ardupilot/Tools/autotest/pymavlink/mavlinkv10.py
2012-04-27 15:15:52 +10:00

5533 lines
312 KiB
Python

'''
MAVLink protocol implementation (auto-generated by mavgen.py)
Generated from: ardupilotmega.xml,common.xml
Note: this file has been auto-generated. DO NOT EDIT
'''
import struct, array, mavutil, time
WIRE_PROTOCOL_VERSION = "1.0"
class MAVLink_header(object):
'''MAVLink message header'''
def __init__(self, msgId, mlen=0, seq=0, srcSystem=0, srcComponent=0):
self.mlen = mlen
self.seq = seq
self.srcSystem = srcSystem
self.srcComponent = srcComponent
self.msgId = msgId
def pack(self):
return struct.pack('BBBBBB', 254, self.mlen, self.seq,
self.srcSystem, self.srcComponent, self.msgId)
class MAVLink_message(object):
'''base MAVLink message class'''
def __init__(self, msgId, name):
self._header = MAVLink_header(msgId)
self._payload = None
self._msgbuf = None
self._crc = None
self._fieldnames = []
self._type = name
def get_msgbuf(self):
return self._msgbuf
def get_header(self):
return self._header
def get_payload(self):
return self._payload
def get_crc(self):
return self._crc
def get_fieldnames(self):
return self._fieldnames
def get_type(self):
return self._type
def get_msgId(self):
return self._header.msgId
def get_srcSystem(self):
return self._header.srcSystem
def get_srcComponent(self):
return self._header.srcComponent
def get_seq(self):
return self._header.seq
def __str__(self):
ret = '%s {' % self._type
for a in self._fieldnames:
v = getattr(self, a)
ret += '%s : %s, ' % (a, v)
ret = ret[0:-2] + '}'
return ret
def pack(self, mav, crc_extra, payload):
self._payload = payload
self._header = MAVLink_header(self._header.msgId, len(payload), mav.seq,
mav.srcSystem, mav.srcComponent)
self._msgbuf = self._header.pack() + payload
crc = mavutil.x25crc(self._msgbuf[1:])
if True: # using CRC extra
crc.accumulate(chr(crc_extra))
self._crc = crc.crc
self._msgbuf += struct.pack('<H', self._crc)
return self._msgbuf
# enums
# MAV_MOUNT_MODE
MAV_MOUNT_MODE_RETRACT = 0 # Load and keep safe position (Roll,Pitch,Yaw) from EEPROM and stop
# stabilization
MAV_MOUNT_MODE_NEUTRAL = 1 # Load and keep neutral position (Roll,Pitch,Yaw) from EEPROM.
MAV_MOUNT_MODE_MAVLINK_TARGETING = 2 # Load neutral position and start MAVLink Roll,Pitch,Yaw control with
# stabilization
MAV_MOUNT_MODE_RC_TARGETING = 3 # Load neutral position and start RC Roll,Pitch,Yaw control with
# stabilization
MAV_MOUNT_MODE_GPS_POINT = 4 # Load neutral position and start to point to Lat,Lon,Alt
MAV_MOUNT_MODE_ENUM_END = 5 #
# MAV_CMD
MAV_CMD_NAV_WAYPOINT = 16 # Navigate to MISSION.
MAV_CMD_NAV_LOITER_UNLIM = 17 # Loiter around this MISSION an unlimited amount of time
MAV_CMD_NAV_LOITER_TURNS = 18 # Loiter around this MISSION for X turns
MAV_CMD_NAV_LOITER_TIME = 19 # Loiter around this MISSION for X seconds
MAV_CMD_NAV_RETURN_TO_LAUNCH = 20 # Return to launch location
MAV_CMD_NAV_LAND = 21 # Land at location
MAV_CMD_NAV_TAKEOFF = 22 # Takeoff from ground / hand
MAV_CMD_NAV_ROI = 80 # Sets the region of interest (ROI) for a sensor set or the vehicle
# itself. This can then be used by the
# vehicles control system to control the
# vehicle attitude and the attitude of various
# sensors such as cameras.
MAV_CMD_NAV_PATHPLANNING = 81 # Control autonomous path planning on the MAV.
MAV_CMD_NAV_LAST = 95 # NOP - This command is only used to mark the upper limit of the
# NAV/ACTION commands in the enumeration
MAV_CMD_CONDITION_DELAY = 112 # Delay mission state machine.
MAV_CMD_CONDITION_CHANGE_ALT = 113 # Ascend/descend at rate. Delay mission state machine until desired
# altitude reached.
MAV_CMD_CONDITION_DISTANCE = 114 # Delay mission state machine until within desired distance of next NAV
# point.
MAV_CMD_CONDITION_YAW = 115 # Reach a certain target angle.
MAV_CMD_CONDITION_LAST = 159 # NOP - This command is only used to mark the upper limit of the
# CONDITION commands in the enumeration
MAV_CMD_DO_SET_MODE = 176 # Set system mode.
MAV_CMD_DO_JUMP = 177 # Jump to the desired command in the mission list. Repeat this action
# only the specified number of times
MAV_CMD_DO_CHANGE_SPEED = 178 # Change speed and/or throttle set points.
MAV_CMD_DO_SET_HOME = 179 # Changes the home location either to the current location or a
# specified location.
MAV_CMD_DO_SET_PARAMETER = 180 # Set a system parameter. Caution! Use of this command requires
# knowledge of the numeric enumeration value
# of the parameter.
MAV_CMD_DO_SET_RELAY = 181 # Set a relay to a condition.
MAV_CMD_DO_REPEAT_RELAY = 182 # Cycle a relay on and off for a desired number of cyles with a desired
# period.
MAV_CMD_DO_SET_SERVO = 183 # Set a servo to a desired PWM value.
MAV_CMD_DO_REPEAT_SERVO = 184 # Cycle a between its nominal setting and a desired PWM for a desired
# number of cycles with a desired period.
MAV_CMD_DO_CONTROL_VIDEO = 200 # Control onboard camera system.
MAV_CMD_DO_DIGICAM_CONFIGURE = 202 # Mission command to configure an on-board camera controller system.
MAV_CMD_DO_DIGICAM_CONTROL = 203 # Mission command to control an on-board camera controller system.
MAV_CMD_DO_MOUNT_CONFIGURE = 204 # Mission command to configure a camera or antenna mount
MAV_CMD_DO_MOUNT_CONTROL = 205 # Mission command to control a camera or antenna mount
MAV_CMD_DO_LAST = 240 # NOP - This command is only used to mark the upper limit of the DO
# commands in the enumeration
MAV_CMD_PREFLIGHT_CALIBRATION = 241 # Trigger calibration. This command will be only accepted if in pre-
# flight mode.
MAV_CMD_PREFLIGHT_SET_SENSOR_OFFSETS = 242 # Set sensor offsets. This command will be only accepted if in pre-
# flight mode.
MAV_CMD_PREFLIGHT_STORAGE = 245 # Request storage of different parameter values and logs. This command
# will be only accepted if in pre-flight mode.
MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN = 246 # Request the reboot or shutdown of system components.
MAV_CMD_OVERRIDE_GOTO = 252 # Hold / continue the current action
MAV_CMD_MISSION_START = 300 # start running a mission
MAV_CMD_COMPONENT_ARM_DISARM = 400 # Arms / Disarms a component
MAV_CMD_ENUM_END = 401 #
# FENCE_ACTION
FENCE_ACTION_NONE = 0 # Disable fenced mode
FENCE_ACTION_GUIDED = 1 # Switched to guided mode to return point (fence point 0)
FENCE_ACTION_ENUM_END = 2 #
# FENCE_BREACH
FENCE_BREACH_NONE = 0 # No last fence breach
FENCE_BREACH_MINALT = 1 # Breached minimum altitude
FENCE_BREACH_MAXALT = 2 # Breached minimum altitude
FENCE_BREACH_BOUNDARY = 3 # Breached fence boundary
FENCE_BREACH_ENUM_END = 4 #
# MAV_AUTOPILOT
MAV_AUTOPILOT_GENERIC = 0 # Generic autopilot, full support for everything
MAV_AUTOPILOT_PIXHAWK = 1 # PIXHAWK autopilot, http://pixhawk.ethz.ch
MAV_AUTOPILOT_SLUGS = 2 # SLUGS autopilot, http://slugsuav.soe.ucsc.edu
MAV_AUTOPILOT_ARDUPILOTMEGA = 3 # ArduPilotMega / ArduCopter, http://diydrones.com
MAV_AUTOPILOT_OPENPILOT = 4 # OpenPilot, http://openpilot.org
MAV_AUTOPILOT_GENERIC_WAYPOINTS_ONLY = 5 # Generic autopilot only supporting simple waypoints
MAV_AUTOPILOT_GENERIC_WAYPOINTS_AND_SIMPLE_NAVIGATION_ONLY = 6 # Generic autopilot supporting waypoints and other simple navigation
# commands
MAV_AUTOPILOT_GENERIC_MISSION_FULL = 7 # Generic autopilot supporting the full mission command set
MAV_AUTOPILOT_INVALID = 8 # No valid autopilot, e.g. a GCS or other MAVLink component
MAV_AUTOPILOT_PPZ = 9 # PPZ UAV - http://nongnu.org/paparazzi
MAV_AUTOPILOT_UDB = 10 # UAV Dev Board
MAV_AUTOPILOT_FP = 11 # FlexiPilot
MAV_AUTOPILOT_ENUM_END = 12 #
# MAV_TYPE
MAV_TYPE_GENERIC = 0 # Generic micro air vehicle.
MAV_TYPE_FIXED_WING = 1 # Fixed wing aircraft.
MAV_TYPE_QUADROTOR = 2 # Quadrotor
MAV_TYPE_COAXIAL = 3 # Coaxial helicopter
MAV_TYPE_HELICOPTER = 4 # Normal helicopter with tail rotor.
MAV_TYPE_ANTENNA_TRACKER = 5 # Ground installation
MAV_TYPE_GCS = 6 # Operator control unit / ground control station
MAV_TYPE_AIRSHIP = 7 # Airship, controlled
MAV_TYPE_FREE_BALLOON = 8 # Free balloon, uncontrolled
MAV_TYPE_ROCKET = 9 # Rocket
MAV_TYPE_GROUND_ROVER = 10 # Ground rover
MAV_TYPE_SURFACE_BOAT = 11 # Surface vessel, boat, ship
MAV_TYPE_SUBMARINE = 12 # Submarine
MAV_TYPE_HEXAROTOR = 13 # Hexarotor
MAV_TYPE_OCTOROTOR = 14 # Octorotor
MAV_TYPE_TRICOPTER = 15 # Octorotor
MAV_TYPE_FLAPPING_WING = 16 # Flapping wing
MAV_TYPE_ENUM_END = 17 #
# MAV_MODE_FLAG
MAV_MODE_FLAG_CUSTOM_MODE_ENABLED = 1 # 0b00000001 Reserved for future use.
MAV_MODE_FLAG_TEST_ENABLED = 2 # 0b00000010 system has a test mode enabled. This flag is intended for
# temporary system tests and should not be
# used for stable implementations.
MAV_MODE_FLAG_AUTO_ENABLED = 4 # 0b00000100 autonomous mode enabled, system finds its own goal
# positions. Guided flag can be set or not,
# depends on the actual implementation.
MAV_MODE_FLAG_GUIDED_ENABLED = 8 # 0b00001000 guided mode enabled, system flies MISSIONs / mission items.
MAV_MODE_FLAG_STABILIZE_ENABLED = 16 # 0b00010000 system stabilizes electronically its attitude (and
# optionally position). It needs however
# further control inputs to move around.
MAV_MODE_FLAG_HIL_ENABLED = 32 # 0b00100000 hardware in the loop simulation. All motors / actuators are
# blocked, but internal software is full
# operational.
MAV_MODE_FLAG_MANUAL_INPUT_ENABLED = 64 # 0b01000000 remote control input is enabled.
MAV_MODE_FLAG_SAFETY_ARMED = 128 # 0b10000000 MAV safety set to armed. Motors are enabled / running / can
# start. Ready to fly.
MAV_MODE_FLAG_ENUM_END = 129 #
# MAV_MODE_FLAG_DECODE_POSITION
MAV_MODE_FLAG_DECODE_POSITION_CUSTOM_MODE = 1 # Eighth bit: 00000001
MAV_MODE_FLAG_DECODE_POSITION_TEST = 2 # Seventh bit: 00000010
MAV_MODE_FLAG_DECODE_POSITION_AUTO = 4 # Sixt bit: 00000100
MAV_MODE_FLAG_DECODE_POSITION_GUIDED = 8 # Fifth bit: 00001000
MAV_MODE_FLAG_DECODE_POSITION_STABILIZE = 16 # Fourth bit: 00010000
MAV_MODE_FLAG_DECODE_POSITION_HIL = 32 # Third bit: 00100000
MAV_MODE_FLAG_DECODE_POSITION_MANUAL = 64 # Second bit: 01000000
MAV_MODE_FLAG_DECODE_POSITION_SAFETY = 128 # First bit: 10000000
MAV_MODE_FLAG_DECODE_POSITION_ENUM_END = 129 #
# MAV_GOTO
MAV_GOTO_DO_HOLD = 0 # Hold at the current position.
MAV_GOTO_DO_CONTINUE = 1 # Continue with the next item in mission execution.
MAV_GOTO_HOLD_AT_CURRENT_POSITION = 2 # Hold at the current position of the system
MAV_GOTO_HOLD_AT_SPECIFIED_POSITION = 3 # Hold at the position specified in the parameters of the DO_HOLD action
MAV_GOTO_ENUM_END = 4 #
# MAV_MODE
MAV_MODE_PREFLIGHT = 0 # System is not ready to fly, booting, calibrating, etc. No flag is set.
MAV_MODE_MANUAL_DISARMED = 64 # System is allowed to be active, under manual (RC) control, no
# stabilization
MAV_MODE_TEST_DISARMED = 66 # UNDEFINED mode. This solely depends on the autopilot - use with
# caution, intended for developers only.
MAV_MODE_STABILIZE_DISARMED = 80 # System is allowed to be active, under assisted RC control.
MAV_MODE_GUIDED_DISARMED = 88 # System is allowed to be active, under autonomous control, manual
# setpoint
MAV_MODE_AUTO_DISARMED = 92 # System is allowed to be active, under autonomous control and
# navigation (the trajectory is decided
# onboard and not pre-programmed by MISSIONs)
MAV_MODE_MANUAL_ARMED = 192 # System is allowed to be active, under manual (RC) control, no
# stabilization
MAV_MODE_TEST_ARMED = 194 # UNDEFINED mode. This solely depends on the autopilot - use with
# caution, intended for developers only.
MAV_MODE_STABILIZE_ARMED = 208 # System is allowed to be active, under assisted RC control.
MAV_MODE_GUIDED_ARMED = 216 # System is allowed to be active, under autonomous control, manual
# setpoint
MAV_MODE_AUTO_ARMED = 220 # System is allowed to be active, under autonomous control and
# navigation (the trajectory is decided
# onboard and not pre-programmed by MISSIONs)
MAV_MODE_ENUM_END = 221 #
# MAV_STATE
MAV_STATE_UNINIT = 0 # Uninitialized system, state is unknown.
MAV_STATE_BOOT = 1 # System is booting up.
MAV_STATE_CALIBRATING = 2 # System is calibrating and not flight-ready.
MAV_STATE_STANDBY = 3 # System is grounded and on standby. It can be launched any time.
MAV_STATE_ACTIVE = 4 # System is active and might be already airborne. Motors are engaged.
MAV_STATE_CRITICAL = 5 # System is in a non-normal flight mode. It can however still navigate.
MAV_STATE_EMERGENCY = 6 # System is in a non-normal flight mode. It lost control over parts or
# over the whole airframe. It is in mayday and
# going down.
MAV_STATE_POWEROFF = 7 # System just initialized its power-down sequence, will shut down now.
MAV_STATE_ENUM_END = 8 #
# MAV_COMPONENT
MAV_COMP_ID_ALL = 0 #
MAV_COMP_ID_CAMERA = 100 #
MAV_COMP_ID_SERVO1 = 140 #
MAV_COMP_ID_SERVO2 = 141 #
MAV_COMP_ID_SERVO3 = 142 #
MAV_COMP_ID_SERVO4 = 143 #
MAV_COMP_ID_SERVO5 = 144 #
MAV_COMP_ID_SERVO6 = 145 #
MAV_COMP_ID_SERVO7 = 146 #
MAV_COMP_ID_SERVO8 = 147 #
MAV_COMP_ID_SERVO9 = 148 #
MAV_COMP_ID_SERVO10 = 149 #
MAV_COMP_ID_SERVO11 = 150 #
MAV_COMP_ID_SERVO12 = 151 #
MAV_COMP_ID_SERVO13 = 152 #
MAV_COMP_ID_SERVO14 = 153 #
MAV_COMP_ID_MAPPER = 180 #
MAV_COMP_ID_MISSIONPLANNER = 190 #
MAV_COMP_ID_PATHPLANNER = 195 #
MAV_COMP_ID_IMU = 200 #
MAV_COMP_ID_IMU_2 = 201 #
MAV_COMP_ID_IMU_3 = 202 #
MAV_COMP_ID_GPS = 220 #
MAV_COMP_ID_UDP_BRIDGE = 240 #
MAV_COMP_ID_UART_BRIDGE = 241 #
MAV_COMP_ID_SYSTEM_CONTROL = 250 #
MAV_COMPONENT_ENUM_END = 251 #
# MAV_FRAME
MAV_FRAME_GLOBAL = 0 # Global coordinate frame, WGS84 coordinate system. First value / x:
# latitude, second value / y: longitude, third
# value / z: positive altitude over mean sea
# level (MSL)
MAV_FRAME_LOCAL_NED = 1 # Local coordinate frame, Z-up (x: north, y: east, z: down).
MAV_FRAME_MISSION = 2 # NOT a coordinate frame, indicates a mission command.
MAV_FRAME_GLOBAL_RELATIVE_ALT = 3 # Global coordinate frame, WGS84 coordinate system, relative altitude
# over ground with respect to the home
# position. First value / x: latitude, second
# value / y: longitude, third value / z:
# positive altitude with 0 being at the
# altitude of the home location.
MAV_FRAME_LOCAL_ENU = 4 # Local coordinate frame, Z-down (x: east, y: north, z: up)
MAV_FRAME_ENUM_END = 5 #
# MAVLINK_DATA_STREAM_TYPE
MAVLINK_DATA_STREAM_IMG_JPEG = 1 #
MAVLINK_DATA_STREAM_IMG_BMP = 2 #
MAVLINK_DATA_STREAM_IMG_RAW8U = 3 #
MAVLINK_DATA_STREAM_IMG_RAW32U = 4 #
MAVLINK_DATA_STREAM_IMG_PGM = 5 #
MAVLINK_DATA_STREAM_IMG_PNG = 6 #
MAVLINK_DATA_STREAM_TYPE_ENUM_END = 7 #
# MAV_DATA_STREAM
MAV_DATA_STREAM_ALL = 0 # Enable all data streams
MAV_DATA_STREAM_RAW_SENSORS = 1 # Enable IMU_RAW, GPS_RAW, GPS_STATUS packets.
MAV_DATA_STREAM_EXTENDED_STATUS = 2 # Enable GPS_STATUS, CONTROL_STATUS, AUX_STATUS
MAV_DATA_STREAM_RC_CHANNELS = 3 # Enable RC_CHANNELS_SCALED, RC_CHANNELS_RAW, SERVO_OUTPUT_RAW
MAV_DATA_STREAM_RAW_CONTROLLER = 4 # Enable ATTITUDE_CONTROLLER_OUTPUT, POSITION_CONTROLLER_OUTPUT,
# NAV_CONTROLLER_OUTPUT.
MAV_DATA_STREAM_POSITION = 6 # Enable LOCAL_POSITION, GLOBAL_POSITION/GLOBAL_POSITION_INT messages.
MAV_DATA_STREAM_EXTRA1 = 10 # Dependent on the autopilot
MAV_DATA_STREAM_EXTRA2 = 11 # Dependent on the autopilot
MAV_DATA_STREAM_EXTRA3 = 12 # Dependent on the autopilot
MAV_DATA_STREAM_ENUM_END = 13 #
# MAV_ROI
MAV_ROI_NONE = 0 # No region of interest.
MAV_ROI_WPNEXT = 1 # Point toward next MISSION.
MAV_ROI_WPINDEX = 2 # Point toward given MISSION.
MAV_ROI_LOCATION = 3 # Point toward fixed location.
MAV_ROI_TARGET = 4 # Point toward of given id.
MAV_ROI_ENUM_END = 5 #
# MAV_CMD_ACK
MAV_CMD_ACK_OK = 1 # Command / mission item is ok.
MAV_CMD_ACK_ERR_FAIL = 2 # Generic error message if none of the other reasons fails or if no
# detailed error reporting is implemented.
MAV_CMD_ACK_ERR_ACCESS_DENIED = 3 # The system is refusing to accept this command from this source /
# communication partner.
MAV_CMD_ACK_ERR_NOT_SUPPORTED = 4 # Command or mission item is not supported, other commands would be
# accepted.
MAV_CMD_ACK_ERR_COORDINATE_FRAME_NOT_SUPPORTED = 5 # The coordinate frame of this command / mission item is not supported.
MAV_CMD_ACK_ERR_COORDINATES_OUT_OF_RANGE = 6 # The coordinate frame of this command is ok, but he coordinate values
# exceed the safety limits of this system.
# This is a generic error, please use the more
# specific error messages below if possible.
MAV_CMD_ACK_ERR_X_LAT_OUT_OF_RANGE = 7 # The X or latitude value is out of range.
