ign_area should be sent as false if this check is not needed)
|
|
// pitch is the vertical body-frame angle (in degrees) to the obstacle (0=directly ahead, 90 is above the vehicle)
|
|
// yaw is the horizontal body-frame angle (in degrees) to the obstacle (0=directly ahead of the vehicle, 90 is to the right of the vehicle)
|
|
// Also checks if obstacle is near land or out of range
|
|
// angles should be in degrees and in the range of 0 to 360, distance should be in meteres
|
|
bool ignore_reading(float pitch, float yaw, float distance_m, bool check_for_ign_area = true) const;
|
|
bool ignore_reading(float yaw, float distance_m, bool check_for_ign_area = true) const { return ignore_reading(0.0f, yaw, distance_m, check_for_ign_area); }
|
|
|
|
// get alt from rangefinder in meters. This reading is corrected for vehicle tilt
|
|
bool get_rangefinder_alt(float &alt_m) const;
|
|
|
|
// Check if Obstacle defined by body-frame yaw and pitch is near ground
|
|
bool check_obstacle_near_ground(float pitch, float yaw, float distance) const;
|
|
|
|
// database helpers. All angles are in degrees
|
|
static bool database_prepare_for_push(Vector3f ¤t_pos, Matrix3f &body_to_ned);
|
|
// Note: "angle" refers to yaw (in body frame) towards the obstacle
|
|
static void database_push(float angle, float distance);
|
|
static void database_push(float angle, float distance, uint32_t timestamp_ms, const Vector3f ¤t_pos, const Matrix3f &body_to_ned) {
|
|
database_push(angle, 0.0f, distance, timestamp_ms, current_pos, body_to_ned);
|
|
};
|
|
static void database_push(float angle, float pitch, float distance, uint32_t timestamp_ms, const Vector3f ¤t_pos, const Matrix3f &body_to_ned);
|
|
|
|
uint32_t _last_timeout_check_ms; // time when boundary was checked for non-updated valid faces
|
|
|
|
// used for ground detection
|
|
uint32_t _last_downward_update_ms;
|
|
bool _rangefinder_use;
|
|
bool _rangefinder_healthy;
|
|
float _rangefinder_alt;
|
|
|
|
AP_Proximity &frontend;
|
|
AP_Proximity::Proximity_State &state; // reference to this instances state
|
|
|
|
// Methods to manipulate 3D boundary in this class
|
|
AP_Proximity_Boundary_3D boundary;
|
|
};
|
|
|
|
#endif // HAL_PROXIMITY_ENABLED
|