ardupilot/ArduCopter/sensors.cpp
2020-04-16 17:30:29 +09:00

244 lines
7.8 KiB
C++

#include "Copter.h"
// return barometric altitude in centimeters
void Copter::read_barometer(void)
{
barometer.update();
baro_alt = barometer.get_altitude() * 100.0f;
motors->set_air_density_ratio(barometer.get_air_density_ratio());
}
void Copter::init_rangefinder(void)
{
#if RANGEFINDER_ENABLED == ENABLED
rangefinder.set_log_rfnd_bit(MASK_LOG_CTUN);
rangefinder.init(ROTATION_PITCH_270);
rangefinder_state.alt_cm_filt.set_cutoff_frequency(RANGEFINDER_WPNAV_FILT_HZ);
rangefinder_state.enabled = rangefinder.has_orientation(ROTATION_PITCH_270);
// upward facing range finder
rangefinder_up_state.alt_cm_filt.set_cutoff_frequency(RANGEFINDER_WPNAV_FILT_HZ);
rangefinder_up_state.enabled = rangefinder.has_orientation(ROTATION_PITCH_90);
#endif
}
// return rangefinder altitude in centimeters
void Copter::read_rangefinder(void)
{
#if RANGEFINDER_ENABLED == ENABLED
rangefinder.update();
#if RANGEFINDER_TILT_CORRECTION == ENABLED
const float tilt_correction = MAX(0.707f, ahrs.get_rotation_body_to_ned().c.z);
#else
const float tilt_correction = 1.0f;
#endif
// iterate through downward and upward facing lidar
struct {
RangeFinderState &state;
enum Rotation orientation;
} rngfnd[2] = {{rangefinder_state, ROTATION_PITCH_270}, {rangefinder_up_state, ROTATION_PITCH_90}};
for (uint8_t i=0; i < ARRAY_SIZE(rngfnd); i++) {
// local variables to make accessing simpler
RangeFinderState &rf_state = rngfnd[i].state;
enum Rotation rf_orient = rngfnd[i].orientation;
// update health
rf_state.alt_healthy = ((rangefinder.status_orient(rf_orient) == RangeFinder::Status::Good) &&
(rangefinder.range_valid_count_orient(rf_orient) >= RANGEFINDER_HEALTH_MAX));
// tilt corrected but unfiltered, not glitch protected alt
rf_state.alt_cm = tilt_correction * rangefinder.distance_cm_orient(rf_orient);
// remember inertial alt to allow us to interpolate rangefinder
rf_state.inertial_alt_cm = inertial_nav.get_altitude();
// glitch handling. rangefinder readings more than RANGEFINDER_GLITCH_ALT_CM from the last good reading
// are considered a glitch and glitch_count becomes non-zero
// glitches clear after RANGEFINDER_GLITCH_NUM_SAMPLES samples in a row.
// glitch_cleared_ms is set so surface tracking (or other consumers) can trigger a target reset
const int32_t glitch_cm = rf_state.alt_cm - rf_state.alt_cm_glitch_protected;
if (glitch_cm >= RANGEFINDER_GLITCH_ALT_CM) {
rf_state.glitch_count = MAX(rf_state.glitch_count+1, 1);
} else if (glitch_cm <= -RANGEFINDER_GLITCH_ALT_CM) {
rf_state.glitch_count = MIN(rf_state.glitch_count-1, -1);
} else {
rf_state.glitch_count = 0;
rf_state.alt_cm_glitch_protected = rf_state.alt_cm;
}
if (abs(rf_state.glitch_count) >= RANGEFINDER_GLITCH_NUM_SAMPLES) {
// clear glitch and record time so consumers (i.e. surface tracking) can reset their target altitudes
rf_state.glitch_count = 0;
rf_state.alt_cm_glitch_protected = rf_state.alt_cm;
rf_state.glitch_cleared_ms = AP_HAL::millis();
}
// filter rangefinder altitude
uint32_t now = AP_HAL::millis();
const bool timed_out = now - rf_state.last_healthy_ms > RANGEFINDER_TIMEOUT_MS;
if (rf_state.alt_healthy) {
if (timed_out) {
// reset filter if we haven't used it within the last second
rf_state.alt_cm_filt.reset(rf_state.alt_cm);
} else {
rf_state.alt_cm_filt.apply(rf_state.alt_cm, 0.05f);
}
rf_state.last_healthy_ms = now;
}
// send downward facing lidar altitude and health to waypoint and circle navigation libraries
if (rf_orient == ROTATION_PITCH_270) {
if (rangefinder_state.alt_healthy || timed_out) {