MAV_CMD_ACK_ERR_Y_LON_OUT_OF_RANGE = 8 # The Y or longitude value is out of range.
MAV_CMD_ACK_ERR_Z_ALT_OUT_OF_RANGE = 9 # The Z or altitude value is out of range.
MAV_CMD_ACK_ENUM_END = 10 #
# MAV_VAR
MAV_VAR_FLOAT = 0 # 32 bit float
MAV_VAR_UINT8 = 1 # 8 bit unsigned integer
MAV_VAR_INT8 = 2 # 8 bit signed integer
MAV_VAR_UINT16 = 3 # 16 bit unsigned integer
MAV_VAR_INT16 = 4 # 16 bit signed integer
MAV_VAR_UINT32 = 5 # 32 bit unsigned integer
MAV_VAR_INT32 = 6 # 32 bit signed integer
MAV_VAR_ENUM_END = 7 #
# MAV_RESULT
MAV_RESULT_ACCEPTED = 0 # Command ACCEPTED and EXECUTED
MAV_RESULT_TEMPORARILY_REJECTED = 1 # Command TEMPORARY REJECTED/DENIED
MAV_RESULT_DENIED = 2 # Command PERMANENTLY DENIED
MAV_RESULT_UNSUPPORTED = 3 # Command UNKNOWN/UNSUPPORTED
MAV_RESULT_FAILED = 4 # Command executed, but failed
MAV_RESULT_ENUM_END = 5 #
# MAV_MISSION_RESULT
MAV_MISSION_ACCEPTED = 0 # mission accepted OK
MAV_MISSION_ERROR = 1 # generic error / not accepting mission commands at all right now
MAV_MISSION_UNSUPPORTED_FRAME = 2 # coordinate frame is not supported
MAV_MISSION_UNSUPPORTED = 3 # command is not supported
MAV_MISSION_NO_SPACE = 4 # mission item exceeds storage space
MAV_MISSION_INVALID = 5 # one of the parameters has an invalid value
MAV_MISSION_INVALID_PARAM1 = 6 # param1 has an invalid value
MAV_MISSION_INVALID_PARAM2 = 7 # param2 has an invalid value
MAV_MISSION_INVALID_PARAM3 = 8 # param3 has an invalid value
MAV_MISSION_INVALID_PARAM4 = 9 # param4 has an invalid value
MAV_MISSION_INVALID_PARAM5_X = 10 # x/param5 has an invalid value
MAV_MISSION_INVALID_PARAM6_Y = 11 # y/param6 has an invalid value
MAV_MISSION_INVALID_PARAM7 = 12 # param7 has an invalid value
MAV_MISSION_INVALID_SEQUENCE = 13 # received waypoint out of sequence
MAV_MISSION_DENIED = 14 # not accepting any mission commands from this communication partner
MAV_MISSION_RESULT_ENUM_END = 15 #
# MAV_SEVERITY
MAV_SEVERITY_EMERGENCY = 0 # System is unusable. This is a "panic" condition.
MAV_SEVERITY_ALERT = 1 # Action should be taken immediately. Indicates error in non-critical
# systems.
MAV_SEVERITY_CRITICAL = 2 # Action must be taken immediately. Indicates failure in a primary
# system.
MAV_SEVERITY_ERROR = 3 # Indicates an error in secondary/redundant systems.
MAV_SEVERITY_WARNING = 4 # Indicates about a possible future error if this is not resolved within
# a given timeframe. Example would be a low
# battery warning.
MAV_SEVERITY_NOTICE = 5 # An unusual event has occured, though not an error condition. This
# should be investigated for the root cause.
MAV_SEVERITY_INFO = 6 # Normal operational messages. Useful for logging. No action is required
# for these messages.
MAV_SEVERITY_DEBUG = 7 # Useful non-operational messages that can assist in debugging. These
# should not occur during normal operation.
MAV_SEVERITY_ENUM_END = 8 #
# message IDs
MAVLINK_MSG_ID_BAD_DATA = -1
MAVLINK_MSG_ID_SENSOR_OFFSETS = 150
MAVLINK_MSG_ID_SET_MAG_OFFSETS = 151
MAVLINK_MSG_ID_MEMINFO = 152
MAVLINK_MSG_ID_AP_ADC = 153
MAVLINK_MSG_ID_DIGICAM_CONFIGURE = 154
MAVLINK_MSG_ID_DIGICAM_CONTROL = 155
MAVLINK_MSG_ID_MOUNT_CONFIGURE = 156
MAVLINK_MSG_ID_MOUNT_CONTROL = 157
MAVLINK_MSG_ID_MOUNT_STATUS = 158
MAVLINK_MSG_ID_FENCE_POINT = 160
MAVLINK_MSG_ID_FENCE_FETCH_POINT = 161
MAVLINK_MSG_ID_FENCE_STATUS = 162
MAVLINK_MSG_ID_AHRS = 163
MAVLINK_MSG_ID_SIMSTATE = 164
MAVLINK_MSG_ID_HWSTATUS = 165
MAVLINK_MSG_ID_RADIO = 166
MAVLINK_MSG_ID_HEARTBEAT = 0
MAVLINK_MSG_ID_SYS_STATUS = 1
MAVLINK_MSG_ID_SYSTEM_TIME = 2
MAVLINK_MSG_ID_PING = 4
MAVLINK_MSG_ID_CHANGE_OPERATOR_CONTROL = 5
MAVLINK_MSG_ID_CHANGE_OPERATOR_CONTROL_ACK = 6
MAVLINK_MSG_ID_AUTH_KEY = 7
MAVLINK_MSG_ID_SET_MODE = 11
MAVLINK_MSG_ID_PARAM_REQUEST_READ = 20
MAVLINK_MSG_ID_PARAM_REQUEST_LIST = 21
MAVLINK_MSG_ID_PARAM_VALUE = 22
MAVLINK_MSG_ID_PARAM_SET = 23
MAVLINK_MSG_ID_GPS_RAW_INT = 24
MAVLINK_MSG_ID_GPS_STATUS = 25
MAVLINK_MSG_ID_SCALED_IMU = 26
MAVLINK_MSG_ID_RAW_IMU = 27
MAVLINK_MSG_ID_RAW_PRESSURE = 28
MAVLINK_MSG_ID_SCALED_PRESSURE = 29
MAVLINK_MSG_ID_ATTITUDE = 30
MAVLINK_MSG_ID_ATTITUDE_QUATERNION = 31
MAVLINK_MSG_ID_LOCAL_POSITION_NED = 32
MAVLINK_MSG_ID_GLOBAL_POSITION_INT = 33
MAVLINK_MSG_ID_RC_CHANNELS_SCALED = 34
MAVLINK_MSG_ID_RC_CHANNELS_RAW = 35
MAVLINK_MSG_ID_SERVO_OUTPUT_RAW = 36
MAVLINK_MSG_ID_MISSION_REQUEST_PARTIAL_LIST = 37
MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST = 38
MAVLINK_MSG_ID_MISSION_ITEM = 39
MAVLINK_MSG_ID_MISSION_REQUEST = 40
MAVLINK_MSG_ID_MISSION_SET_CURRENT = 41
MAVLINK_MSG_ID_MISSION_CURRENT = 42
MAVLINK_MSG_ID_MISSION_REQUEST_LIST = 43
MAVLINK_MSG_ID_MISSION_COUNT = 44
MAVLINK_MSG_ID_MISSION_CLEAR_ALL = 45
MAVLINK_MSG_ID_MISSION_ITEM_REACHED = 46
MAVLINK_MSG_ID_MISSION_ACK = 47
MAVLINK_MSG_ID_SET_GPS_GLOBAL_ORIGIN = 48
MAVLINK_MSG_ID_GPS_GLOBAL_ORIGIN = 49
MAVLINK_MSG_ID_SET_LOCAL_POSITION_SETPOINT = 50
MAVLINK_MSG_ID_LOCAL_POSITION_SETPOINT = 51
MAVLINK_MSG_ID_GLOBAL_POSITION_SETPOINT_INT = 52
MAVLINK_MSG_ID_SET_GLOBAL_POSITION_SETPOINT_INT = 53
MAVLINK_MSG_ID_SAFETY_SET_ALLOWED_AREA = 54
MAVLINK_MSG_ID_SAFETY_ALLOWED_AREA = 55
MAVLINK_MSG_ID_SET_ROLL_PITCH_YAW_THRUST = 56
MAVLINK_MSG_ID_SET_ROLL_PITCH_YAW_SPEED_THRUST = 57
MAVLINK_MSG_ID_ROLL_PITCH_YAW_THRUST_SETPOINT = 58
MAVLINK_MSG_ID_ROLL_PITCH_YAW_SPEED_THRUST_SETPOINT = 59
MAVLINK_MSG_ID_SET_QUAD_MOTORS_SETPOINT = 60
MAVLINK_MSG_ID_SET_QUAD_SWARM_ROLL_PITCH_YAW_THRUST = 61
MAVLINK_MSG_ID_NAV_CONTROLLER_OUTPUT = 62
MAVLINK_MSG_ID_STATE_CORRECTION = 64
MAVLINK_MSG_ID_REQUEST_DATA_STREAM = 66
MAVLINK_MSG_ID_DATA_STREAM = 67
MAVLINK_MSG_ID_MANUAL_CONTROL = 69
MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE = 70
MAVLINK_MSG_ID_VFR_HUD = 74
MAVLINK_MSG_ID_COMMAND_LONG = 76
MAVLINK_MSG_ID_COMMAND_ACK = 77
MAVLINK_MSG_ID_LOCAL_POSITION_NED_SYSTEM_GLOBAL_OFFSET = 89
MAVLINK_MSG_ID_HIL_STATE = 90
MAVLINK_MSG_ID_HIL_CONTROLS = 91
MAVLINK_MSG_ID_HIL_RC_INPUTS_RAW = 92
MAVLINK_MSG_ID_OPTICAL_FLOW = 100
MAVLINK_MSG_ID_GLOBAL_VISION_POSITION_ESTIMATE = 101
MAVLINK_MSG_ID_VISION_POSITION_ESTIMATE = 102
MAVLINK_MSG_ID_VISION_SPEED_ESTIMATE = 103
MAVLINK_MSG_ID_VICON_POSITION_ESTIMATE = 104
MAVLINK_MSG_ID_MEMORY_VECT = 249
MAVLINK_MSG_ID_DEBUG_VECT = 250
MAVLINK_MSG_ID_NAMED_VALUE_FLOAT = 251
MAVLINK_MSG_ID_NAMED_VALUE_INT = 252
MAVLINK_MSG_ID_STATUSTEXT = 253
MAVLINK_MSG_ID_DEBUG = 254
class MAVLink_sensor_offsets_message(MAVLink_message):
'''
Offsets and calibrations values for hardware sensors.
This makes it easier to debug the calibration process.
'''
def __init__(self, mag_ofs_x, mag_ofs_y, mag_ofs_z, mag_declination, raw_press, raw_temp, gyro_cal_x, gyro_cal_y, gyro_cal_z, accel_cal_x, accel_cal_y, accel_cal_z):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_SENSOR_OFFSETS, 'SENSOR_OFFSETS')
self._fieldnames = ['mag_ofs_x', 'mag_ofs_y', 'mag_ofs_z', 'mag_declination', 'raw_press', 'raw_temp', 'gyro_cal_x', 'gyro_cal_y', 'gyro_cal_z', 'accel_cal_x', 'accel_cal_y', 'accel_cal_z']
self.mag_ofs_x = mag_ofs_x
self.mag_ofs_y = mag_ofs_y
self.mag_ofs_z = mag_ofs_z
self.mag_declination = mag_declination
self.raw_press = raw_press
self.raw_temp = raw_temp
self.gyro_cal_x = gyro_cal_x
self.gyro_cal_y = gyro_cal_y
self.gyro_cal_z = gyro_cal_z
self.accel_cal_x = accel_cal_x
self.accel_cal_y = accel_cal_y
self.accel_cal_z = accel_cal_z
def pack(self, mav):
return MAVLink_message.pack(self, mav, 134, struct.pack('<fiiffffffhhh', self.mag_declination, self.raw_press, self.raw_temp, self.gyro_cal_x, self.gyro_cal_y, self.gyro_cal_z, self.accel_cal_x, self.accel_cal_y, self.accel_cal_z, self.mag_ofs_x, self.mag_ofs_y, self.mag_ofs_z))
class MAVLink_set_mag_offsets_message(MAVLink_message):
'''
set the magnetometer offsets
'''
def __init__(self, target_system, target_component, mag_ofs_x, mag_ofs_y, mag_ofs_z):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_SET_MAG_OFFSETS, 'SET_MAG_OFFSETS')
self._fieldnames = ['target_system', 'target_component', 'mag_ofs_x', 'mag_ofs_y', 'mag_ofs_z']
self.target_system = target_system
self.target_component = target_component
self.mag_ofs_x = mag_ofs_x
self.mag_ofs_y = mag_ofs_y
self.mag_ofs_z = mag_ofs_z
def pack(self, mav):
return MAVLink_message.pack(self, mav, 219, struct.pack('<hhhBB', self.mag_ofs_x, self.mag_ofs_y, self.mag_ofs_z, self.target_system, self.target_component))
class MAVLink_meminfo_message(MAVLink_message):
'''
state of APM memory
'''
def __init__(self, brkval, freemem):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_MEMINFO, 'MEMINFO')
self._fieldnames = ['brkval', 'freemem']
self.brkval = brkval
self.freemem = freemem
def pack(self, mav):
return MAVLink_message.pack(self, mav, 208, struct.pack('<HH', self.brkval, self.freemem))
class MAVLink_ap_adc_message(MAVLink_message):
'''
raw ADC output
'''
def __init__(self, adc1, adc2, adc3, adc4, adc5, adc6):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_AP_ADC, 'AP_ADC')
self._fieldnames = ['adc1', 'adc2', 'adc3', 'adc4', 'adc5', 'adc6']
self.adc1 = adc1
self.adc2 = adc2
self.adc3 = adc3
self.adc4 = adc4
self.adc5 = adc5
self.adc6 = adc6
def pack(self, mav):
return MAVLink_message.pack(self, mav, 188, struct.pack('<HHHHHH', self.adc1, self.adc2, self.adc3, self.adc4, self.adc5, self.adc6))
class MAVLink_digicam_configure_message(MAVLink_message):
'''
Configure on-board Camera Control System.
'''
def __init__(self, target_system, target_component, mode, shutter_speed, aperture, iso, exposure_type, command_id, engine_cut_off, extra_param, extra_value):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_DIGICAM_CONFIGURE, 'DIGICAM_CONFIGURE')
self._fieldnames = ['target_system', 'target_component', 'mode', 'shutter_speed', 'aperture', 'iso', 'exposure_type', 'command_id', 'engine_cut_off', 'extra_param', 'extra_value']
self.target_system = target_system
self.target_component = target_component
self.mode = mode
self.shutter_speed = shutter_speed
self.aperture = aperture
self.iso = iso
self.exposure_type = exposure_type
self.command_id = command_id
self.engine_cut_off = engine_cut_off
self.extra_param = extra_param
self.extra_value = extra_value
def pack(self, mav):
return MAVLink_message.pack(self, mav, 84, struct.pack('<fHBBBBBBBBB', self.extra_value, self.shutter_speed, self.target_system, self.target_component, self.mode, self.aperture, self.iso, self.exposure_type, self.command_id, self.engine_cut_off, self.extra_param))
class MAVLink_digicam_control_message(MAVLink_message):
'''
Control on-board Camera Control System to take shots.
'''
def __init__(self, target_system, target_component, session, zoom_pos, zoom_step, focus_lock, shot, command_id, extra_param, extra_value):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_DIGICAM_CONTROL, 'DIGICAM_CONTROL')
self._fieldnames = ['target_system', 'target_component', 'session', 'zoom_pos', 'zoom_step', 'focus_lock', 'shot', 'command_id', 'extra_param', 'extra_value']
self.target_system = target_system
self.target_component = target_component
self.session = session
self.zoom_pos = zoom_pos
self.zoom_step = zoom_step
self.focus_lock = focus_lock
self.shot = shot
self.command_id = command_id
self.extra_param = extra_param
self.extra_value = extra_value
def pack(self, mav):
return MAVLink_message.pack(self, mav, 22, struct.pack('<fBBBBbBBBB', self.extra_value, self.target_system, self.target_component, self.session, self.zoom_pos, self.zoom_step, self.focus_lock, self.shot, self.command_id, self.extra_param))
class MAVLink_mount_configure_message(MAVLink_message):
'''
Message to configure a camera mount, directional antenna, etc.
'''
def __init__(self, target_system, target_component, mount_mode, stab_roll, stab_pitch, stab_yaw):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_MOUNT_CONFIGURE, 'MOUNT_CONFIGURE')
self._fieldnames = ['target_system', 'target_component', 'mount_mode', 'stab_roll', 'stab_pitch', 'stab_yaw']
self.target_system = target_system
self.target_component = target_component
self.mount_mode = mount_mode
self.stab_roll = stab_roll
self.stab_pitch = stab_pitch
self.stab_yaw = stab_yaw
def pack(self, mav):
return MAVLink_message.pack(self, mav, 19, struct.pack('<BBBBBB', self.target_system, self.target_component, self.mount_mode, self.stab_roll, self.stab_pitch, self.stab_yaw))
class MAVLink_mount_control_message(MAVLink_message):
'''
Message to control a camera mount, directional antenna, etc.
'''
def __init__(self, target_system, target_component, input_a, input_b, input_c, save_position):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_MOUNT_CONTROL, 'MOUNT_CONTROL')
self._fieldnames = ['target_system', 'target_component', 'input_a', 'input_b', 'input_c', 'save_position']
self.target_system = target_system
self.target_component = target_component
self.input_a = input_a
self.input_b = input_b
self.input_c = input_c
self.save_position = save_position
def pack(self, mav):
return MAVLink_message.pack(self, mav, 21, struct.pack('<iiiBBB', self.input_a, self.input_b, self.input_c, self.target_system, self.target_component, self.save_position))
class MAVLink_mount_status_message(MAVLink_message):
'''
Message with some status from APM to GCS about camera or
antenna mount
'''
def __init__(self, target_system, target_component, pointing_a, pointing_b, pointing_c):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_MOUNT_STATUS, 'MOUNT_STATUS')
self._fieldnames = ['target_system', 'target_component', 'pointing_a', 'pointing_b', 'pointing_c']
self.target_system = target_system
self.target_component = target_component
self.pointing_a = pointing_a
self.pointing_b = pointing_b
self.pointing_c = pointing_c
def pack(self, mav):
return MAVLink_message.pack(self, mav, 134, struct.pack('<iiiBB', self.pointing_a, self.pointing_b, self.pointing_c, self.target_system, self.target_component))
class MAVLink_fence_point_message(MAVLink_message):
'''
A fence point. Used to set a point when from GCS
-> MAV. Also used to return a point from MAV -> GCS
'''
def __init__(self, target_system, target_component, idx, count, lat, lng):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_FENCE_POINT, 'FENCE_POINT')
self._fieldnames = ['target_system', 'target_component', 'idx', 'count', 'lat', 'lng']
self.target_system = target_system
self.target_component = target_component
self.idx = idx
self.count = count
self.lat = lat
self.lng = lng
def pack(self, mav):
return MAVLink_message.pack(self, mav, 78, struct.pack('<ffBBBB', self.lat, self.lng, self.target_system, self.target_component, self.idx, self.count))
class MAVLink_fence_fetch_point_message(MAVLink_message):
'''
Request a current fence point from MAV
'''
def __init__(self, target_system, target_component, idx):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_FENCE_FETCH_POINT, 'FENCE_FETCH_POINT')
self._fieldnames = ['target_system', 'target_component', 'idx']
self.target_system = target_system
self.target_component = target_component
self.idx = idx
def pack(self, mav):
return MAVLink_message.pack(self, mav, 68, struct.pack('<BBB', self.target_system, self.target_component, self.idx))
class MAVLink_fence_status_message(MAVLink_message):
'''
Status of geo-fencing. Sent in extended status
stream when fencing enabled
'''
def __init__(self, breach_status, breach_count, breach_type, breach_time):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_FENCE_STATUS, 'FENCE_STATUS')
self._fieldnames = ['breach_status', 'breach_count', 'breach_type', 'breach_time']
self.breach_status = breach_status
self.breach_count = breach_count
self.breach_type = breach_type
self.breach_time = breach_time
def pack(self, mav):
return MAVLink_message.pack(self, mav, 189, struct.pack('<IHBB', self.breach_time, self.breach_count, self.breach_status, self.breach_type))
class MAVLink_ahrs_message(MAVLink_message):
'''
Status of DCM attitude estimator
'''
def __init__(self, omegaIx, omegaIy, omegaIz, accel_weight, renorm_val, error_rp, error_yaw):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_AHRS, 'AHRS')
self._fieldnames = ['omegaIx', 'omegaIy', 'omegaIz', 'accel_weight', 'renorm_val', 'error_rp', 'error_yaw']
self.omegaIx = omegaIx
self.omegaIy = omegaIy
self.omegaIz = omegaIz
self.accel_weight = accel_weight
self.renorm_val = renorm_val
self.error_rp = error_rp
self.error_yaw = error_yaw
def pack(self, mav):
return MAVLink_message.pack(self, mav, 127, struct.pack('<fffffff', self.omegaIx, self.omegaIy, self.omegaIz, self.accel_weight, self.renorm_val, self.error_rp, self.error_yaw))
class MAVLink_simstate_message(MAVLink_message):
'''
Status of simulation environment, if used
'''
def __init__(self, roll, pitch, yaw, xacc, yacc, zacc, xgyro, ygyro, zgyro):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_SIMSTATE, 'SIMSTATE')
self._fieldnames = ['roll', 'pitch', 'yaw', 'xacc', 'yacc', 'zacc', 'xgyro', 'ygyro', 'zgyro']
self.roll = roll
self.pitch = pitch
self.yaw = yaw
self.xacc = xacc
self.yacc = yacc
self.zacc = zacc
self.xgyro = xgyro
self.ygyro = ygyro
self.zgyro = zgyro
def pack(self, mav):
return MAVLink_message.pack(self, mav, 42, struct.pack('<fffffffff', self.roll, self.pitch, self.yaw, self.xacc, self.yacc, self.zacc, self.xgyro, self.ygyro, self.zgyro))
class MAVLink_hwstatus_message(MAVLink_message):
'''
Status of key hardware
'''
def __init__(self, Vcc, I2Cerr):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_HWSTATUS, 'HWSTATUS')
self._fieldnames = ['Vcc', 'I2Cerr']
self.Vcc = Vcc
self.I2Cerr = I2Cerr
def pack(self, mav):
return MAVLink_message.pack(self, mav, 21, struct.pack('<HB', self.Vcc, self.I2Cerr))
class MAVLink_radio_message(MAVLink_message):
'''
Status generated by radio
'''
def __init__(self, rssi, remrssi, txbuf, noise, remnoise, rxerrors, fixed):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_RADIO, 'RADIO')
self._fieldnames = ['rssi', 'remrssi', 'txbuf', 'noise', 'remnoise', 'rxerrors', 'fixed']
self.rssi = rssi
self.remrssi = remrssi
self.txbuf = txbuf
self.noise = noise
self.remnoise = remnoise
self.rxerrors = rxerrors
self.fixed = fixed
def pack(self, mav):
return MAVLink_message.pack(self, mav, 21, struct.pack('<HHBBBBB', self.rxerrors, self.fixed, self.rssi, self.remrssi, self.txbuf, self.noise, self.remnoise))
class MAVLink_heartbeat_message(MAVLink_message):
'''
The heartbeat message shows that a system is present and
responding. The type of the MAV and Autopilot hardware allow
the receiving system to treat further messages from this
system appropriate (e.g. by laying out the user interface
based on the autopilot).
'''
def __init__(self, type, autopilot, base_mode, custom_mode, system_status, mavlink_version):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_HEARTBEAT, 'HEARTBEAT')
self._fieldnames = ['type', 'autopilot', 'base_mode', 'custom_mode', 'system_status', 'mavlink_version']
self.type = type
self.autopilot = autopilot
self.base_mode = base_mode
self.custom_mode = custom_mode
self.system_status = system_status
self.mavlink_version = mavlink_version
def pack(self, mav):
return MAVLink_message.pack(self, mav, 50, struct.pack('<IBBBBB', self.custom_mode, self.type, self.autopilot, self.base_mode, self.system_status, self.mavlink_version))
class MAVLink_sys_status_message(MAVLink_message):
'''
The general system state. If the system is following the
MAVLink standard, the system state is mainly defined by three
orthogonal states/modes: The system mode, which is either
LOCKED (motors shut down and locked), MANUAL (system under RC
control), GUIDED (system with autonomous position control,
position setpoint controlled manually) or AUTO (system guided
by path/waypoint planner). The NAV_MODE defined the current
flight state: LIFTOFF (often an open-loop maneuver), LANDING,
WAYPOINTS or VECTOR. This represents the internal navigation
state machine. The system status shows wether the system is
currently active or not and if an emergency occured. During
the CRITICAL and EMERGENCY states the MAV is still considered
to be active, but should start emergency procedures
autonomously. After a failure occured it should first move
from active to critical to allow manual intervention and then
move to emergency after a certain timeout.
'''
def __init__(self, onboard_control_sensors_present, onboard_control_sensors_enabled, onboard_control_sensors_health, load, voltage_battery, current_battery, battery_remaining, drop_rate_comm, errors_comm, errors_count1, errors_count2, errors_count3, errors_count4):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_SYS_STATUS, 'SYS_STATUS')
self._fieldnames = ['onboard_control_sensors_present', 'onboard_control_sensors_enabled', 'onboard_control_sensors_health', 'load', 'voltage_battery', 'current_battery', 'battery_remaining', 'drop_rate_comm', 'errors_comm', 'errors_count1', 'errors_count2', 'errors_count3', 'errors_count4']
self.onboard_control_sensors_present = onboard_control_sensors_present
self.onboard_control_sensors_enabled = onboard_control_sensors_enabled
self.onboard_control_sensors_health = onboard_control_sensors_health
self.load = load
self.voltage_battery = voltage_battery
self.current_battery = current_battery
self.battery_remaining = battery_remaining
self.drop_rate_comm = drop_rate_comm
self.errors_comm = errors_comm
self.errors_count1 = errors_count1
self.errors_count2 = errors_count2
self.errors_count3 = errors_count3
self.errors_count4 = errors_count4
def pack(self, mav):
return MAVLink_message.pack(self, mav, 124, struct.pack('<IIIHHhHHHHHHb', self.onboard_control_sensors_present, self.onboard_control_sensors_enabled, self.onboard_control_sensors_health, self.load, self.voltage_battery, self.current_battery, self.drop_rate_comm, self.errors_comm, self.errors_count1, self.errors_count2, self.errors_count3, self.errors_count4, self.battery_remaining))
class MAVLink_system_time_message(MAVLink_message):
'''
The system time is the time of the master clock, typically the
computer clock of the main onboard computer.
'''
def __init__(self, time_unix_usec, time_boot_ms):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_SYSTEM_TIME, 'SYSTEM_TIME')
self._fieldnames = ['time_unix_usec', 'time_boot_ms']
self.time_unix_usec = time_unix_usec
self.time_boot_ms = time_boot_ms
def pack(self, mav):
return MAVLink_message.pack(self, mav, 137, struct.pack('<QI', self.time_unix_usec, self.time_boot_ms))
class MAVLink_ping_message(MAVLink_message):
'''
A ping message either requesting or responding to a ping. This
allows to measure the system latencies, including serial port,
radio modem and UDP connections.
'''
def __init__(self, time_usec, seq, target_system, target_component):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_PING, 'PING')
self._fieldnames = ['time_usec', 'seq', 'target_system', 'target_component']
self.time_usec = time_usec
self.seq = seq
self.target_system = target_system
self.target_component = target_component
def pack(self, mav):
return MAVLink_message.pack(self, mav, 237, struct.pack('<QIBB', self.time_usec, self.seq, self.target_system, self.target_component))
class MAVLink_change_operator_control_message(MAVLink_message):
'''
Request to control this MAV
'''
def __init__(self, target_system, control_request, version, passkey):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_CHANGE_OPERATOR_CONTROL, 'CHANGE_OPERATOR_CONTROL')
self._fieldnames = ['target_system', 'control_request', 'version', 'passkey']
self.target_system = target_system
self.control_request = control_request
self.version = version
self.passkey = passkey
def pack(self, mav):
return MAVLink_message.pack(self, mav, 217, struct.pack('<BBB25s', self.target_system, self.control_request, self.version, self.passkey))
class MAVLink_change_operator_control_ack_message(MAVLink_message):
'''
Accept / deny control of this MAV
'''
def __init__(self, gcs_system_id, control_request, ack):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_CHANGE_OPERATOR_CONTROL_ACK, 'CHANGE_OPERATOR_CONTROL_ACK')
self._fieldnames = ['gcs_system_id', 'control_request', 'ack']
self.gcs_system_id = gcs_system_id
self.control_request = control_request
self.ack = ack
def pack(self, mav):
return MAVLink_message.pack(self, mav, 104, struct.pack('<BBB', self.gcs_system_id, self.control_request, self.ack))
class MAVLink_auth_key_message(MAVLink_message):
'''
Emit an encrypted signature / key identifying this system.
PLEASE NOTE: This protocol has been kept simple, so
transmitting the key requires an encrypted channel for true
safety.
'''
def __init__(self, key):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_AUTH_KEY, 'AUTH_KEY')
self._fieldnames = ['key']
self.key = key
def pack(self, mav):
return MAVLink_message.pack(self, mav, 119, struct.pack('<32s', self.key))
class MAVLink_set_mode_message(MAVLink_message):
'''
Set the system mode, as defined by enum MAV_MODE. There is no
target component id as the mode is by definition for the
overall aircraft, not only for one component.
'''
def __init__(self, target_system, base_mode, custom_mode):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_SET_MODE, 'SET_MODE')
self._fieldnames = ['target_system', 'base_mode', 'custom_mode']
self.target_system = target_system
self.base_mode = base_mode
self.custom_mode = custom_mode
def pack(self, mav):
return MAVLink_message.pack(self, mav, 89, struct.pack('<IBB', self.custom_mode, self.target_system, self.base_mode))
class MAVLink_param_request_read_message(MAVLink_message):
'''
Request to read the onboard parameter with the param_id string
id. Onboard parameters are stored as key[const char*] ->
value[float]. This allows to send a parameter to any other
component (such as the GCS) without the need of previous
knowledge of possible parameter names. Thus the same GCS can
store different parameters for different autopilots. See also
http://qgroundcontrol.org/parameter_interface for a full
documentation of QGroundControl and IMU code.
'''
def __init__(self, target_system, target_component, param_id, param_index):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_PARAM_REQUEST_READ, 'PARAM_REQUEST_READ')
self._fieldnames = ['target_system', 'target_component', 'param_id', 'param_index']
self.target_system = target_system
self.target_component = target_component
self.param_id = param_id
self.param_index = param_index
def pack(self, mav):
return MAVLink_message.pack(self, mav, 214, struct.pack('<hBB16s', self.param_index, self.target_system, self.target_component, self.param_id))
class MAVLink_param_request_list_message(MAVLink_message):
'''
Request all parameters of this component. After his request,
all parameters are emitted.
'''
def __init__(self, target_system, target_component):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_PARAM_REQUEST_LIST, 'PARAM_REQUEST_LIST')
self._fieldnames = ['target_system', 'target_component']
self.target_system = target_system
self.target_component = target_component
def pack(self, mav):
return MAVLink_message.pack(self, mav, 159, struct.pack('<BB', self.target_system, self.target_component))
class MAVLink_param_value_message(MAVLink_message):
'''
Emit the value of a onboard parameter. The inclusion of
param_count and param_index in the message allows the
recipient to keep track of received parameters and allows him
to re-request missing parameters after a loss or timeout.
'''
def __init__(self, param_id, param_value, param_type, param_count, param_index):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_PARAM_VALUE, 'PARAM_VALUE')
self._fieldnames = ['param_id', 'param_value', 'param_type', 'param_count', 'param_index']
self.param_id = param_id
self.param_value = param_value
self.param_type = param_type
self.param_count = param_count
self.param_index = param_index
def pack(self, mav):
return MAVLink_message.pack(self, mav, 220, struct.pack('<fHH16sB', self.param_value, self.param_count, self.param_index, self.param_id, self.param_type))
class MAVLink_param_set_message(MAVLink_message):
'''
Set a parameter value TEMPORARILY to RAM. It will be reset to
default on system reboot. Send the ACTION
MAV_ACTION_STORAGE_WRITE to PERMANENTLY write the RAM contents
to EEPROM. IMPORTANT: The receiving component should
acknowledge the new parameter value by sending a param_value
message to all communication partners. This will also ensure
that multiple GCS all have an up-to-date list of all
parameters. If the sending GCS did not receive a PARAM_VALUE
message within its timeout time, it should re-send the
PARAM_SET message.
'''
def __init__(self, target_system, target_component, param_id, param_value, param_type):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_PARAM_SET, 'PARAM_SET')
self._fieldnames = ['target_system', 'target_component', 'param_id', 'param_value', 'param_type']
self.target_system = target_system
self.target_component = target_component
self.param_id = param_id
self.param_value = param_value
self.param_type = param_type
def pack(self, mav):
return MAVLink_message.pack(self, mav, 168, struct.pack('<fBB16sB', self.param_value, self.target_system, self.target_component, self.param_id, self.param_type))
class MAVLink_gps_raw_int_message(MAVLink_message):
'''
The global position, as returned by the Global Positioning
System (GPS). This is NOT the global position
estimate of the sytem, but rather a RAW sensor value. See
message GLOBAL_POSITION for the global position estimate.
Coordinate frame is right-handed, Z-axis up (GPS frame).
'''
def __init__(self, time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_GPS_RAW_INT, 'GPS_RAW_INT')
self._fieldnames = ['time_usec', 'fix_type', 'lat', 'lon', 'alt', 'eph', 'epv', 'vel', 'cog', 'satellites_visible']
self.time_usec = time_usec
self.fix_type = fix_type
self.lat = lat
self.lon = lon
self.alt = alt
self.eph = eph
self.epv = epv
self.vel = vel
self.cog = cog
self.satellites_visible = satellites_visible
def pack(self, mav):
return MAVLink_message.pack(self, mav, 24, struct.pack('<QiiiHHHHBB', self.time_usec, self.lat, self.lon, self.alt, self.eph, self.epv, self.vel, self.cog, self.fix_type, self.satellites_visible))
class MAVLink_gps_status_message(MAVLink_message):
'''
The positioning status, as reported by GPS. This message is
intended to display status information about each satellite
visible to the receiver. See message GLOBAL_POSITION for the
global position estimate. This message can contain information
for up to 20 satellites.
'''
def __init__(self, satellites_visible, satellite_prn, satellite_used, satellite_elevation, satellite_azimuth, satellite_snr):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_GPS_STATUS, 'GPS_STATUS')
self._fieldnames = ['satellites_visible', 'satellite_prn', 'satellite_used', 'satellite_elevation', 'satellite_azimuth', 'satellite_snr']
self.satellites_visible = satellites_visible
self.satellite_prn = satellite_prn
self.satellite_used = satellite_used
self.satellite_elevation = satellite_elevation
self.satellite_azimuth = satellite_azimuth
self.satellite_snr = satellite_snr
def pack(self, mav):
return MAVLink_message.pack(self, mav, 23, struct.pack('<B20s20s20s20s20s', self.satellites_visible, self.satellite_prn, self.satellite_used, self.satellite_elevation, self.satellite_azimuth, self.satellite_snr))
class MAVLink_scaled_imu_message(MAVLink_message):
'''
The RAW IMU readings for the usual 9DOF sensor setup. This
message should contain the scaled values to the described
units
'''
def __init__(self, time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_SCALED_IMU, 'SCALED_IMU')
self._fieldnames = ['time_boot_ms', 'xacc', 'yacc', 'zacc', 'xgyro', 'ygyro', 'zgyro', 'xmag', 'ymag', 'zmag']
self.time_boot_ms = time_boot_ms
self.xacc = xacc
self.yacc = yacc
self.zacc = zacc
self.xgyro = xgyro
self.ygyro = ygyro
self.zgyro = zgyro
self.xmag = xmag
self.ymag = ymag
self.zmag = zmag
def pack(self, mav):
return MAVLink_message.pack(self, mav, 170, struct.pack('<Ihhhhhhhhh', self.time_boot_ms, self.xacc, self.yacc, self.zacc, self.xgyro, self.ygyro, self.zgyro, self.xmag, self.ymag, self.zmag))
class MAVLink_raw_imu_message(MAVLink_message):
'''
The RAW IMU readings for the usual 9DOF sensor setup. This
message should always contain the true raw values without any
scaling to allow data capture and system debugging.
'''
def __init__(self, time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_RAW_IMU, 'RAW_IMU')
self._fieldnames = ['time_usec', 'xacc', 'yacc', 'zacc', 'xgyro', 'ygyro', 'zgyro', 'xmag', 'ymag', 'zmag']
self.time_usec = time_usec
self.xacc = xacc
self.yacc = yacc
self.zacc = zacc
self.xgyro = xgyro
self.ygyro = ygyro
self.zgyro = zgyro
self.xmag = xmag
self.ymag = ymag
self.zmag = zmag
def pack(self, mav):
return MAVLink_message.pack(self, mav, 144, struct.pack('<Qhhhhhhhhh', self.time_usec, self.xacc, self.yacc, self.zacc, self.xgyro, self.ygyro, self.zgyro, self.xmag, self.ymag, self.zmag))
class MAVLink_raw_pressure_message(MAVLink_message):
'''
The RAW pressure readings for the typical setup of one
absolute pressure and one differential pressure sensor. The
sensor values should be the raw, UNSCALED ADC values.
'''
def __init__(self, time_usec, press_abs, press_diff1, press_diff2, temperature):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_RAW_PRESSURE, 'RAW_PRESSURE')
self._fieldnames = ['time_usec', 'press_abs', 'press_diff1', 'press_diff2', 'temperature']
self.time_usec = time_usec
self.press_abs = press_abs
self.press_diff1 = press_diff1
self.press_diff2 = press_diff2
self.temperature = temperature
def pack(self, mav):
return MAVLink_message.pack(self, mav, 67, struct.pack('<Qhhhh', self.time_usec, self.press_abs, self.press_diff1, self.press_diff2, self.temperature))
class MAVLink_scaled_pressure_message(MAVLink_message):
'''
The pressure readings for the typical setup of one absolute
and differential pressure sensor. The units are as specified
in each field.
'''
def __init__(self, time_boot_ms, press_abs, press_diff, temperature):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_SCALED_PRESSURE, 'SCALED_PRESSURE')
self._fieldnames = ['time_boot_ms', 'press_abs', 'press_diff', 'temperature']
self.time_boot_ms = time_boot_ms
self.press_abs = press_abs
self.press_diff = press_diff
self.temperature = temperature
def pack(self, mav):
return MAVLink_message.pack(self, mav, 115, struct.pack('<Iffh', self.time_boot_ms, self.press_abs, self.press_diff, self.temperature))
class MAVLink_attitude_message(MAVLink_message):
'''
The attitude in the aeronautical frame (right-handed, Z-down,
X-front, Y-right).
'''
def __init__(self, time_boot_ms, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_ATTITUDE, 'ATTITUDE')
self._fieldnames = ['time_boot_ms', 'roll', 'pitch', 'yaw', 'rollspeed', 'pitchspeed', 'yawspeed']
self.time_boot_ms = time_boot_ms
self.roll = roll
self.pitch = pitch
self.yaw = yaw
self.rollspeed = rollspeed
self.pitchspeed = pitchspeed
self.yawspeed = yawspeed
def pack(self, mav):
return MAVLink_message.pack(self, mav, 39, struct.pack('<Iffffff', self.time_boot_ms, self.roll, self.pitch, self.yaw, self.rollspeed, self.pitchspeed, self.yawspeed))
class MAVLink_attitude_quaternion_message(MAVLink_message):
'''
The attitude in the aeronautical frame (right-handed, Z-down,
X-front, Y-right), expressed as quaternion.
'''
def __init__(self, time_boot_ms, q1, q2, q3, q4, rollspeed, pitchspeed, yawspeed):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_ATTITUDE_QUATERNION, 'ATTITUDE_QUATERNION')
self._fieldnames = ['time_boot_ms', 'q1', 'q2', 'q3', 'q4', 'rollspeed', 'pitchspeed', 'yawspeed']
self.time_boot_ms = time_boot_ms
self.q1 = q1
self.q2 = q2
self.q3 = q3
self.q4 = q4
self.rollspeed = rollspeed
self.pitchspeed = pitchspeed
self.yawspeed = yawspeed
def pack(self, mav):
return MAVLink_message.pack(self, mav, 246, struct.pack('<Ifffffff', self.time_boot_ms, self.q1, self.q2, self.q3, self.q4, self.rollspeed, self.pitchspeed, self.yawspeed))
class MAVLink_local_position_ned_message(MAVLink_message):
'''
The filtered local position (e.g. fused computer vision and
accelerometers). Coordinate frame is right-handed, Z-axis down
(aeronautical frame, NED / north-east-down convention)
'''
def __init__(self, time_boot_ms, x, y, z, vx, vy, vz):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_LOCAL_POSITION_NED, 'LOCAL_POSITION_NED')
self._fieldnames = ['time_boot_ms', 'x', 'y', 'z', 'vx', 'vy', 'vz']
self.time_boot_ms = time_boot_ms
self.x = x
self.y = y
self.z = z
self.vx = vx
self.vy = vy
self.vz = vz
def pack(self, mav):
return MAVLink_message.pack(self, mav, 185, struct.pack('<Iffffff', self.time_boot_ms, self.x, self.y, self.z, self.vx, self.vy, self.vz))
class MAVLink_global_position_int_message(MAVLink_message):
'''
The filtered global position (e.g. fused GPS and
accelerometers). The position is in GPS-frame (right-handed,
Z-up). It is designed as scaled integer message
since the resolution of float is not sufficient.