wp_nav->set_rangefinder_alt(rangefinder_state.enabled, rangefinder_state.alt_healthy, rangefinder_state.alt_cm_filt.get());
circle_nav->set_rangefinder_alt(rangefinder_state.enabled, rangefinder_state.alt_healthy, rangefinder_state.alt_cm_filt.get());
}
}
}
#else
// downward facing rangefinder
rangefinder_state.enabled = false;
rangefinder_state.alt_healthy = false;
rangefinder_state.alt_cm = 0;
// upward facing rangefinder
rangefinder_up_state.enabled = false;
rangefinder_up_state.alt_healthy = false;
rangefinder_up_state.alt_cm = 0;
#endif
}
// return true if rangefinder_alt can be used
bool Copter::rangefinder_alt_ok()
{
return (rangefinder_state.enabled && rangefinder_state.alt_healthy);
}
// return true if rangefinder_alt can be used
bool Copter::rangefinder_up_ok()
{
return (rangefinder_up_state.enabled && rangefinder_up_state.alt_healthy);
}
/*
get inertially interpolated rangefinder height. Inertial height is
recorded whenever we update the rangefinder height, then we use the
difference between the inertial height at that time and the current
inertial height to give us interpolation of height from rangefinder
*/
bool Copter::get_rangefinder_height_interpolated_cm(int32_t& ret)
{
if (!rangefinder_alt_ok()) {
return false;
}
ret = rangefinder_state.alt_cm_filt.get();
float inertial_alt_cm = inertial_nav.get_altitude();
ret += inertial_alt_cm - rangefinder_state.inertial_alt_cm;
return true;
}
/*
update RPM sensors
*/
void Copter::rpm_update(void)
{
#if RPM_ENABLED == ENABLED
rpm_sensor.update();
if (rpm_sensor.enabled(0) || rpm_sensor.enabled(1)) {
if (should_log(MASK_LOG_RCIN)) {
logger.Write_RPM(rpm_sensor);
}
}
#endif
}
// initialise optical flow sensor
void Copter::init_optflow()
{
#if OPTFLOW == ENABLED
// initialise optical flow sensor
optflow.init(MASK_LOG_OPTFLOW);
#endif // OPTFLOW == ENABLED
}
void Copter::compass_cal_update()
{
compass.cal_update();
if (hal.util->get_soft_armed()) {
return;
}
static uint32_t compass_cal_stick_gesture_begin = 0;
if (compass.is_calibrating()) {
if (channel_yaw->get_control_in() < -4000 && channel_throttle->get_control_in() > 900) {
compass.cancel_calibration_all();
}
} else {
bool stick_gesture_detected = compass_cal_stick_gesture_begin != 0 && !motors->armed() && channel_yaw->get_control_in() > 4000 && channel_throttle->get_control_in() > 900;
uint32_t tnow = millis();
if (!stick_gesture_detected) {
compass_cal_stick_gesture_begin = tnow;
} else if (tnow-compass_cal_stick_gesture_begin > 1000*COMPASS_CAL_STICK_GESTURE_TIME) {
#ifdef CAL_ALWAYS_REBOOT
compass.start_calibration_all(true,true,COMPASS_CAL_STICK_DELAY,true);
#else
compass.start_calibration_all(true,true,COMPASS_CAL_STICK_DELAY,false);
#endif
}
}
}
void Copter::accel_cal_update()
{
if (hal.util->get_soft_armed()) {
return;
}
ins.acal_update();
// check if new trim values, and set them
float trim_roll, trim_pitch;
if(ins.get_new_trim(trim_roll, trim_pitch)) {
ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
}
#ifdef CAL_ALWAYS_REBOOT
if (ins.accel_cal_requires_reboot()) {
hal.scheduler->delay(1000);
hal.scheduler->reboot(false);
}
#endif
}
// initialise proximity sensor
void Copter::init_proximity(void)
{
#if PROXIMITY_ENABLED == ENABLED
g2.proximity.init();
#endif
}
// winch and wheel encoder initialisation
void Copter::winch_init()
{
#if WINCH_ENABLED == ENABLED
g2.wheel_encoder.init();
g2.winch.init(&g2.wheel_encoder);
#endif
}
// winch and wheel encoder update
void Copter::winch_update()
{
#if WINCH_ENABLED == ENABLED
g2.wheel_encoder.update();
g2.winch.update();
#endif
}