'''
def __init__(self, time_boot_ms, lat, lon, alt, relative_alt, vx, vy, vz, hdg):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_GLOBAL_POSITION_INT, 'GLOBAL_POSITION_INT')
self._fieldnames = ['time_boot_ms', 'lat', 'lon', 'alt', 'relative_alt', 'vx', 'vy', 'vz', 'hdg']
self.time_boot_ms = time_boot_ms
self.lat = lat
self.lon = lon
self.alt = alt
self.relative_alt = relative_alt
self.vx = vx
self.vy = vy
self.vz = vz
self.hdg = hdg
def pack(self, mav):
return MAVLink_message.pack(self, mav, 104, struct.pack('<IiiiihhhH', self.time_boot_ms, self.lat, self.lon, self.alt, self.relative_alt, self.vx, self.vy, self.vz, self.hdg))
class MAVLink_rc_channels_scaled_message(MAVLink_message):
'''
The scaled values of the RC channels received. (-100%) -10000,
(0%) 0, (100%) 10000
'''
def __init__(self, time_boot_ms, port, chan1_scaled, chan2_scaled, chan3_scaled, chan4_scaled, chan5_scaled, chan6_scaled, chan7_scaled, chan8_scaled, rssi):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_RC_CHANNELS_SCALED, 'RC_CHANNELS_SCALED')
self._fieldnames = ['time_boot_ms', 'port', 'chan1_scaled', 'chan2_scaled', 'chan3_scaled', 'chan4_scaled', 'chan5_scaled', 'chan6_scaled', 'chan7_scaled', 'chan8_scaled', 'rssi']
self.time_boot_ms = time_boot_ms
self.port = port
self.chan1_scaled = chan1_scaled
self.chan2_scaled = chan2_scaled
self.chan3_scaled = chan3_scaled
self.chan4_scaled = chan4_scaled
self.chan5_scaled = chan5_scaled
self.chan6_scaled = chan6_scaled
self.chan7_scaled = chan7_scaled
self.chan8_scaled = chan8_scaled
self.rssi = rssi
def pack(self, mav):
return MAVLink_message.pack(self, mav, 237, struct.pack('<IhhhhhhhhBB', self.time_boot_ms, self.chan1_scaled, self.chan2_scaled, self.chan3_scaled, self.chan4_scaled, self.chan5_scaled, self.chan6_scaled, self.chan7_scaled, self.chan8_scaled, self.port, self.rssi))
class MAVLink_rc_channels_raw_message(MAVLink_message):
'''
The RAW values of the RC channels received. The standard PPM
modulation is as follows: 1000 microseconds: 0%, 2000
microseconds: 100%. Individual receivers/transmitters might
violate this specification.
'''
def __init__(self, time_boot_ms, port, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, rssi):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_RC_CHANNELS_RAW, 'RC_CHANNELS_RAW')
self._fieldnames = ['time_boot_ms', 'port', 'chan1_raw', 'chan2_raw', 'chan3_raw', 'chan4_raw', 'chan5_raw', 'chan6_raw', 'chan7_raw', 'chan8_raw', 'rssi']
self.time_boot_ms = time_boot_ms
self.port = port
self.chan1_raw = chan1_raw
self.chan2_raw = chan2_raw
self.chan3_raw = chan3_raw
self.chan4_raw = chan4_raw
self.chan5_raw = chan5_raw
self.chan6_raw = chan6_raw
self.chan7_raw = chan7_raw
self.chan8_raw = chan8_raw
self.rssi = rssi
def pack(self, mav):
return MAVLink_message.pack(self, mav, 244, struct.pack('<IHHHHHHHHBB', self.time_boot_ms, self.chan1_raw, self.chan2_raw, self.chan3_raw, self.chan4_raw, self.chan5_raw, self.chan6_raw, self.chan7_raw, self.chan8_raw, self.port, self.rssi))
class MAVLink_servo_output_raw_message(MAVLink_message):
'''
The RAW values of the servo outputs (for RC input from the
remote, use the RC_CHANNELS messages). The standard PPM
modulation is as follows: 1000 microseconds: 0%, 2000
microseconds: 100%.
'''
def __init__(self, time_usec, port, servo1_raw, servo2_raw, servo3_raw, servo4_raw, servo5_raw, servo6_raw, servo7_raw, servo8_raw):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_SERVO_OUTPUT_RAW, 'SERVO_OUTPUT_RAW')
self._fieldnames = ['time_usec', 'port', 'servo1_raw', 'servo2_raw', 'servo3_raw', 'servo4_raw', 'servo5_raw', 'servo6_raw', 'servo7_raw', 'servo8_raw']
self.time_usec = time_usec
self.port = port
self.servo1_raw = servo1_raw
self.servo2_raw = servo2_raw
self.servo3_raw = servo3_raw
self.servo4_raw = servo4_raw
self.servo5_raw = servo5_raw
self.servo6_raw = servo6_raw
self.servo7_raw = servo7_raw
self.servo8_raw = servo8_raw
def pack(self, mav):
return MAVLink_message.pack(self, mav, 222, struct.pack('<IHHHHHHHHB', self.time_usec, self.servo1_raw, self.servo2_raw, self.servo3_raw, self.servo4_raw, self.servo5_raw, self.servo6_raw, self.servo7_raw, self.servo8_raw, self.port))
class MAVLink_mission_request_partial_list_message(MAVLink_message):
'''
Request the overall list of MISSIONs from the
system/component.
http://qgroundcontrol.org/mavlink/waypoint_protocol
'''
def __init__(self, target_system, target_component, start_index, end_index):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_REQUEST_PARTIAL_LIST, 'MISSION_REQUEST_PARTIAL_LIST')
self._fieldnames = ['target_system', 'target_component', 'start_index', 'end_index']
self.target_system = target_system
self.target_component = target_component
self.start_index = start_index
self.end_index = end_index
def pack(self, mav):
return MAVLink_message.pack(self, mav, 212, struct.pack('<hhBB', self.start_index, self.end_index, self.target_system, self.target_component))
class MAVLink_mission_write_partial_list_message(MAVLink_message):
'''
This message is sent to the MAV to write a partial list. If
start index == end index, only one item will be transmitted /
updated. If the start index is NOT 0 and above the current
list size, this request should be REJECTED!
'''
def __init__(self, target_system, target_component, start_index, end_index):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST, 'MISSION_WRITE_PARTIAL_LIST')
self._fieldnames = ['target_system', 'target_component', 'start_index', 'end_index']
self.target_system = target_system
self.target_component = target_component
self.start_index = start_index
self.end_index = end_index
def pack(self, mav):
return MAVLink_message.pack(self, mav, 9, struct.pack('<hhBB', self.start_index, self.end_index, self.target_system, self.target_component))
class MAVLink_mission_item_message(MAVLink_message):
'''
Message encoding a mission item. This message is emitted to
announce the presence of a mission item and to
set a mission item on the system. The mission item can be
either in x, y, z meters (type: LOCAL) or x:lat, y:lon,
z:altitude. Local frame is Z-down, right handed (NED), global
frame is Z-up, right handed (ENU). See also
http://qgroundcontrol.org/mavlink/waypoint_protocol.
'''
def __init__(self, target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_ITEM, 'MISSION_ITEM')
self._fieldnames = ['target_system', 'target_component', 'seq', 'frame', 'command', 'current', 'autocontinue', 'param1', 'param2', 'param3', 'param4', 'x', 'y', 'z']
self.target_system = target_system
self.target_component = target_component
self.seq = seq
self.frame = frame
self.command = command
self.current = current
self.autocontinue = autocontinue
self.param1 = param1
self.param2 = param2
self.param3 = param3
self.param4 = param4
self.x = x
self.y = y
self.z = z
def pack(self, mav):
return MAVLink_message.pack(self, mav, 254, struct.pack('<fffffffHHBBBBB', self.param1, self.param2, self.param3, self.param4, self.x, self.y, self.z, self.seq, self.command, self.target_system, self.target_component, self.frame, self.current, self.autocontinue))
class MAVLink_mission_request_message(MAVLink_message):
'''
Request the information of the mission item with the sequence
number seq. The response of the system to this message should
be a MISSION_ITEM message.
http://qgroundcontrol.org/mavlink/waypoint_protocol
'''
def __init__(self, target_system, target_component, seq):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_REQUEST, 'MISSION_REQUEST')
self._fieldnames = ['target_system', 'target_component', 'seq']
self.target_system = target_system
self.target_component = target_component
self.seq = seq
def pack(self, mav):
return MAVLink_message.pack(self, mav, 230, struct.pack('<HBB', self.seq, self.target_system, self.target_component))
class MAVLink_mission_set_current_message(MAVLink_message):
'''
Set the mission item with sequence number seq as current item.
This means that the MAV will continue to this mission item on
the shortest path (not following the mission items in-
between).
'''
def __init__(self, target_system, target_component, seq):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_SET_CURRENT, 'MISSION_SET_CURRENT')
self._fieldnames = ['target_system', 'target_component', 'seq']
self.target_system = target_system
self.target_component = target_component
self.seq = seq
def pack(self, mav):
return MAVLink_message.pack(self, mav, 28, struct.pack('<HBB', self.seq, self.target_system, self.target_component))
class MAVLink_mission_current_message(MAVLink_message):
'''
Message that announces the sequence number of the current
active mission item. The MAV will fly towards this mission
item.
'''
def __init__(self, seq):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_CURRENT, 'MISSION_CURRENT')
self._fieldnames = ['seq']
self.seq = seq
def pack(self, mav):
return MAVLink_message.pack(self, mav, 28, struct.pack('<H', self.seq))
class MAVLink_mission_request_list_message(MAVLink_message):
'''
Request the overall list of mission items from the
system/component.
'''
def __init__(self, target_system, target_component):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_REQUEST_LIST, 'MISSION_REQUEST_LIST')
self._fieldnames = ['target_system', 'target_component']
self.target_system = target_system
self.target_component = target_component
def pack(self, mav):
return MAVLink_message.pack(self, mav, 132, struct.pack('<BB', self.target_system, self.target_component))
class MAVLink_mission_count_message(MAVLink_message):
'''
This message is emitted as response to MISSION_REQUEST_LIST by
the MAV and to initiate a write transaction. The GCS can then
request the individual mission item based on the knowledge of
the total number of MISSIONs.
'''
def __init__(self, target_system, target_component, count):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_COUNT, 'MISSION_COUNT')
self._fieldnames = ['target_system', 'target_component', 'count']
self.target_system = target_system
self.target_component = target_component
self.count = count
def pack(self, mav):
return MAVLink_message.pack(self, mav, 221, struct.pack('<HBB', self.count, self.target_system, self.target_component))
class MAVLink_mission_clear_all_message(MAVLink_message):
'''
Delete all mission items at once.
'''
def __init__(self, target_system, target_component):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_CLEAR_ALL, 'MISSION_CLEAR_ALL')
self._fieldnames = ['target_system', 'target_component']
self.target_system = target_system
self.target_component = target_component
def pack(self, mav):
return MAVLink_message.pack(self, mav, 232, struct.pack('<BB', self.target_system, self.target_component))
class MAVLink_mission_item_reached_message(MAVLink_message):
'''
A certain mission item has been reached. The system will
either hold this position (or circle on the orbit) or (if the
autocontinue on the WP was set) continue to the next MISSION.
'''
def __init__(self, seq):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_ITEM_REACHED, 'MISSION_ITEM_REACHED')
self._fieldnames = ['seq']
self.seq = seq
def pack(self, mav):
return MAVLink_message.pack(self, mav, 11, struct.pack('<H', self.seq))
class MAVLink_mission_ack_message(MAVLink_message):
'''
Ack message during MISSION handling. The type field states if
this message is a positive ack (type=0) or if an error
happened (type=non-zero).
'''
def __init__(self, target_system, target_component, type):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_ACK, 'MISSION_ACK')
self._fieldnames = ['target_system', 'target_component', 'type']
self.target_system = target_system
self.target_component = target_component
self.type = type
def pack(self, mav):
return MAVLink_message.pack(self, mav, 153, struct.pack('<BBB', self.target_system, self.target_component, self.type))
class MAVLink_set_gps_global_origin_message(MAVLink_message):
'''
As local MISSIONs exist, the global MISSION reference allows
to transform between the local coordinate frame and the global
(GPS) coordinate frame. This can be necessary when e.g. in-
and outdoor settings are connected and the MAV should move
from in- to outdoor.
'''
def __init__(self, target_system, latitude, longitude, altitude):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_SET_GPS_GLOBAL_ORIGIN, 'SET_GPS_GLOBAL_ORIGIN')
self._fieldnames = ['target_system', 'latitude', 'longitude', 'altitude']
self.target_system = target_system
self.latitude = latitude
self.longitude = longitude
self.altitude = altitude
def pack(self, mav):
return MAVLink_message.pack(self, mav, 41, struct.pack('<iiiB', self.latitude, self.longitude, self.altitude, self.target_system))
class MAVLink_gps_global_origin_message(MAVLink_message):
'''
Once the MAV sets a new GPS-Local correspondence, this message
announces the origin (0,0,0) position
'''
def __init__(self, latitude, longitude, altitude):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_GPS_GLOBAL_ORIGIN, 'GPS_GLOBAL_ORIGIN')
self._fieldnames = ['latitude', 'longitude', 'altitude']
self.latitude = latitude
self.longitude = longitude
self.altitude = altitude
def pack(self, mav):
return MAVLink_message.pack(self, mav, 39, struct.pack('<iii', self.latitude, self.longitude, self.altitude))
class MAVLink_set_local_position_setpoint_message(MAVLink_message):
'''
Set the setpoint for a local position controller. This is the
position in local coordinates the MAV should fly to. This
message is sent by the path/MISSION planner to the onboard
position controller. As some MAVs have a degree of freedom in
yaw (e.g. all helicopters/quadrotors), the desired yaw angle
is part of the message.
'''
def __init__(self, target_system, target_component, coordinate_frame, x, y, z, yaw):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_SET_LOCAL_POSITION_SETPOINT, 'SET_LOCAL_POSITION_SETPOINT')
self._fieldnames = ['target_system', 'target_component', 'coordinate_frame', 'x', 'y', 'z', 'yaw']
self.target_system = target_system
self.target_component = target_component
self.coordinate_frame = coordinate_frame
self.x = x
self.y = y
self.z = z
self.yaw = yaw
def pack(self, mav):
return MAVLink_message.pack(self, mav, 214, struct.pack('<ffffBBB', self.x, self.y, self.z, self.yaw, self.target_system, self.target_component, self.coordinate_frame))
class MAVLink_local_position_setpoint_message(MAVLink_message):
'''
Transmit the current local setpoint of the controller to other
MAVs (collision avoidance) and to the GCS.
'''
def __init__(self, coordinate_frame, x, y, z, yaw):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_LOCAL_POSITION_SETPOINT, 'LOCAL_POSITION_SETPOINT')
self._fieldnames = ['coordinate_frame', 'x', 'y', 'z', 'yaw']
self.coordinate_frame = coordinate_frame
self.x = x
self.y = y
self.z = z
self.yaw = yaw
def pack(self, mav):
return MAVLink_message.pack(self, mav, 223, struct.pack('<ffffB', self.x, self.y, self.z, self.yaw, self.coordinate_frame))
class MAVLink_global_position_setpoint_int_message(MAVLink_message):
'''
Transmit the current local setpoint of the controller to other
MAVs (collision avoidance) and to the GCS.
'''
def __init__(self, coordinate_frame, latitude, longitude, altitude, yaw):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_GLOBAL_POSITION_SETPOINT_INT, 'GLOBAL_POSITION_SETPOINT_INT')
self._fieldnames = ['coordinate_frame', 'latitude', 'longitude', 'altitude', 'yaw']
self.coordinate_frame = coordinate_frame
self.latitude = latitude
self.longitude = longitude
self.altitude = altitude
self.yaw = yaw
def pack(self, mav):
return MAVLink_message.pack(self, mav, 141, struct.pack('<iiihB', self.latitude, self.longitude, self.altitude, self.yaw, self.coordinate_frame))
class MAVLink_set_global_position_setpoint_int_message(MAVLink_message):
'''
Set the current global position setpoint.
'''
def __init__(self, coordinate_frame, latitude, longitude, altitude, yaw):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_SET_GLOBAL_POSITION_SETPOINT_INT, 'SET_GLOBAL_POSITION_SETPOINT_INT')
self._fieldnames = ['coordinate_frame', 'latitude', 'longitude', 'altitude', 'yaw']
self.coordinate_frame = coordinate_frame
self.latitude = latitude
self.longitude = longitude
self.altitude = altitude
self.yaw = yaw
def pack(self, mav):
return MAVLink_message.pack(self, mav, 33, struct.pack('<iiihB', self.latitude, self.longitude, self.altitude, self.yaw, self.coordinate_frame))
class MAVLink_safety_set_allowed_area_message(MAVLink_message):
'''
Set a safety zone (volume), which is defined by two corners of
a cube. This message can be used to tell the MAV which
setpoints/MISSIONs to accept and which to reject. Safety areas
are often enforced by national or competition regulations.
'''
def __init__(self, target_system, target_component, frame, p1x, p1y, p1z, p2x, p2y, p2z):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_SAFETY_SET_ALLOWED_AREA, 'SAFETY_SET_ALLOWED_AREA')
self._fieldnames = ['target_system', 'target_component', 'frame', 'p1x', 'p1y', 'p1z', 'p2x', 'p2y', 'p2z']
self.target_system = target_system
self.target_component = target_component
self.frame = frame
self.p1x = p1x
self.p1y = p1y
self.p1z = p1z
self.p2x = p2x
self.p2y = p2y
self.p2z = p2z
def pack(self, mav):
return MAVLink_message.pack(self, mav, 15, struct.pack('<ffffffBBB', self.p1x, self.p1y, self.p1z, self.p2x, self.p2y, self.p2z, self.target_system, self.target_component, self.frame))
class MAVLink_safety_allowed_area_message(MAVLink_message):
'''
Read out the safety zone the MAV currently assumes.
'''
def __init__(self, frame, p1x, p1y, p1z, p2x, p2y, p2z):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_SAFETY_ALLOWED_AREA, 'SAFETY_ALLOWED_AREA')
self._fieldnames = ['frame', 'p1x', 'p1y', 'p1z', 'p2x', 'p2y', 'p2z']
self.frame = frame
self.p1x = p1x
self.p1y = p1y
self.p1z = p1z
self.p2x = p2x
self.p2y = p2y
self.p2z = p2z
def pack(self, mav):
return MAVLink_message.pack(self, mav, 3, struct.pack('<ffffffB', self.p1x, self.p1y, self.p1z, self.p2x, self.p2y, self.p2z, self.frame))
class MAVLink_set_roll_pitch_yaw_thrust_message(MAVLink_message):
'''
Set roll, pitch and yaw.
'''
def __init__(self, target_system, target_component, roll, pitch, yaw, thrust):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_SET_ROLL_PITCH_YAW_THRUST, 'SET_ROLL_PITCH_YAW_THRUST')
self._fieldnames = ['target_system', 'target_component', 'roll', 'pitch', 'yaw', 'thrust']
self.target_system = target_system
self.target_component = target_component
self.roll = roll
self.pitch = pitch
self.yaw = yaw
self.thrust = thrust
def pack(self, mav):
return MAVLink_message.pack(self, mav, 100, struct.pack('<ffffBB', self.roll, self.pitch, self.yaw, self.thrust, self.target_system, self.target_component))
class MAVLink_set_roll_pitch_yaw_speed_thrust_message(MAVLink_message):
'''
Set roll, pitch and yaw.
'''
def __init__(self, target_system, target_component, roll_speed, pitch_speed, yaw_speed, thrust):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_SET_ROLL_PITCH_YAW_SPEED_THRUST, 'SET_ROLL_PITCH_YAW_SPEED_THRUST')
self._fieldnames = ['target_system', 'target_component', 'roll_speed', 'pitch_speed', 'yaw_speed', 'thrust']
self.target_system = target_system
self.target_component = target_component
self.roll_speed = roll_speed
self.pitch_speed = pitch_speed
self.yaw_speed = yaw_speed
self.thrust = thrust
def pack(self, mav):
return MAVLink_message.pack(self, mav, 24, struct.pack('<ffffBB', self.roll_speed, self.pitch_speed, self.yaw_speed, self.thrust, self.target_system, self.target_component))
class MAVLink_roll_pitch_yaw_thrust_setpoint_message(MAVLink_message):
'''
Setpoint in roll, pitch, yaw currently active on the system.
'''
def __init__(self, time_boot_ms, roll, pitch, yaw, thrust):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_ROLL_PITCH_YAW_THRUST_SETPOINT, 'ROLL_PITCH_YAW_THRUST_SETPOINT')
self._fieldnames = ['time_boot_ms', 'roll', 'pitch', 'yaw', 'thrust']
self.time_boot_ms = time_boot_ms
self.roll = roll
self.pitch = pitch
self.yaw = yaw
self.thrust = thrust
def pack(self, mav):
return MAVLink_message.pack(self, mav, 239, struct.pack('<Iffff', self.time_boot_ms, self.roll, self.pitch, self.yaw, self.thrust))
class MAVLink_roll_pitch_yaw_speed_thrust_setpoint_message(MAVLink_message):
'''
Setpoint in rollspeed, pitchspeed, yawspeed currently active
on the system.
'''
def __init__(self, time_boot_ms, roll_speed, pitch_speed, yaw_speed, thrust):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_ROLL_PITCH_YAW_SPEED_THRUST_SETPOINT, 'ROLL_PITCH_YAW_SPEED_THRUST_SETPOINT')
self._fieldnames = ['time_boot_ms', 'roll_speed', 'pitch_speed', 'yaw_speed', 'thrust']
self.time_boot_ms = time_boot_ms
self.roll_speed = roll_speed
self.pitch_speed = pitch_speed
self.yaw_speed = yaw_speed
self.thrust = thrust
def pack(self, mav):
return MAVLink_message.pack(self, mav, 238, struct.pack('<Iffff', self.time_boot_ms, self.roll_speed, self.pitch_speed, self.yaw_speed, self.thrust))
class MAVLink_set_quad_motors_setpoint_message(MAVLink_message):
'''
Setpoint in the four motor speeds
'''
def __init__(self, target_system, motor_front_nw, motor_right_ne, motor_back_se, motor_left_sw):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_SET_QUAD_MOTORS_SETPOINT, 'SET_QUAD_MOTORS_SETPOINT')
self._fieldnames = ['target_system', 'motor_front_nw', 'motor_right_ne', 'motor_back_se', 'motor_left_sw']
self.target_system = target_system
self.motor_front_nw = motor_front_nw
self.motor_right_ne = motor_right_ne
self.motor_back_se = motor_back_se
self.motor_left_sw = motor_left_sw
def pack(self, mav):
return MAVLink_message.pack(self, mav, 30, struct.pack('<HHHHB', self.motor_front_nw, self.motor_right_ne, self.motor_back_se, self.motor_left_sw, self.target_system))
class MAVLink_set_quad_swarm_roll_pitch_yaw_thrust_message(MAVLink_message):
'''
'''
def __init__(self, target_systems, roll, pitch, yaw, thrust):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_SET_QUAD_SWARM_ROLL_PITCH_YAW_THRUST, 'SET_QUAD_SWARM_ROLL_PITCH_YAW_THRUST')
self._fieldnames = ['target_systems', 'roll', 'pitch', 'yaw', 'thrust']
self.target_systems = target_systems
self.roll = roll
self.pitch = pitch
self.yaw = yaw
self.thrust = thrust
def pack(self, mav):
return MAVLink_message.pack(self, mav, 200, struct.pack('<6h6h6h6H6s', self.roll, self.pitch, self.yaw, self.thrust, self.target_systems))
class MAVLink_nav_controller_output_message(MAVLink_message):
'''
Outputs of the APM navigation controller. The primary use of
this message is to check the response and signs of the
controller before actual flight and to assist with tuning
controller parameters.
'''
def __init__(self, nav_roll, nav_pitch, nav_bearing, target_bearing, wp_dist, alt_error, aspd_error, xtrack_error):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_NAV_CONTROLLER_OUTPUT, 'NAV_CONTROLLER_OUTPUT')
self._fieldnames = ['nav_roll', 'nav_pitch', 'nav_bearing', 'target_bearing', 'wp_dist', 'alt_error', 'aspd_error', 'xtrack_error']
self.nav_roll = nav_roll
self.nav_pitch = nav_pitch
self.nav_bearing = nav_bearing
self.target_bearing = target_bearing
self.wp_dist = wp_dist
self.alt_error = alt_error
self.aspd_error = aspd_error
self.xtrack_error = xtrack_error
def pack(self, mav):
return MAVLink_message.pack(self, mav, 183, struct.pack('<fffffhhH', self.nav_roll, self.nav_pitch, self.alt_error, self.aspd_error, self.xtrack_error, self.nav_bearing, self.target_bearing, self.wp_dist))
class MAVLink_state_correction_message(MAVLink_message):
'''
Corrects the systems state by adding an error correction term
to the position and velocity, and by rotating the attitude by
a correction angle.
'''
def __init__(self, xErr, yErr, zErr, rollErr, pitchErr, yawErr, vxErr, vyErr, vzErr):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_STATE_CORRECTION, 'STATE_CORRECTION')
self._fieldnames = ['xErr', 'yErr', 'zErr', 'rollErr', 'pitchErr', 'yawErr', 'vxErr', 'vyErr', 'vzErr']
self.xErr = xErr
self.yErr = yErr
self.zErr = zErr
self.rollErr = rollErr
self.pitchErr = pitchErr
self.yawErr = yawErr
self.vxErr = vxErr
self.vyErr = vyErr
self.vzErr = vzErr
def pack(self, mav):
return MAVLink_message.pack(self, mav, 130, struct.pack('<fffffffff', self.xErr, self.yErr, self.zErr, self.rollErr, self.pitchErr, self.yawErr, self.vxErr, self.vyErr, self.vzErr))
class MAVLink_request_data_stream_message(MAVLink_message):
'''
'''
def __init__(self, target_system, target_component, req_stream_id, req_message_rate, start_stop):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_REQUEST_DATA_STREAM, 'REQUEST_DATA_STREAM')
self._fieldnames = ['target_system', 'target_component', 'req_stream_id', 'req_message_rate', 'start_stop']
self.target_system = target_system
self.target_component = target_component
self.req_stream_id = req_stream_id
self.req_message_rate = req_message_rate
self.start_stop = start_stop
def pack(self, mav):
return MAVLink_message.pack(self, mav, 148, struct.pack('<HBBBB', self.req_message_rate, self.target_system, self.target_component, self.req_stream_id, self.start_stop))
class MAVLink_data_stream_message(MAVLink_message):
'''
'''
def __init__(self, stream_id, message_rate, on_off):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_DATA_STREAM, 'DATA_STREAM')
self._fieldnames = ['stream_id', 'message_rate', 'on_off']
self.stream_id = stream_id
self.message_rate = message_rate
self.on_off = on_off
def pack(self, mav):
return MAVLink_message.pack(self, mav, 21, struct.pack('<HBB', self.message_rate, self.stream_id, self.on_off))
class MAVLink_manual_control_message(MAVLink_message):
'''
'''
def __init__(self, target, roll, pitch, yaw, thrust, roll_manual, pitch_manual, yaw_manual, thrust_manual):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_MANUAL_CONTROL, 'MANUAL_CONTROL')
self._fieldnames = ['target', 'roll', 'pitch', 'yaw', 'thrust', 'roll_manual', 'pitch_manual', 'yaw_manual', 'thrust_manual']
self.target = target
self.roll = roll
self.pitch = pitch
self.yaw = yaw
self.thrust = thrust
self.roll_manual = roll_manual
self.pitch_manual = pitch_manual
self.yaw_manual = yaw_manual
self.thrust_manual = thrust_manual
def pack(self, mav):
return MAVLink_message.pack(self, mav, 52, struct.pack('<ffffBBBBB', self.roll, self.pitch, self.yaw, self.thrust, self.target, self.roll_manual, self.pitch_manual, self.yaw_manual, self.thrust_manual))
class MAVLink_rc_channels_override_message(MAVLink_message):
'''
The RAW values of the RC channels sent to the MAV to override
info received from the RC radio. A value of -1 means no change
to that channel. A value of 0 means control of that channel
should be released back to the RC radio. The standard PPM
modulation is as follows: 1000 microseconds: 0%, 2000
microseconds: 100%. Individual receivers/transmitters might
violate this specification.
'''
def __init__(self, target_system, target_component, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE, 'RC_CHANNELS_OVERRIDE')
self._fieldnames = ['target_system', 'target_component', 'chan1_raw', 'chan2_raw', 'chan3_raw', 'chan4_raw', 'chan5_raw', 'chan6_raw', 'chan7_raw', 'chan8_raw']
self.target_system = target_system
self.target_component = target_component
self.chan1_raw = chan1_raw
self.chan2_raw = chan2_raw
self.chan3_raw = chan3_raw
self.chan4_raw = chan4_raw
self.chan5_raw = chan5_raw
self.chan6_raw = chan6_raw
self.chan7_raw = chan7_raw
self.chan8_raw = chan8_raw
def pack(self, mav):
return MAVLink_message.pack(self, mav, 124, struct.pack('<HHHHHHHHBB', self.chan1_raw, self.chan2_raw, self.chan3_raw, self.chan4_raw, self.chan5_raw, self.chan6_raw, self.chan7_raw, self.chan8_raw, self.target_system, self.target_component))
class MAVLink_vfr_hud_message(MAVLink_message):
'''
Metrics typically displayed on a HUD for fixed wing aircraft
'''
def __init__(self, airspeed, groundspeed, heading, throttle, alt, climb):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_VFR_HUD, 'VFR_HUD')
self._fieldnames = ['airspeed', 'groundspeed', 'heading', 'throttle', 'alt', 'climb']
self.airspeed = airspeed
self.groundspeed = groundspeed
self.heading = heading
self.throttle = throttle
self.alt = alt
self.climb = climb
def pack(self, mav):
return MAVLink_message.pack(self, mav, 20, struct.pack('<ffffhH', self.airspeed, self.groundspeed, self.alt, self.climb, self.heading, self.throttle))
class MAVLink_command_long_message(MAVLink_message):
'''
Send a command with up to four parameters to the MAV
'''
def __init__(self, target_system, target_component, command, confirmation, param1, param2, param3, param4, param5, param6, param7):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_COMMAND_LONG, 'COMMAND_LONG')
self._fieldnames = ['target_system', 'target_component', 'command', 'confirmation', 'param1', 'param2', 'param3', 'param4', 'param5', 'param6', 'param7']
self.target_system = target_system
self.target_component = target_component
self.command = command
self.confirmation = confirmation
self.param1 = param1
self.param2 = param2
self.param3 = param3
self.param4 = param4
self.param5 = param5
self.param6 = param6
self.param7 = param7
def pack(self, mav):
return MAVLink_message.pack(self, mav, 152, struct.pack('<fffffffHBBB', self.param1, self.param2, self.param3, self.param4, self.param5, self.param6, self.param7, self.command, self.target_system, self.target_component, self.confirmation))
class MAVLink_command_ack_message(MAVLink_message):
'''
Report status of a command. Includes feedback wether the
command was executed.
'''
def __init__(self, command, result):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_COMMAND_ACK, 'COMMAND_ACK')
self._fieldnames = ['command', 'result']
self.command = command
self.result = result
def pack(self, mav):
return MAVLink_message.pack(self, mav, 143, struct.pack('<HB', self.command, self.result))
class MAVLink_local_position_ned_system_global_offset_message(MAVLink_message):
'''
The offset in X, Y, Z and yaw between the LOCAL_POSITION_NED
messages of MAV X and the global coordinate frame in NED
coordinates. Coordinate frame is right-handed, Z-axis down
(aeronautical frame, NED / north-east-down convention)
'''
def __init__(self, time_boot_ms, x, y, z, roll, pitch, yaw):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_LOCAL_POSITION_NED_SYSTEM_GLOBAL_OFFSET, 'LOCAL_POSITION_NED_SYSTEM_GLOBAL_OFFSET')
self._fieldnames = ['time_boot_ms', 'x', 'y', 'z', 'roll', 'pitch', 'yaw']
self.time_boot_ms = time_boot_ms
self.x = x
self.y = y
self.z = z
self.roll = roll
self.pitch = pitch
self.yaw = yaw
def pack(self, mav):
return MAVLink_message.pack(self, mav, 231, struct.pack('<Iffffff', self.time_boot_ms, self.x, self.y, self.z, self.roll, self.pitch, self.yaw))
class MAVLink_hil_state_message(MAVLink_message):
'''
Sent from simulation to autopilot. This packet is useful for
high throughput applications such as hardware in the loop
simulations.
'''
def __init__(self, time_usec, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, xacc, yacc, zacc):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_HIL_STATE, 'HIL_STATE')
self._fieldnames = ['time_usec', 'roll', 'pitch', 'yaw', 'rollspeed', 'pitchspeed', 'yawspeed', 'lat', 'lon', 'alt', 'vx', 'vy', 'vz', 'xacc', 'yacc', 'zacc']
self.time_usec = time_usec
self.roll = roll
self.pitch = pitch
self.yaw = yaw
self.rollspeed = rollspeed
self.pitchspeed = pitchspeed
self.yawspeed = yawspeed
self.lat = lat
self.lon = lon
self.alt = alt
self.vx = vx
self.vy = vy
self.vz = vz
self.xacc = xacc
self.yacc = yacc
self.zacc = zacc
def pack(self, mav):
return MAVLink_message.pack(self, mav, 183, struct.pack('<Qffffffiiihhhhhh', self.time_usec, self.roll, self.pitch, self.yaw, self.rollspeed, self.pitchspeed, self.yawspeed, self.lat, self.lon, self.alt, self.vx, self.vy, self.vz, self.xacc, self.yacc, self.zacc))
class MAVLink_hil_controls_message(MAVLink_message):
'''
Sent from autopilot to simulation. Hardware in the loop
control outputs
'''
def __init__(self, time_usec, roll_ailerons, pitch_elevator, yaw_rudder, throttle, aux1, aux2, aux3, aux4, mode, nav_mode):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_HIL_CONTROLS, 'HIL_CONTROLS')
self._fieldnames = ['time_usec', 'roll_ailerons', 'pitch_elevator', 'yaw_rudder', 'throttle', 'aux1', 'aux2', 'aux3', 'aux4', 'mode', 'nav_mode']
self.time_usec = time_usec
self.roll_ailerons = roll_ailerons
self.pitch_elevator = pitch_elevator
self.yaw_rudder = yaw_rudder
self.throttle = throttle
self.aux1 = aux1
self.aux2 = aux2
self.aux3 = aux3
self.aux4 = aux4
self.mode = mode
self.nav_mode = nav_mode
def pack(self, mav):
return MAVLink_message.pack(self, mav, 63, struct.pack('<QffffffffBB', self.time_usec, self.roll_ailerons, self.pitch_elevator, self.yaw_rudder, self.throttle, self.aux1, self.aux2, self.aux3, self.aux4, self.mode, self.nav_mode))
class MAVLink_hil_rc_inputs_raw_message(MAVLink_message):
'''
Sent from simulation to autopilot. The RAW values of the RC
channels received. The standard PPM modulation is as follows:
1000 microseconds: 0%, 2000 microseconds: 100%. Individual
receivers/transmitters might violate this specification.
'''
def __init__(self, time_usec, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, rssi):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_HIL_RC_INPUTS_RAW, 'HIL_RC_INPUTS_RAW')
self._fieldnames = ['time_usec', 'chan1_raw', 'chan2_raw', 'chan3_raw', 'chan4_raw', 'chan5_raw', 'chan6_raw', 'chan7_raw', 'chan8_raw', 'chan9_raw', 'chan10_raw', 'chan11_raw', 'chan12_raw', 'rssi']
self.time_usec = time_usec
self.chan1_raw = chan1_raw
self.chan2_raw = chan2_raw
self.chan3_raw = chan3_raw
self.chan4_raw = chan4_raw
self.chan5_raw = chan5_raw
self.chan6_raw = chan6_raw
self.chan7_raw = chan7_raw
self.chan8_raw = chan8_raw
self.chan9_raw = chan9_raw
self.chan10_raw = chan10_raw
self.chan11_raw = chan11_raw
self.chan12_raw = chan12_raw
self.rssi = rssi
def pack(self, mav):
return MAVLink_message.pack(self, mav, 54, struct.pack('<QHHHHHHHHHHHHB', self.time_usec, self.chan1_raw, self.chan2_raw, self.chan3_raw, self.chan4_raw, self.chan5_raw, self.chan6_raw, self.chan7_raw, self.chan8_raw, self.chan9_raw, self.chan10_raw, self.chan11_raw, self.chan12_raw, self.rssi))
class MAVLink_optical_flow_message(MAVLink_message):
'''
Optical flow from a flow sensor (e.g. optical mouse sensor)
'''
def __init__(self, time_usec, sensor_id, flow_x, flow_y, flow_comp_m_x, flow_comp_m_y, quality, ground_distance):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_OPTICAL_FLOW, 'OPTICAL_FLOW')
self._fieldnames = ['time_usec', 'sensor_id', 'flow_x', 'flow_y', 'flow_comp_m_x', 'flow_comp_m_y', 'quality', 'ground_distance']
self.time_usec = time_usec
self.sensor_id = sensor_id
self.flow_x = flow_x
self.flow_y = flow_y
self.flow_comp_m_x = flow_comp_m_x
self.flow_comp_m_y = flow_comp_m_y
self.quality = quality
self.ground_distance = ground_distance
def pack(self, mav):
return MAVLink_message.pack(self, mav, 175, struct.pack('<QfffhhBB', self.time_usec, self.flow_comp_m_x, self.flow_comp_m_y, self.ground_distance, self.flow_x, self.flow_y, self.sensor_id, self.quality))
class MAVLink_global_vision_position_estimate_message(MAVLink_message):
'''
'''
def __init__(self, usec, x, y, z, roll, pitch, yaw):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_GLOBAL_VISION_POSITION_ESTIMATE, 'GLOBAL_VISION_POSITION_ESTIMATE')
self._fieldnames = ['usec', 'x', 'y', 'z', 'roll', 'pitch', 'yaw']
self.usec = usec
self.x = x
self.y = y
self.z = z
self.roll = roll
self.pitch = pitch
self.yaw = yaw
def pack(self, mav):
return MAVLink_message.pack(self, mav, 102, struct.pack('<Qffffff', self.usec, self.x, self.y, self.z, self.roll, self.pitch, self.yaw))
class MAVLink_vision_position_estimate_message(MAVLink_message):
'''
'''
def __init__(self, usec, x, y, z, roll, pitch, yaw):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_VISION_POSITION_ESTIMATE, 'VISION_POSITION_ESTIMATE')
self._fieldnames = ['usec', 'x', 'y', 'z', 'roll', 'pitch', 'yaw']
self.usec = usec
self.x = x
self.y = y
self.z = z
self.roll = roll
self.pitch = pitch
self.yaw = yaw
def pack(self, mav):
return MAVLink_message.pack(self, mav, 158, struct.pack('<Qffffff', self.usec, self.x, self.y, self.z, self.roll, self.pitch, self.yaw))
class MAVLink_vision_speed_estimate_message(MAVLink_message):
'''
'''
def __init__(self, usec, x, y, z):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_VISION_SPEED_ESTIMATE, 'VISION_SPEED_ESTIMATE')
self._fieldnames = ['usec', 'x', 'y', 'z']
self.usec = usec
self.x = x
self.y = y
self.z = z
def pack(self, mav):
return MAVLink_message.pack(self, mav, 208, struct.pack('<Qfff', self.usec, self.x, self.y, self.z))
class MAVLink_vicon_position_estimate_message(MAVLink_message):
'''
'''
def __init__(self, usec, x, y, z, roll, pitch, yaw):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_VICON_POSITION_ESTIMATE, 'VICON_POSITION_ESTIMATE')
self._fieldnames = ['usec', 'x', 'y', 'z', 'roll', 'pitch', 'yaw']
self.usec = usec
self.x = x
self.y = y
self.z = z
self.roll = roll
self.pitch = pitch
self.yaw = yaw
def pack(self, mav):
return MAVLink_message.pack(self, mav, 56, struct.pack('<Qffffff', self.usec, self.x, self.y, self.z, self.roll, self.pitch, self.yaw))
class MAVLink_memory_vect_message(MAVLink_message):
'''
Send raw controller memory. The use of this message is
discouraged for normal packets, but a quite efficient way for
testing new messages and getting experimental debug output.
'''
def __init__(self, address, ver, type, value):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_MEMORY_VECT, 'MEMORY_VECT')
self._fieldnames = ['address', 'ver', 'type', 'value']
self.address = address
self.ver = ver
self.type = type
self.value = value
def pack(self, mav):
return MAVLink_message.pack(self, mav, 204, struct.pack('<HBB32s', self.address, self.ver, self.type, self.value))
class MAVLink_debug_vect_message(MAVLink_message):
'''
'''
def __init__(self, name, time_usec, x, y, z):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_DEBUG_VECT, 'DEBUG_VECT')
self._fieldnames = ['name', 'time_usec', 'x', 'y', 'z']
self.name = name
self.time_usec = time_usec
self.x = x
self.y = y
self.z = z
def pack(self, mav):
return MAVLink_message.pack(self, mav, 49, struct.pack('<Qfff10s', self.time_usec, self.x, self.y, self.z, self.name))
class MAVLink_named_value_float_message(MAVLink_message):
'''
Send a key-value pair as float. The use of this message is
discouraged for normal packets, but a quite efficient way for
testing new messages and getting experimental debug output.
'''
def __init__(self, time_boot_ms, name, value):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_NAMED_VALUE_FLOAT, 'NAMED_VALUE_FLOAT')
self._fieldnames = ['time_boot_ms', 'name', 'value']
self.time_boot_ms = time_boot_ms
self.name = name
self.value = value
def pack(self, mav):
return MAVLink_message.pack(self, mav, 170, struct.pack('<If10s', self.time_boot_ms, self.value, self.name))
class MAVLink_named_value_int_message(MAVLink_message):
'''
Send a key-value pair as integer. The use of this message is
discouraged for normal packets, but a quite efficient way for
testing new messages and getting experimental debug output.
'''
def __init__(self, time_boot_ms, name, value):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_NAMED_VALUE_INT, 'NAMED_VALUE_INT')
self._fieldnames = ['time_boot_ms', 'name', 'value']
self.time_boot_ms = time_boot_ms
self.name = name
self.value = value
def pack(self, mav):
return MAVLink_message.pack(self, mav, 44, struct.pack('<Ii10s', self.time_boot_ms, self.value, self.name))
class MAVLink_statustext_message(MAVLink_message):
'''
Status text message. These messages are printed in yellow in
the COMM console of QGroundControl. WARNING: They consume
quite some bandwidth, so use only for important status and
error messages. If implemented wisely, these messages are
buffered on the MCU and sent only at a limited rate (e.g. 10
Hz).
'''
def __init__(self, severity, text):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_STATUSTEXT, 'STATUSTEXT')
self._fieldnames = ['severity', 'text']
self.severity = severity
self.text = text
def pack(self, mav):
return MAVLink_message.pack(self, mav, 83, struct.pack('<B50s', self.severity, self.text))
class MAVLink_debug_message(MAVLink_message):
'''
Send a debug value. The index is used to discriminate between
values. These values show up in the plot of QGroundControl as
DEBUG N.
'''
def __init__(self, time_boot_ms, ind, value):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_DEBUG, 'DEBUG')
self._fieldnames = ['time_boot_ms', 'ind', 'value']
self.time_boot_ms = time_boot_ms
self.ind = ind
self.value = value
def pack(self, mav):
return MAVLink_message.pack(self, mav, 46, struct.pack('<IfB', self.time_boot_ms, self.value, self.ind))
mavlink_map = {
MAVLINK_MSG_ID_SENSOR_OFFSETS : ( '<fiiffffffhhh', MAVLink_sensor_offsets_message, [9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8], 134 ),
MAVLINK_MSG_ID_SET_MAG_OFFSETS : ( '<hhhBB', MAVLink_set_mag_offsets_message, [3, 4, 0, 1, 2], 219 ),
MAVLINK_MSG_ID_MEMINFO : ( '<HH', MAVLink_meminfo_message, [0, 1], 208 ),
MAVLINK_MSG_ID_AP_ADC : ( '<HHHHHH', MAVLink_ap_adc_message, [0, 1, 2, 3, 4, 5], 188 ),
MAVLINK_MSG_ID_DIGICAM_CONFIGURE : ( '<fHBBBBBBBBB', MAVLink_digicam_configure_message, [2, 3, 4, 1, 5, 6, 7, 8, 9, 10, 0], 84 ),
MAVLINK_MSG_ID_DIGICAM_CONTROL : ( '<fBBBBbBBBB', MAVLink_digicam_control_message, [1, 2, 3, 4, 5, 6, 7, 8, 9, 0], 22 ),
MAVLINK_MSG_ID_MOUNT_CONFIGURE : ( '<BBBBBB', MAVLink_mount_configure_message, [0, 1, 2, 3, 4, 5], 19 ),
MAVLINK_MSG_ID_MOUNT_CONTROL : ( '<iiiBBB', MAVLink_mount_control_message, [3, 4, 0, 1, 2, 5], 21 ),
MAVLINK_MSG_ID_MOUNT_STATUS : ( '<iiiBB', MAVLink_mount_status_message, [3, 4, 0, 1, 2], 134 ),
MAVLINK_MSG_ID_FENCE_POINT : ( '<ffBBBB', MAVLink_fence_point_message, [2, 3, 4, 5, 0, 1], 78 ),
MAVLINK_MSG_ID_FENCE_FETCH_POINT : ( '<BBB', MAVLink_fence_fetch_point_message, [0, 1, 2], 68 ),
MAVLINK_MSG_ID_FENCE_STATUS : ( '<IHBB', MAVLink_fence_status_message, [2, 1, 3, 0], 189 ),
MAVLINK_MSG_ID_AHRS : ( '<fffffff', MAVLink_ahrs_message, [0, 1, 2, 3, 4, 5, 6], 127 ),
MAVLINK_MSG_ID_SIMSTATE : ( '<fffffffff', MAVLink_simstate_message, [0, 1, 2, 3, 4, 5, 6, 7, 8], 42 ),
MAVLINK_MSG_ID_HWSTATUS : ( '<HB', MAVLink_hwstatus_message, [0, 1], 21 ),
MAVLINK_MSG_ID_RADIO : ( '<HHBBBBB', MAVLink_radio_message, [2, 3, 4, 5, 6, 0, 1], 21 ),
MAVLINK_MSG_ID_HEARTBEAT : ( '<IBBBBB', MAVLink_heartbeat_message, [1, 2, 3, 0, 4, 5], 50 ),
MAVLINK_MSG_ID_SYS_STATUS : ( '<IIIHHhHHHHHHb', MAVLink_sys_status_message, [0, 1, 2, 3, 4, 5, 12, 6, 7, 8, 9, 10, 11], 124 ),
MAVLINK_MSG_ID_SYSTEM_TIME : ( '<QI', MAVLink_system_time_message, [0, 1], 137 ),
MAVLINK_MSG_ID_PING : ( '<QIBB', MAVLink_ping_message, [0, 1, 2, 3], 237 ),
MAVLINK_MSG_ID_CHANGE_OPERATOR_CONTROL : ( '<BBB25s', MAVLink_change_operator_control_message, [0, 1, 2, 3], 217 ),
MAVLINK_MSG_ID_CHANGE_OPERATOR_CONTROL_ACK : ( '<BBB', MAVLink_change_operator_control_ack_message, [0, 1, 2], 104 ),
MAVLINK_MSG_ID_AUTH_KEY : ( '<32s', MAVLink_auth_key_message, [0], 119 ),
MAVLINK_MSG_ID_SET_MODE : ( '<IBB', MAVLink_set_mode_message, [1, 2, 0], 89 ),
MAVLINK_MSG_ID_PARAM_REQUEST_READ : ( '<hBB16s', MAVLink_param_request_read_message, [1, 2, 3, 0], 214 ),
MAVLINK_MSG_ID_PARAM_REQUEST_LIST : ( '<BB', MAVLink_param_request_list_message, [0, 1], 159 ),
MAVLINK_MSG_ID_PARAM_VALUE : ( '<fHH16sB', MAVLink_param_value_message, [3, 0, 4, 1, 2], 220 ),
MAVLINK_MSG_ID_PARAM_SET : ( '<fBB16sB', MAVLink_param_set_message, [1, 2, 3, 0, 4], 168 ),
MAVLINK_MSG_ID_GPS_RAW_INT : ( '<QiiiHHHHBB', MAVLink_gps_raw_int_message, [0, 8, 1, 2, 3, 4, 5, 6, 7, 9], 24 ),
MAVLINK_MSG_ID_GPS_STATUS : ( '<B20s20s20s20s20s', MAVLink_gps_status_message, [0, 1, 2, 3, 4, 5], 23 ),
MAVLINK_MSG_ID_SCALED_IMU : ( '<Ihhhhhhhhh', MAVLink_scaled_imu_message, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 170 ),
MAVLINK_MSG_ID_RAW_IMU : ( '<Qhhhhhhhhh', MAVLink_raw_imu_message, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 144 ),
MAVLINK_MSG_ID_RAW_PRESSURE : ( '<Qhhhh', MAVLink_raw_pressure_message, [0, 1, 2, 3, 4], 67 ),
MAVLINK_MSG_ID_SCALED_PRESSURE : ( '<Iffh', MAVLink_scaled_pressure_message, [0, 1, 2, 3], 115 ),
MAVLINK_MSG_ID_ATTITUDE : ( '<Iffffff', MAVLink_attitude_message, [0, 1, 2, 3, 4, 5, 6], 39 ),
MAVLINK_MSG_ID_ATTITUDE_QUATERNION : ( '<Ifffffff', MAVLink_attitude_quaternion_message, [0, 1, 2, 3, 4, 5, 6, 7], 246 ),
MAVLINK_MSG_ID_LOCAL_POSITION_NED : ( '<Iffffff', MAVLink_local_position_ned_message, [0, 1, 2, 3, 4, 5, 6], 185 ),
MAVLINK_MSG_ID_GLOBAL_POSITION_INT : ( '<IiiiihhhH', MAVLink_global_position_int_message, [0, 1, 2, 3, 4, 5, 6, 7, 8], 104 ),
MAVLINK_MSG_ID_RC_CHANNELS_SCALED : ( '<IhhhhhhhhBB', MAVLink_rc_channels_scaled_message, [0, 9, 1, 2, 3, 4, 5, 6, 7, 8, 10], 237 ),
MAVLINK_MSG_ID_RC_CHANNELS_RAW : ( '<IHHHHHHHHBB', MAVLink_rc_channels_raw_message, [0, 9, 1, 2, 3, 4, 5, 6, 7, 8, 10], 244 ),
MAVLINK_MSG_ID_SERVO_OUTPUT_RAW : ( '<IHHHHHHHHB', MAVLink_servo_output_raw_message, [0, 9, 1, 2, 3, 4, 5, 6, 7, 8], 222 ),
MAVLINK_MSG_ID_MISSION_REQUEST_PARTIAL_LIST : ( '<hhBB', MAVLink_mission_request_partial_list_message, [2, 3, 0, 1], 212 ),
MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST : ( '<hhBB', MAVLink_mission_write_partial_list_message, [2, 3, 0, 1], 9 ),
MAVLINK_MSG_ID_MISSION_ITEM : ( '<fffffffHHBBBBB', MAVLink_mission_item_message, [9, 10, 7, 11, 8, 12, 13, 0, 1, 2, 3, 4, 5, 6], 254 ),
MAVLINK_MSG_ID_MISSION_REQUEST : ( '<HBB', MAVLink_mission_request_message, [1, 2, 0], 230 ),
MAVLINK_MSG_ID_MISSION_SET_CURRENT : ( '<HBB', MAVLink_mission_set_current_message, [1, 2, 0], 28 ),
MAVLINK_MSG_ID_MISSION_CURRENT : ( '<H', MAVLink_mission_current_message, [0], 28 ),
MAVLINK_MSG_ID_MISSION_REQUEST_LIST : ( '<BB', MAVLink_mission_request_list_message, [0, 1], 132 ),
MAVLINK_MSG_ID_MISSION_COUNT : ( '<HBB', MAVLink_mission_count_message, [1, 2, 0], 221 ),
MAVLINK_MSG_ID_MISSION_CLEAR_ALL : ( '<BB', MAVLink_mission_clear_all_message, [0, 1], 232 ),
MAVLINK_MSG_ID_MISSION_ITEM_REACHED : ( '<H', MAVLink_mission_item_reached_message, [0], 11 ),
MAVLINK_MSG_ID_MISSION_ACK : ( '<BBB', MAVLink_mission_ack_message, [0, 1, 2], 153 ),
MAVLINK_MSG_ID_SET_GPS_GLOBAL_ORIGIN : ( '<iiiB', MAVLink_set_gps_global_origin_message, [3, 0, 1, 2], 41 ),
MAVLINK_MSG_ID_GPS_GLOBAL_ORIGIN : ( '<iii', MAVLink_gps_global_origin_message, [0, 1, 2], 39 ),
MAVLINK_MSG_ID_SET_LOCAL_POSITION_SETPOINT : ( '<ffffBBB', MAVLink_set_local_position_setpoint_message, [4, 5, 6, 0, 1, 2, 3], 214 ),
MAVLINK_MSG_ID_LOCAL_POSITION_SETPOINT : ( '<ffffB', MAVLink_local_position_setpoint_message, [4, 0, 1, 2, 3], 223 ),
MAVLINK_MSG_ID_GLOBAL_POSITION_SETPOINT_INT : ( '<iiihB', MAVLink_global_position_setpoint_int_message, [4, 0, 1, 2, 3], 141 ),
MAVLINK_MSG_ID_SET_GLOBAL_POSITION_SETPOINT_INT : ( '<iiihB', MAVLink_set_global_position_setpoint_int_message, [4, 0, 1, 2, 3], 33 ),
MAVLINK_MSG_ID_SAFETY_SET_ALLOWED_AREA : ( '<ffffffBBB', MAVLink_safety_set_allowed_area_message, [6, 7, 8, 0, 1, 2, 3, 4, 5], 15 ),
MAVLINK_MSG_ID_SAFETY_ALLOWED_AREA : ( '<ffffffB', MAVLink_safety_allowed_area_message, [6, 0, 1, 2, 3, 4, 5], 3 ),
MAVLINK_MSG_ID_SET_ROLL_PITCH_YAW_THRUST : ( '<ffffBB', MAVLink_set_roll_pitch_yaw_thrust_message, [4, 5, 0, 1, 2, 3], 100 ),
MAVLINK_MSG_ID_SET_ROLL_PITCH_YAW_SPEED_THRUST : ( '<ffffBB', MAVLink_set_roll_pitch_yaw_speed_thrust_message, [4, 5, 0, 1, 2, 3], 24 ),
MAVLINK_MSG_ID_ROLL_PITCH_YAW_THRUST_SETPOINT : ( '<Iffff', MAVLink_roll_pitch_yaw_thrust_setpoint_message, [0, 1, 2, 3, 4], 239 ),
MAVLINK_MSG_ID_ROLL_PITCH_YAW_SPEED_THRUST_SETPOINT : ( '<Iffff', MAVLink_roll_pitch_yaw_speed_thrust_setpoint_message, [0, 1, 2, 3, 4], 238 ),
MAVLINK_MSG_ID_SET_QUAD_MOTORS_SETPOINT : ( '<HHHHB', MAVLink_set_quad_motors_setpoint_message, [4, 0, 1, 2, 3], 30 ),
MAVLINK_MSG_ID_SET_QUAD_SWARM_ROLL_PITCH_YAW_THRUST : ( '<6h6h6h6H6s', MAVLink_set_quad_swarm_roll_pitch_yaw_thrust_message, [4, 0, 1, 2, 3], 200 ),
MAVLINK_MSG_ID_NAV_CONTROLLER_OUTPUT : ( '<fffffhhH', MAVLink_nav_controller_output_message, [0, 1, 5, 6, 7, 2, 3, 4], 183 ),
MAVLINK_MSG_ID_STATE_CORRECTION : ( '<fffffffff', MAVLink_state_correction_message, [0, 1, 2, 3, 4, 5, 6, 7, 8], 130 ),
MAVLINK_MSG_ID_REQUEST_DATA_STREAM : ( '<HBBBB', MAVLink_request_data_stream_message, [1, 2, 3, 0, 4], 148 ),
MAVLINK_MSG_ID_DATA_STREAM : ( '<HBB', MAVLink_data_stream_message, [1, 0, 2], 21 ),
MAVLINK_MSG_ID_MANUAL_CONTROL : ( '<ffffBBBBB', MAVLink_manual_control_message, [4, 0, 1, 2, 3, 5, 6, 7, 8], 52 ),
MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE : ( '<HHHHHHHHBB', MAVLink_rc_channels_override_message, [8, 9, 0, 1, 2, 3, 4, 5, 6, 7], 124 ),
MAVLINK_MSG_ID_VFR_HUD : ( '<ffffhH', MAVLink_vfr_hud_message, [0, 1, 4, 5, 2, 3], 20 ),
MAVLINK_MSG_ID_COMMAND_LONG : ( '<fffffffHBBB', MAVLink_command_long_message, [8, 9, 7, 10, 0, 1, 2, 3, 4, 5, 6], 152 ),
MAVLINK_MSG_ID_COMMAND_ACK : ( '<HB', MAVLink_command_ack_message, [0, 1], 143 ),
MAVLINK_MSG_ID_LOCAL_POSITION_NED_SYSTEM_GLOBAL_OFFSET : ( '<Iffffff', MAVLink_local_position_ned_system_global_offset_message, [0, 1, 2, 3, 4, 5, 6], 231 ),
MAVLINK_MSG_ID_HIL_STATE : ( '<Qffffffiiihhhhhh', MAVLink_hil_state_message, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], 183 ),
MAVLINK_MSG_ID_HIL_CONTROLS : ( '<QffffffffBB', MAVLink_hil_controls_message, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 63 ),
MAVLINK_MSG_ID_HIL_RC_INPUTS_RAW : ( '<QHHHHHHHHHHHHB', MAVLink_hil_rc_inputs_raw_message, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], 54 ),
MAVLINK_MSG_ID_OPTICAL_FLOW : ( '<QfffhhBB', MAVLink_optical_flow_message, [0, 6, 4, 5, 1, 2, 7, 3], 175 ),
MAVLINK_MSG_ID_GLOBAL_VISION_POSITION_ESTIMATE : ( '<Qffffff', MAVLink_global_vision_position_estimate_message, [0, 1, 2, 3, 4, 5, 6], 102 ),
MAVLINK_MSG_ID_VISION_POSITION_ESTIMATE : ( '<Qffffff', MAVLink_vision_position_estimate_message, [0, 1, 2, 3, 4, 5, 6], 158 ),
MAVLINK_MSG_ID_VISION_SPEED_ESTIMATE : ( '<Qfff', MAVLink_vision_speed_estimate_message, [0, 1, 2, 3], 208 ),
MAVLINK_MSG_ID_VICON_POSITION_ESTIMATE : ( '<Qffffff', MAVLink_vicon_position_estimate_message, [0, 1, 2, 3, 4, 5, 6], 56 ),
MAVLINK_MSG_ID_MEMORY_VECT : ( '<HBB32s', MAVLink_memory_vect_message, [0, 1, 2, 3], 204 ),
MAVLINK_MSG_ID_DEBUG_VECT : ( '<Qfff10s', MAVLink_debug_vect_message, [4, 0, 1, 2, 3], 49 ),
MAVLINK_MSG_ID_NAMED_VALUE_FLOAT : ( '<If10s', MAVLink_named_value_float_message, [0, 2, 1], 170 ),
MAVLINK_MSG_ID_NAMED_VALUE_INT : ( '<Ii10s', MAVLink_named_value_int_message, [0, 2, 1], 44 ),
MAVLINK_MSG_ID_STATUSTEXT : ( '<B50s', MAVLink_statustext_message, [0, 1], 83 ),
MAVLINK_MSG_ID_DEBUG : ( '<IfB', MAVLink_debug_message, [0, 2, 1], 46 ),
}
class MAVError(Exception):
'''MAVLink error class'''
def __init__(self, msg):
Exception.__init__(self, msg)
self.message = msg
class MAVString(str):
'''NUL terminated string'''
def __init__(self, s):
str.__init__(self)
def __str__(self):
i = self.find(chr(0))
if i == -1:
return self[:]
return self[0:i]
class MAVLink_bad_data(MAVLink_message):
'''
a piece of bad data in a mavlink stream
'''
def __init__(self, data, reason):
MAVLink_message.__init__(self, MAVLINK_MSG_ID_BAD_DATA, 'BAD_DATA')
self._fieldnames = ['data', 'reason']
self.data = data
self.reason = reason
self._msgbuf = data
class MAVLink(object):
'''MAVLink protocol handling class'''
def __init__(self, file, srcSystem=0, srcComponent=0):
self.seq = 0
self.file = file
self.srcSystem = srcSystem
self.srcComponent = srcComponent
self.callback = None
self.callback_args = None
self.callback_kwargs = None
self.buf = array.array('B')
self.expected_length = 6
self.have_prefix_error = False
self.robust_parsing = False
self.protocol_marker = 254
self.little_endian = True
self.crc_extra = True
self.sort_fields = True
self.total_packets_sent = 0
self.total_bytes_sent = 0
self.total_packets_received = 0
self.total_bytes_received = 0
self.total_receive_errors = 0
self.startup_time = time.time()
def set_callback(self, callback, *args, **kwargs):
self.callback = callback
self.callback_args = args
self.callback_kwargs = kwargs
def send(self, mavmsg):
'''send a MAVLink message'''
buf = mavmsg.pack(self)
self.file.write(buf)
self.seq = (self.seq + 1) % 255
self.total_packets_sent += 1
self.total_bytes_sent += len(buf)
def bytes_needed(self):
'''return number of bytes needed for next parsing stage'''
ret = self.expected_length - len(self.buf)
if ret <= 0:
return 1
return ret
def parse_char(self, c):
'''input some data bytes, possibly returning a new message'''
if isinstance(c, str):
self.buf.fromstring(c)
else:
self.buf.extend(c)
self.total_bytes_received += len(c)
if len(self.buf) >= 1 and self.buf[0] != 254:
magic = self.buf[0]
self.buf = self.buf[1:]
if self.robust_parsing:
m = MAVLink_bad_data(chr(magic), "Bad prefix")
if self.callback:
self.callback(m, *self.callback_args, **self.callback_kwargs)
self.expected_length = 6
self.total_receive_errors += 1
return m
if self.have_prefix_error:
return None
self.have_prefix_error = True
self.total_receive_errors += 1
raise MAVError("invalid MAVLink prefix '%s'" % magic)
self.have_prefix_error = False
if len(self.buf) >= 2:
(magic, self.expected_length) = struct.unpack('BB', self.buf[0:2])
self.expected_length += 8
if self.expected_length >= 8 and len(self.buf) >= self.expected_length:
mbuf = self.buf[0:self.expected_length]
self.buf = self.buf[self.expected_length:]
self.expected_length = 6
if self.robust_parsing:
try:
m = self.decode(mbuf)
self.total_packets_received += 1
except MAVError as reason:
m = MAVLink_bad_data(mbuf, reason.message)
self.total_receive_errors += 1
else:
m = self.decode(mbuf)
self.total_packets_received += 1
if self.callback:
self.callback(m, *self.callback_args, **self.callback_kwargs)
return m
return None
def parse_buffer(self, s):
'''input some data bytes, possibly returning a list of new messages'''
m = self.parse_char(s)
if m is None:
return None
ret = [m]
while True:
m = self.parse_char("")
if m is None:
return ret
ret.append(m)
return ret
def decode(self, msgbuf):
'''decode a buffer as a MAVLink message'''
# decode the header
try:
magic, mlen, seq, srcSystem, srcComponent, msgId = struct.unpack('cBBBBB', msgbuf[:6])
except struct.error as emsg:
raise MAVError('Unable to unpack MAVLink header: %s' % emsg)
if ord(magic) != 254:
raise MAVError("invalid MAVLink prefix '%s'" % magic)
if mlen != len(msgbuf)-8:
raise MAVError('invalid MAVLink message length. Got %u expected %u, msgId=%u' % (len(msgbuf)-8, mlen, msgId))
if not msgId in mavlink_map:
raise MAVError('unknown MAVLink message ID %u' % msgId)
# decode the payload
(fmt, type, order_map, crc_extra) = mavlink_map[msgId]
# decode the checksum
try:
crc, = struct.unpack('<H', msgbuf[-2:])
except struct.error as emsg:
raise MAVError('Unable to unpack MAVLink CRC: %s' % emsg)
crc2 = mavutil.x25crc(msgbuf[1:-2])
if True: # using CRC extra
crc2.accumulate(chr(crc_extra))
if crc != crc2.crc:
raise MAVError('invalid MAVLink CRC in msgID %u 0x%04x should be 0x%04x' % (msgId, crc, crc2.crc))
try:
t = struct.unpack(fmt, msgbuf[6:-2])
except struct.error as emsg:
raise MAVError('Unable to unpack MAVLink payload type=%s fmt=%s payloadLength=%u: %s' % (
type, fmt, len(msgbuf[6:-2]), emsg))
tlist = list(t)
# handle sorted fields
if True:
t = tlist[:]
for i in range(0, len(tlist)):
tlist[i] = t[order_map[i]]
# terminate any strings
for i in range(0, len(tlist)):
if isinstance(tlist[i], str):
tlist[i] = MAVString(tlist[i])
t = tuple(tlist)
# construct the message object
try:
m = type(*t)
except Exception as emsg:
raise MAVError('Unable to instantiate MAVLink message of type %s : %s' % (type, emsg))
m._msgbuf = msgbuf
m._payload = msgbuf[6:-2]
m._crc = crc
m._header = MAVLink_header(msgId, mlen, seq, srcSystem, srcComponent)
return m
def sensor_offsets_encode(self, mag_ofs_x, mag_ofs_y, mag_ofs_z, mag_declination, raw_press, raw_temp, gyro_cal_x, gyro_cal_y, gyro_cal_z, accel_cal_x, accel_cal_y, accel_cal_z):
'''
Offsets and calibrations values for hardware sensors. This
makes it easier to debug the calibration process.
mag_ofs_x : magnetometer X offset (int16_t)
mag_ofs_y : magnetometer Y offset (int16_t)
mag_ofs_z : magnetometer Z offset (int16_t)
mag_declination : magnetic declination (radians) (float)
raw_press : raw pressure from barometer (int32_t)
raw_temp : raw temperature from barometer (int32_t)
gyro_cal_x : gyro X calibration (float)
gyro_cal_y : gyro Y calibration (float)
gyro_cal_z : gyro Z calibration (float)
accel_cal_x : accel X calibration (float)
accel_cal_y : accel Y calibration (float)
accel_cal_z : accel Z calibration (float)
'''
msg = MAVLink_sensor_offsets_message(mag_ofs_x, mag_ofs_y, mag_ofs_z, mag_declination, raw_press, raw_temp, gyro_cal_x, gyro_cal_y, gyro_cal_z, accel_cal_x, accel_cal_y, accel_cal_z)
msg.pack(self)
return msg
def sensor_offsets_send(self, mag_ofs_x, mag_ofs_y, mag_ofs_z, mag_declination, raw_press, raw_temp, gyro_cal_x, gyro_cal_y, gyro_cal_z, accel_cal_x, accel_cal_y, accel_cal_z):
'''
Offsets and calibrations values for hardware sensors. This
makes it easier to debug the calibration process.
mag_ofs_x : magnetometer X offset (int16_t)
mag_ofs_y : magnetometer Y offset (int16_t)
mag_ofs_z : magnetometer Z offset (int16_t)
mag_declination : magnetic declination (radians) (float)
raw_press : raw pressure from barometer (int32_t)
raw_temp : raw temperature from barometer (int32_t)
gyro_cal_x : gyro X calibration (float)
gyro_cal_y : gyro Y calibration (float)
gyro_cal_z : gyro Z calibration (float)
accel_cal_x : accel X calibration (float)
accel_cal_y : accel Y calibration (float)
accel_cal_z : accel Z calibration (float)
'''
return self.send(self.sensor_offsets_encode(mag_ofs_x, mag_ofs_y, mag_ofs_z, mag_declination, raw_press, raw_temp, gyro_cal_x, gyro_cal_y, gyro_cal_z, accel_cal_x, accel_cal_y, accel_cal_z))
def set_mag_offsets_encode(self, target_system, target_component, mag_ofs_x, mag_ofs_y, mag_ofs_z):
'''
set the magnetometer offsets
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
mag_ofs_x : magnetometer X offset (int16_t)
mag_ofs_y : magnetometer Y offset (int16_t)
mag_ofs_z : magnetometer Z offset (int16_t)
'''
msg = MAVLink_set_mag_offsets_message(target_system, target_component, mag_ofs_x, mag_ofs_y, mag_ofs_z)
msg.pack(self)
return msg
def set_mag_offsets_send(self, target_system, target_component, mag_ofs_x, mag_ofs_y, mag_ofs_z):
'''
set the magnetometer offsets
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
mag_ofs_x : magnetometer X offset (int16_t)
mag_ofs_y : magnetometer Y offset (int16_t)
mag_ofs_z : magnetometer Z offset (int16_t)
'''
return self.send(self.set_mag_offsets_encode(target_system, target_component, mag_ofs_x, mag_ofs_y, mag_ofs_z))
def meminfo_encode(self, brkval, freemem):
'''
state of APM memory
brkval : heap top (uint16_t)
freemem : free memory (uint16_t)
'''
msg = MAVLink_meminfo_message(brkval, freemem)
msg.pack(self)
return msg
def meminfo_send(self, brkval, freemem):
'''
state of APM memory
brkval : heap top (uint16_t)
freemem : free memory (uint16_t)
'''
return self.send(self.meminfo_encode(brkval, freemem))
def ap_adc_encode(self, adc1, adc2, adc3, adc4, adc5, adc6):
'''
raw ADC output
adc1 : ADC output 1 (uint16_t)
adc2 : ADC output 2 (uint16_t)
adc3 : ADC output 3 (uint16_t)
adc4 : ADC output 4 (uint16_t)
adc5 : ADC output 5 (uint16_t)
adc6 : ADC output 6 (uint16_t)
'''
msg = MAVLink_ap_adc_message(adc1, adc2, adc3, adc4, adc5, adc6)
msg.pack(self)
return msg
def ap_adc_send(self, adc1, adc2, adc3, adc4, adc5, adc6):
'''
raw ADC output
adc1 : ADC output 1 (uint16_t)
adc2 : ADC output 2 (uint16_t)
adc3 : ADC output 3 (uint16_t)
adc4 : ADC output 4 (uint16_t)
adc5 : ADC output 5 (uint16_t)
adc6 : ADC output 6 (uint16_t)
'''
return self.send(self.ap_adc_encode(adc1, adc2, adc3, adc4, adc5, adc6))
def digicam_configure_encode(self, target_system, target_component, mode, shutter_speed, aperture, iso, exposure_type, command_id, engine_cut_off, extra_param, extra_value):
'''
Configure on-board Camera Control System.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
mode : Mode enumeration from 1 to N //P, TV, AV, M, Etc (0 means ignore) (uint8_t)
shutter_speed : Divisor number //e.g. 1000 means 1/1000 (0 means ignore) (uint16_t)
aperture : F stop number x 10 //e.g. 28 means 2.8 (0 means ignore) (uint8_t)
iso : ISO enumeration from 1 to N //e.g. 80, 100, 200, Etc (0 means ignore) (uint8_t)
exposure_type : Exposure type enumeration from 1 to N (0 means ignore) (uint8_t)
command_id : Command Identity (incremental loop: 0 to 255)//A command sent multiple times will be executed or pooled just once (uint8_t)
engine_cut_off : Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off) (uint8_t)
extra_param : Extra parameters enumeration (0 means ignore) (uint8_t)
extra_value : Correspondent value to given extra_param (float)
'''
msg = MAVLink_digicam_configure_message(target_system, target_component, mode, shutter_speed, aperture, iso, exposure_type, command_id, engine_cut_off, extra_param, extra_value)
msg.pack(self)
return msg
def digicam_configure_send(self, target_system, target_component, mode, shutter_speed, aperture, iso, exposure_type, command_id, engine_cut_off, extra_param, extra_value):
'''
Configure on-board Camera Control System.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
mode : Mode enumeration from 1 to N //P, TV, AV, M, Etc (0 means ignore) (uint8_t)
shutter_speed : Divisor number //e.g. 1000 means 1/1000 (0 means ignore) (uint16_t)
aperture : F stop number x 10 //e.g. 28 means 2.8 (0 means ignore) (uint8_t)
iso : ISO enumeration from 1 to N //e.g. 80, 100, 200, Etc (0 means ignore) (uint8_t)
exposure_type : Exposure type enumeration from 1 to N (0 means ignore) (uint8_t)
command_id : Command Identity (incremental loop: 0 to 255)//A command sent multiple times will be executed or pooled just once (uint8_t)
engine_cut_off : Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off) (uint8_t)
extra_param : Extra parameters enumeration (0 means ignore) (uint8_t)
extra_value : Correspondent value to given extra_param (float)
'''
return self.send(self.digicam_configure_encode(target_system, target_component, mode, shutter_speed, aperture, iso, exposure_type, command_id, engine_cut_off, extra_param, extra_value))
def digicam_control_encode(self, target_system, target_component, session, zoom_pos, zoom_step, focus_lock, shot, command_id, extra_param, extra_value):
'''
Control on-board Camera Control System to take shots.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
session : 0: stop, 1: start or keep it up //Session control e.g. show/hide lens (uint8_t)
zoom_pos : 1 to N //Zoom's absolute position (0 means ignore) (uint8_t)
zoom_step : -100 to 100 //Zooming step value to offset zoom from the current position (int8_t)
focus_lock : 0: unlock focus or keep unlocked, 1: lock focus or keep locked, 3: re-lock focus (uint8_t)
shot : 0: ignore, 1: shot or start filming (uint8_t)
command_id : Command Identity (incremental loop: 0 to 255)//A command sent multiple times will be executed or pooled just once (uint8_t)
extra_param : Extra parameters enumeration (0 means ignore) (uint8_t)
extra_value : Correspondent value to given extra_param (float)
'''
msg = MAVLink_digicam_control_message(target_system, target_component, session, zoom_pos, zoom_step, focus_lock, shot, command_id, extra_param, extra_value)
msg.pack(self)
return msg
def digicam_control_send(self, target_system, target_component, session, zoom_pos, zoom_step, focus_lock, shot, command_id, extra_param, extra_value):
'''
Control on-board Camera Control System to take shots.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
session : 0: stop, 1: start or keep it up //Session control e.g. show/hide lens (uint8_t)
zoom_pos : 1 to N //Zoom's absolute position (0 means ignore) (uint8_t)
zoom_step : -100 to 100 //Zooming step value to offset zoom from the current position (int8_t)
focus_lock : 0: unlock focus or keep unlocked, 1: lock focus or keep locked, 3: re-lock focus (uint8_t)
shot : 0: ignore, 1: shot or start filming (uint8_t)
command_id : Command Identity (incremental loop: 0 to 255)//A command sent multiple times will be executed or pooled just once (uint8_t)
extra_param : Extra parameters enumeration (0 means ignore) (uint8_t)
extra_value : Correspondent value to given extra_param (float)
'''
return self.send(self.digicam_control_encode(target_system, target_component, session, zoom_pos, zoom_step, focus_lock, shot, command_id, extra_param, extra_value))
def mount_configure_encode(self, target_system, target_component, mount_mode, stab_roll, stab_pitch, stab_yaw):
'''
Message to configure a camera mount, directional antenna, etc.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
mount_mode : mount operating mode (see MAV_MOUNT_MODE enum) (uint8_t)
stab_roll : (1 = yes, 0 = no) (uint8_t)
stab_pitch : (1 = yes, 0 = no) (uint8_t)
stab_yaw : (1 = yes, 0 = no) (uint8_t)
'''
msg = MAVLink_mount_configure_message(target_system, target_component, mount_mode, stab_roll, stab_pitch, stab_yaw)
msg.pack(self)
return msg
def mount_configure_send(self, target_system, target_component, mount_mode, stab_roll, stab_pitch, stab_yaw):
'''
Message to configure a camera mount, directional antenna, etc.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
mount_mode : mount operating mode (see MAV_MOUNT_MODE enum) (uint8_t)
stab_roll : (1 = yes, 0 = no) (uint8_t)
stab_pitch : (1 = yes, 0 = no) (uint8_t)
stab_yaw : (1 = yes, 0 = no) (uint8_t)
'''
return self.send(self.mount_configure_encode(target_system, target_component, mount_mode, stab_roll, stab_pitch, stab_yaw))
def mount_control_encode(self, target_system, target_component, input_a, input_b, input_c, save_position):
'''
Message to control a camera mount, directional antenna, etc.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
input_a : pitch(deg*100) or lat, depending on mount mode (int32_t)
input_b : roll(deg*100) or lon depending on mount mode (int32_t)
input_c : yaw(deg*100) or alt (in cm) depending on mount mode (int32_t)
save_position : if "1" it will save current trimmed position on EEPROM (just valid for NEUTRAL and LANDING) (uint8_t)
'''
msg = MAVLink_mount_control_message(target_system, target_component, input_a, input_b, input_c, save_position)
msg.pack(self)
return msg
def mount_control_send(self, target_system, target_component, input_a, input_b, input_c, save_position):
'''
Message to control a camera mount, directional antenna, etc.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
input_a : pitch(deg*100) or lat, depending on mount mode (int32_t)
input_b : roll(deg*100) or lon depending on mount mode (int32_t)
input_c : yaw(deg*100) or alt (in cm) depending on mount mode (int32_t)
save_position : if "1" it will save current trimmed position on EEPROM (just valid for NEUTRAL and LANDING) (uint8_t)
'''
return self.send(self.mount_control_encode(target_system, target_component, input_a, input_b, input_c, save_position))
def mount_status_encode(self, target_system, target_component, pointing_a, pointing_b, pointing_c):
'''
Message with some status from APM to GCS about camera or antenna mount
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
pointing_a : pitch(deg*100) or lat, depending on mount mode (int32_t)
pointing_b : roll(deg*100) or lon depending on mount mode (int32_t)
pointing_c : yaw(deg*100) or alt (in cm) depending on mount mode (int32_t)
'''
msg = MAVLink_mount_status_message(target_system, target_component, pointing_a, pointing_b, pointing_c)
msg.pack(self)
return msg
def mount_status_send(self, target_system, target_component, pointing_a, pointing_b, pointing_c):
'''
Message with some status from APM to GCS about camera or antenna mount
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
pointing_a : pitch(deg*100) or lat, depending on mount mode (int32_t)
pointing_b : roll(deg*100) or lon depending on mount mode (int32_t)
pointing_c : yaw(deg*100) or alt (in cm) depending on mount mode (int32_t)
'''
return self.send(self.mount_status_encode(target_system, target_component, pointing_a, pointing_b, pointing_c))
def fence_point_encode(self, target_system, target_component, idx, count, lat, lng):
'''
A fence point. Used to set a point when from GCS -> MAV.
Also used to return a point from MAV -> GCS
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
idx : point index (first point is 1, 0 is for return point) (uint8_t)
count : total number of points (for sanity checking) (uint8_t)
lat : Latitude of point (float)
lng : Longitude of point (float)
'''
msg = MAVLink_fence_point_message(target_system, target_component, idx, count, lat, lng)
msg.pack(self)
return msg
def fence_point_send(self, target_system, target_component, idx, count, lat, lng):
'''
A fence point. Used to set a point when from GCS -> MAV.
Also used to return a point from MAV -> GCS
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
idx : point index (first point is 1, 0 is for return point) (uint8_t)
count : total number of points (for sanity checking) (uint8_t)
lat : Latitude of point (float)
lng : Longitude of point (float)
'''
return self.send(self.fence_point_encode(target_system, target_component, idx, count, lat, lng))
def fence_fetch_point_encode(self, target_system, target_component, idx):
'''
Request a current fence point from MAV
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
idx : point index (first point is 1, 0 is for return point) (uint8_t)
'''
msg = MAVLink_fence_fetch_point_message(target_system, target_component, idx)
msg.pack(self)
return msg
def fence_fetch_point_send(self, target_system, target_component, idx):
'''
Request a current fence point from MAV
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
idx : point index (first point is 1, 0 is for return point) (uint8_t)
'''
return self.send(self.fence_fetch_point_encode(target_system, target_component, idx))
def fence_status_encode(self, breach_status, breach_count, breach_type, breach_time):
'''
Status of geo-fencing. Sent in extended status stream when
fencing enabled
breach_status : 0 if currently inside fence, 1 if outside (uint8_t)
breach_count : number of fence breaches (uint16_t)
breach_type : last breach type (see FENCE_BREACH_* enum) (uint8_t)
breach_time : time of last breach in milliseconds since boot (uint32_t)
'''
msg = MAVLink_fence_status_message(breach_status, breach_count, breach_type, breach_time)
msg.pack(self)
return msg
def fence_status_send(self, breach_status, breach_count, breach_type, breach_time):
'''
Status of geo-fencing. Sent in extended status stream when
fencing enabled
breach_status : 0 if currently inside fence, 1 if outside (uint8_t)
breach_count : number of fence breaches (uint16_t)
breach_type : last breach type (see FENCE_BREACH_* enum) (uint8_t)
breach_time : time of last breach in milliseconds since boot (uint32_t)
'''
return self.send(self.fence_status_encode(breach_status, breach_count, breach_type, breach_time))
def ahrs_encode(self, omegaIx, omegaIy, omegaIz, accel_weight, renorm_val, error_rp, error_yaw):
'''
Status of DCM attitude estimator
omegaIx : X gyro drift estimate rad/s (float)
omegaIy : Y gyro drift estimate rad/s (float)
omegaIz : Z gyro drift estimate rad/s (float)
accel_weight : average accel_weight (float)
renorm_val : average renormalisation value (float)
error_rp : average error_roll_pitch value (float)
error_yaw : average error_yaw value (float)
'''
msg = MAVLink_ahrs_message(omegaIx, omegaIy, omegaIz, accel_weight, renorm_val, error_rp, error_yaw)
msg.pack(self)
return msg
def ahrs_send(self, omegaIx, omegaIy, omegaIz, accel_weight, renorm_val, error_rp, error_yaw):
'''
Status of DCM attitude estimator
omegaIx : X gyro drift estimate rad/s (float)
omegaIy : Y gyro drift estimate rad/s (float)
omegaIz : Z gyro drift estimate rad/s (float)
accel_weight : average accel_weight (float)
renorm_val : average renormalisation value (float)
error_rp : average error_roll_pitch value (float)
error_yaw : average error_yaw value (float)
'''
return self.send(self.ahrs_encode(omegaIx, omegaIy, omegaIz, accel_weight, renorm_val, error_rp, error_yaw))
def simstate_encode(self, roll, pitch, yaw, xacc, yacc, zacc, xgyro, ygyro, zgyro):
'''
Status of simulation environment, if used
roll : Roll angle (rad) (float)
pitch : Pitch angle (rad) (float)
yaw : Yaw angle (rad) (float)
xacc : X acceleration m/s/s (float)
yacc : Y acceleration m/s/s (float)
zacc : Z acceleration m/s/s (float)
xgyro : Angular speed around X axis rad/s (float)
ygyro : Angular speed around Y axis rad/s (float)
zgyro : Angular speed around Z axis rad/s (float)
'''
msg = MAVLink_simstate_message(roll, pitch, yaw, xacc, yacc, zacc, xgyro, ygyro, zgyro)
msg.pack(self)
return msg
def simstate_send(self, roll, pitch, yaw, xacc, yacc, zacc, xgyro, ygyro, zgyro):
'''
Status of simulation environment, if used
roll : Roll angle (rad) (float)
pitch : Pitch angle (rad) (float)
yaw : Yaw angle (rad) (float)
xacc : X acceleration m/s/s (float)
yacc : Y acceleration m/s/s (float)
zacc : Z acceleration m/s/s (float)
xgyro : Angular speed around X axis rad/s (float)
ygyro : Angular speed around Y axis rad/s (float)
zgyro : Angular speed around Z axis rad/s (float)
'''
return self.send(self.simstate_encode(roll, pitch, yaw, xacc, yacc, zacc, xgyro, ygyro, zgyro))
def hwstatus_encode(self, Vcc, I2Cerr):
'''
Status of key hardware
Vcc : board voltage (mV) (uint16_t)
I2Cerr : I2C error count (uint8_t)
'''
msg = MAVLink_hwstatus_message(Vcc, I2Cerr)
msg.pack(self)
return msg
def hwstatus_send(self, Vcc, I2Cerr):
'''
Status of key hardware
Vcc : board voltage (mV) (uint16_t)
I2Cerr : I2C error count (uint8_t)
'''
return self.send(self.hwstatus_encode(Vcc, I2Cerr))
def radio_encode(self, rssi, remrssi, txbuf, noise, remnoise, rxerrors, fixed):
'''
Status generated by radio
rssi : local signal strength (uint8_t)
remrssi : remote signal strength (uint8_t)
txbuf : how full the tx buffer is as a percentage (uint8_t)
noise : background noise level (uint8_t)
remnoise : remote background noise level (uint8_t)
rxerrors : receive errors (uint16_t)
fixed : count of error corrected packets (uint16_t)
'''
msg = MAVLink_radio_message(rssi, remrssi, txbuf, noise, remnoise, rxerrors, fixed)
msg.pack(self)
return msg
def radio_send(self, rssi, remrssi, txbuf, noise, remnoise, rxerrors, fixed):
'''
Status generated by radio
rssi : local signal strength (uint8_t)
remrssi : remote signal strength (uint8_t)
txbuf : how full the tx buffer is as a percentage (uint8_t)
noise : background noise level (uint8_t)
remnoise : remote background noise level (uint8_t)
rxerrors : receive errors (uint16_t)
fixed : count of error corrected packets (uint16_t)
'''
return self.send(self.radio_encode(rssi, remrssi, txbuf, noise, remnoise, rxerrors, fixed))
def heartbeat_encode(self, type, autopilot, base_mode, custom_mode, system_status, mavlink_version=3):
'''
The heartbeat message shows that a system is present and responding.
The type of the MAV and Autopilot hardware allow the
receiving system to treat further messages from this
system appropriate (e.g. by laying out the user
interface based on the autopilot).
type : Type of the MAV (quadrotor, helicopter, etc., up to 15 types, defined in MAV_TYPE ENUM) (uint8_t)
autopilot : Autopilot type / class. defined in MAV_AUTOPILOT ENUM (uint8_t)
base_mode : System mode bitfield, see MAV_MODE_FLAGS ENUM in mavlink/include/mavlink_types.h (uint8_t)
custom_mode : A bitfield for use for autopilot-specific flags. (uint32_t)
system_status : System status flag, see MAV_STATE ENUM (uint8_t)
mavlink_version : MAVLink version, not writable by user, gets added by protocol because of magic data type: uint8_t_mavlink_version (uint8_t)
'''
msg = MAVLink_heartbeat_message(type, autopilot, base_mode, custom_mode, system_status, mavlink_version)
msg.pack(self)
return msg
def heartbeat_send(self, type, autopilot, base_mode, custom_mode, system_status, mavlink_version=3):
'''
The heartbeat message shows that a system is present and responding.
The type of the MAV and Autopilot hardware allow the
receiving system to treat further messages from this
system appropriate (e.g. by laying out the user
interface based on the autopilot).
type : Type of the MAV (quadrotor, helicopter, etc., up to 15 types, defined in MAV_TYPE ENUM) (uint8_t)
autopilot : Autopilot type / class. defined in MAV_AUTOPILOT ENUM (uint8_t)
base_mode : System mode bitfield, see MAV_MODE_FLAGS ENUM in mavlink/include/mavlink_types.h (uint8_t)
custom_mode : A bitfield for use for autopilot-specific flags. (uint32_t)
system_status : System status flag, see MAV_STATE ENUM (uint8_t)
mavlink_version : MAVLink version, not writable by user, gets added by protocol because of magic data type: uint8_t_mavlink_version (uint8_t)
'''
return self.send(self.heartbeat_encode(type, autopilot, base_mode, custom_mode, system_status, mavlink_version))
def sys_status_encode(self, onboard_control_sensors_present, onboard_control_sensors_enabled, onboard_control_sensors_health, load, voltage_battery, current_battery, battery_remaining, drop_rate_comm, errors_comm, errors_count1, errors_count2, errors_count3, errors_count4):
'''
The general system state. If the system is following the MAVLink
standard, the system state is mainly defined by three
orthogonal states/modes: The system mode, which is
either LOCKED (motors shut down and locked), MANUAL
(system under RC control), GUIDED (system with
autonomous position control, position setpoint
controlled manually) or AUTO (system guided by
path/waypoint planner). The NAV_MODE defined the
current flight state: LIFTOFF (often an open-loop
maneuver), LANDING, WAYPOINTS or VECTOR. This
represents the internal navigation state machine. The
system status shows wether the system is currently
active or not and if an emergency occured. During the
CRITICAL and EMERGENCY states the MAV is still
considered to be active, but should start emergency
procedures autonomously. After a failure occured it
should first move from active to critical to allow
manual intervention and then move to emergency after a
certain timeout.
onboard_control_sensors_present : Bitmask showing which onboard controllers and sensors are present. Value of 0: not present. Value of 1: present. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control (uint32_t)
onboard_control_sensors_enabled : Bitmask showing which onboard controllers and sensors are enabled: Value of 0: not enabled. Value of 1: enabled. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control (uint32_t)
onboard_control_sensors_health : Bitmask showing which onboard controllers and sensors are operational or have an error: Value of 0: not enabled. Value of 1: enabled. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control (uint32_t)
load : Maximum usage in percent of the mainloop time, (0%: 0, 100%: 1000) should be always below 1000 (uint16_t)
voltage_battery : Battery voltage, in millivolts (1 = 1 millivolt) (uint16_t)
current_battery : Battery current, in 10*milliamperes (1 = 10 milliampere), -1: autopilot does not measure the current (int16_t)
battery_remaining : Remaining battery energy: (0%: 0, 100%: 100), -1: autopilot estimate the remaining battery (int8_t)
drop_rate_comm : Communication drops in percent, (0%: 0, 100%: 10'000), (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV) (uint16_t)
errors_comm : Communication errors (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV) (uint16_t)
errors_count1 : Autopilot-specific errors (uint16_t)
errors_count2 : Autopilot-specific errors (uint16_t)
errors_count3 : Autopilot-specific errors (uint16_t)
errors_count4 : Autopilot-specific errors (uint16_t)
'''
msg = MAVLink_sys_status_message(onboard_control_sensors_present, onboard_control_sensors_enabled, onboard_control_sensors_health, load, voltage_battery, current_battery, battery_remaining, drop_rate_comm, errors_comm, errors_count1, errors_count2, errors_count3, errors_count4)
msg.pack(self)
return msg
def sys_status_send(self, onboard_control_sensors_present, onboard_control_sensors_enabled, onboard_control_sensors_health, load, voltage_battery, current_battery, battery_remaining, drop_rate_comm, errors_comm, errors_count1, errors_count2, errors_count3, errors_count4):
'''
The general system state. If the system is following the MAVLink
standard, the system state is mainly defined by three
orthogonal states/modes: The system mode, which is
either LOCKED (motors shut down and locked), MANUAL
(system under RC control), GUIDED (system with
autonomous position control, position setpoint
controlled manually) or AUTO (system guided by
path/waypoint planner). The NAV_MODE defined the
current flight state: LIFTOFF (often an open-loop
maneuver), LANDING, WAYPOINTS or VECTOR. This
represents the internal navigation state machine. The
system status shows wether the system is currently
active or not and if an emergency occured. During the
CRITICAL and EMERGENCY states the MAV is still
considered to be active, but should start emergency
procedures autonomously. After a failure occured it
should first move from active to critical to allow
manual intervention and then move to emergency after a
certain timeout.
onboard_control_sensors_present : Bitmask showing which onboard controllers and sensors are present. Value of 0: not present. Value of 1: present. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control (uint32_t)
onboard_control_sensors_enabled : Bitmask showing which onboard controllers and sensors are enabled: Value of 0: not enabled. Value of 1: enabled. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control (uint32_t)
onboard_control_sensors_health : Bitmask showing which onboard controllers and sensors are operational or have an error: Value of 0: not enabled. Value of 1: enabled. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control (uint32_t)
load : Maximum usage in percent of the mainloop time, (0%: 0, 100%: 1000) should be always below 1000 (uint16_t)
voltage_battery : Battery voltage, in millivolts (1 = 1 millivolt) (uint16_t)
current_battery : Battery current, in 10*milliamperes (1 = 10 milliampere), -1: autopilot does not measure the current (int16_t)
battery_remaining : Remaining battery energy: (0%: 0, 100%: 100), -1: autopilot estimate the remaining battery (int8_t)
drop_rate_comm : Communication drops in percent, (0%: 0, 100%: 10'000), (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV) (uint16_t)
errors_comm : Communication errors (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV) (uint16_t)
errors_count1 : Autopilot-specific errors (uint16_t)
errors_count2 : Autopilot-specific errors (uint16_t)
errors_count3 : Autopilot-specific errors (uint16_t)
errors_count4 : Autopilot-specific errors (uint16_t)
'''
return self.send(self.sys_status_encode(onboard_control_sensors_present, onboard_control_sensors_enabled, onboard_control_sensors_health, load, voltage_battery, current_battery, battery_remaining, drop_rate_comm, errors_comm, errors_count1, errors_count2, errors_count3, errors_count4))
def system_time_encode(self, time_unix_usec, time_boot_ms):
'''
The system time is the time of the master clock, typically the
computer clock of the main onboard computer.
time_unix_usec : Timestamp of the master clock in microseconds since UNIX epoch. (uint64_t)
time_boot_ms : Timestamp of the component clock since boot time in milliseconds. (uint32_t)
'''
msg = MAVLink_system_time_message(time_unix_usec, time_boot_ms)
msg.pack(self)
return msg
def system_time_send(self, time_unix_usec, time_boot_ms):
'''
The system time is the time of the master clock, typically the
computer clock of the main onboard computer.
time_unix_usec : Timestamp of the master clock in microseconds since UNIX epoch. (uint64_t)
time_boot_ms : Timestamp of the component clock since boot time in milliseconds. (uint32_t)
'''
return self.send(self.system_time_encode(time_unix_usec, time_boot_ms))
def ping_encode(self, time_usec, seq, target_system, target_component):
'''
A ping message either requesting or responding to a ping. This allows
to measure the system latencies, including serial
port, radio modem and UDP connections.
time_usec : Unix timestamp in microseconds (uint64_t)
seq : PING sequence (uint32_t)
target_system : 0: request ping from all receiving systems, if greater than 0: message is a ping response and number is the system id of the requesting system (uint8_t)
target_component : 0: request ping from all receiving components, if greater than 0: message is a ping response and number is the system id of the requesting system (uint8_t)
'''
msg = MAVLink_ping_message(time_usec, seq, target_system, target_component)
msg.pack(self)
return msg
def ping_send(self, time_usec, seq, target_system, target_component):
'''
A ping message either requesting or responding to a ping. This allows
to measure the system latencies, including serial
port, radio modem and UDP connections.
time_usec : Unix timestamp in microseconds (uint64_t)
seq : PING sequence (uint32_t)
target_system : 0: request ping from all receiving systems, if greater than 0: message is a ping response and number is the system id of the requesting system (uint8_t)
target_component : 0: request ping from all receiving components, if greater than 0: message is a ping response and number is the system id of the requesting system (uint8_t)
'''
return self.send(self.ping_encode(time_usec, seq, target_system, target_component))
def change_operator_control_encode(self, target_system, control_request, version, passkey):
'''
Request to control this MAV
target_system : System the GCS requests control for (uint8_t)
control_request : 0: request control of this MAV, 1: Release control of this MAV (uint8_t)
version : 0: key as plaintext, 1-255: future, different hashing/encryption variants. The GCS should in general use the safest mode possible initially and then gradually move down the encryption level if it gets a NACK message indicating an encryption mismatch. (uint8_t)
passkey : Password / Key, depending on version plaintext or encrypted. 25 or less characters, NULL terminated. The characters may involve A-Z, a-z, 0-9, and "!?,.-" (char)
'''
msg = MAVLink_change_operator_control_message(target_system, control_request, version, passkey)
msg.pack(self)
return msg
def change_operator_control_send(self, target_system, control_request, version, passkey):
'''
Request to control this MAV
target_system : System the GCS requests control for (uint8_t)
control_request : 0: request control of this MAV, 1: Release control of this MAV (uint8_t)
version : 0: key as plaintext, 1-255: future, different hashing/encryption variants. The GCS should in general use the safest mode possible initially and then gradually move down the encryption level if it gets a NACK message indicating an encryption mismatch. (uint8_t)
passkey : Password / Key, depending on version plaintext or encrypted. 25 or less characters, NULL terminated. The characters may involve A-Z, a-z, 0-9, and "!?,.-" (char)
'''
return self.send(self.change_operator_control_encode(target_system, control_request, version, passkey))
def change_operator_control_ack_encode(self, gcs_system_id, control_request, ack):
'''
Accept / deny control of this MAV
gcs_system_id : ID of the GCS this message (uint8_t)
control_request : 0: request control of this MAV, 1: Release control of this MAV (uint8_t)
ack : 0: ACK, 1: NACK: Wrong passkey, 2: NACK: Unsupported passkey encryption method, 3: NACK: Already under control (uint8_t)
'''
msg = MAVLink_change_operator_control_ack_message(gcs_system_id, control_request, ack)
msg.pack(self)
return msg
def change_operator_control_ack_send(self, gcs_system_id, control_request, ack):
'''
Accept / deny control of this MAV
gcs_system_id : ID of the GCS this message (uint8_t)
control_request : 0: request control of this MAV, 1: Release control of this MAV (uint8_t)
ack : 0: ACK, 1: NACK: Wrong passkey, 2: NACK: Unsupported passkey encryption method, 3: NACK: Already under control (uint8_t)
'''
return self.send(self.change_operator_control_ack_encode(gcs_system_id, control_request, ack))
def auth_key_encode(self, key):
'''
Emit an encrypted signature / key identifying this system. PLEASE
NOTE: This protocol has been kept simple, so
transmitting the key requires an encrypted channel for
true safety.
key : key (char)
'''
msg = MAVLink_auth_key_message(key)
msg.pack(self)
return msg
def auth_key_send(self, key):
'''
Emit an encrypted signature / key identifying this system. PLEASE
NOTE: This protocol has been kept simple, so
transmitting the key requires an encrypted channel for
true safety.
key : key (char)
'''
return self.send(self.auth_key_encode(key))
def set_mode_encode(self, target_system, base_mode, custom_mode):
'''
Set the system mode, as defined by enum MAV_MODE. There is no target
component id as the mode is by definition for the
overall aircraft, not only for one component.
target_system : The system setting the mode (uint8_t)
base_mode : The new base mode (uint8_t)
custom_mode : The new autopilot-specific mode. This field can be ignored by an autopilot. (uint32_t)
'''
msg = MAVLink_set_mode_message(target_system, base_mode, custom_mode)
msg.pack(self)
return msg
def set_mode_send(self, target_system, base_mode, custom_mode):
'''
Set the system mode, as defined by enum MAV_MODE. There is no target
component id as the mode is by definition for the
overall aircraft, not only for one component.
target_system : The system setting the mode (uint8_t)
base_mode : The new base mode (uint8_t)
custom_mode : The new autopilot-specific mode. This field can be ignored by an autopilot. (uint32_t)
'''
return self.send(self.set_mode_encode(target_system, base_mode, custom_mode))
def param_request_read_encode(self, target_system, target_component, param_id, param_index):
'''
Request to read the onboard parameter with the param_id string id.
Onboard parameters are stored as key[const char*] ->
value[float]. This allows to send a parameter to any
other component (such as the GCS) without the need of
previous knowledge of possible parameter names. Thus
the same GCS can store different parameters for
different autopilots. See also
http://qgroundcontrol.org/parameter_interface for a
full documentation of QGroundControl and IMU code.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
param_id : Onboard parameter id (char)
param_index : Parameter index. Send -1 to use the param ID field as identifier (int16_t)
'''
msg = MAVLink_param_request_read_message(target_system, target_component, param_id, param_index)
msg.pack(self)
return msg
def param_request_read_send(self, target_system, target_component, param_id, param_index):
'''
Request to read the onboard parameter with the param_id string id.
Onboard parameters are stored as key[const char*] ->
value[float]. This allows to send a parameter to any
other component (such as the GCS) without the need of
previous knowledge of possible parameter names. Thus
the same GCS can store different parameters for
different autopilots. See also
http://qgroundcontrol.org/parameter_interface for a
full documentation of QGroundControl and IMU code.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
param_id : Onboard parameter id (char)
param_index : Parameter index. Send -1 to use the param ID field as identifier (int16_t)
'''
return self.send(self.param_request_read_encode(target_system, target_component, param_id, param_index))
def param_request_list_encode(self, target_system, target_component):
'''
Request all parameters of this component. After his request, all
parameters are emitted.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
'''
msg = MAVLink_param_request_list_message(target_system, target_component)
msg.pack(self)
return msg
def param_request_list_send(self, target_system, target_component):
'''
Request all parameters of this component. After his request, all
parameters are emitted.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
'''
return self.send(self.param_request_list_encode(target_system, target_component))
def param_value_encode(self, param_id, param_value, param_type, param_count, param_index):
'''
Emit the value of a onboard parameter. The inclusion of param_count
and param_index in the message allows the recipient to
keep track of received parameters and allows him to
re-request missing parameters after a loss or timeout.
param_id : Onboard parameter id (char)
param_value : Onboard parameter value (float)
param_type : Onboard parameter type: see MAV_VAR enum (uint8_t)
param_count : Total number of onboard parameters (uint16_t)
param_index : Index of this onboard parameter (uint16_t)
'''
msg = MAVLink_param_value_message(param_id, param_value, param_type, param_count, param_index)
msg.pack(self)
return msg
def param_value_send(self, param_id, param_value, param_type, param_count, param_index):
'''
Emit the value of a onboard parameter. The inclusion of param_count
and param_index in the message allows the recipient to
keep track of received parameters and allows him to
re-request missing parameters after a loss or timeout.
param_id : Onboard parameter id (char)
param_value : Onboard parameter value (float)
param_type : Onboard parameter type: see MAV_VAR enum (uint8_t)
param_count : Total number of onboard parameters (uint16_t)
param_index : Index of this onboard parameter (uint16_t)
'''
return self.send(self.param_value_encode(param_id, param_value, param_type, param_count, param_index))
def param_set_encode(self, target_system, target_component, param_id, param_value, param_type):
'''
Set a parameter value TEMPORARILY to RAM. It will be reset to default
on system reboot. Send the ACTION
MAV_ACTION_STORAGE_WRITE to PERMANENTLY write the RAM
contents to EEPROM. IMPORTANT: The receiving component
should acknowledge the new parameter value by sending
a param_value message to all communication partners.
This will also ensure that multiple GCS all have an
up-to-date list of all parameters. If the sending GCS
did not receive a PARAM_VALUE message within its
timeout time, it should re-send the PARAM_SET message.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
param_id : Onboard parameter id (char)
param_value : Onboard parameter value (float)
param_type : Onboard parameter type: see MAV_VAR enum (uint8_t)
'''
msg = MAVLink_param_set_message(target_system, target_component, param_id, param_value, param_type)
msg.pack(self)
return msg
def param_set_send(self, target_system, target_component, param_id, param_value, param_type):
'''
Set a parameter value TEMPORARILY to RAM. It will be reset to default
on system reboot. Send the ACTION
MAV_ACTION_STORAGE_WRITE to PERMANENTLY write the RAM
contents to EEPROM. IMPORTANT: The receiving component
should acknowledge the new parameter value by sending
a param_value message to all communication partners.
This will also ensure that multiple GCS all have an
up-to-date list of all parameters. If the sending GCS
did not receive a PARAM_VALUE message within its
timeout time, it should re-send the PARAM_SET message.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
param_id : Onboard parameter id (char)
param_value : Onboard parameter value (float)
param_type : Onboard parameter type: see MAV_VAR enum (uint8_t)
'''
return self.send(self.param_set_encode(target_system, target_component, param_id, param_value, param_type))
def gps_raw_int_encode(self, time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible):
'''
The global position, as returned by the Global Positioning System
(GPS). This is NOT the global position
estimate of the sytem, but rather a RAW sensor value.
See message GLOBAL_POSITION for the global position
estimate. Coordinate frame is right-handed, Z-axis up
(GPS frame).
time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t)
fix_type : 0-1: no fix, 2: 2D fix, 3: 3D fix. Some applications will not use the value of this field unless it is at least two, so always correctly fill in the fix. (uint8_t)
lat : Latitude in 1E7 degrees (int32_t)
lon : Longitude in 1E7 degrees (int32_t)
alt : Altitude in 1E3 meters (millimeters) above MSL (int32_t)
eph : GPS HDOP horizontal dilution of position in cm (m*100). If unknown, set to: 65535 (uint16_t)
epv : GPS VDOP horizontal dilution of position in cm (m*100). If unknown, set to: 65535 (uint16_t)
vel : GPS ground speed (m/s * 100). If unknown, set to: 65535 (uint16_t)
cog : Course over ground (NOT heading, but direction of movement) in degrees * 100, 0.0..359.99 degrees. If unknown, set to: 65535 (uint16_t)
satellites_visible : Number of satellites visible. If unknown, set to 255 (uint8_t)
'''
msg = MAVLink_gps_raw_int_message(time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible)
msg.pack(self)
return msg
def gps_raw_int_send(self, time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible):
'''
The global position, as returned by the Global Positioning System
(GPS). This is NOT the global position
estimate of the sytem, but rather a RAW sensor value.
See message GLOBAL_POSITION for the global position
estimate. Coordinate frame is right-handed, Z-axis up
(GPS frame).
time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t)
fix_type : 0-1: no fix, 2: 2D fix, 3: 3D fix. Some applications will not use the value of this field unless it is at least two, so always correctly fill in the fix. (uint8_t)
lat : Latitude in 1E7 degrees (int32_t)
lon : Longitude in 1E7 degrees (int32_t)
alt : Altitude in 1E3 meters (millimeters) above MSL (int32_t)
eph : GPS HDOP horizontal dilution of position in cm (m*100). If unknown, set to: 65535 (uint16_t)
epv : GPS VDOP horizontal dilution of position in cm (m*100). If unknown, set to: 65535 (uint16_t)
vel : GPS ground speed (m/s * 100). If unknown, set to: 65535 (uint16_t)
cog : Course over ground (NOT heading, but direction of movement) in degrees * 100, 0.0..359.99 degrees. If unknown, set to: 65535 (uint16_t)
satellites_visible : Number of satellites visible. If unknown, set to 255 (uint8_t)
'''
return self.send(self.gps_raw_int_encode(time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible))
def gps_status_encode(self, satellites_visible, satellite_prn, satellite_used, satellite_elevation, satellite_azimuth, satellite_snr):
'''
The positioning status, as reported by GPS. This message is intended
to display status information about each satellite
visible to the receiver. See message GLOBAL_POSITION
for the global position estimate. This message can
contain information for up to 20 satellites.
satellites_visible : Number of satellites visible (uint8_t)
satellite_prn : Global satellite ID (uint8_t)
satellite_used : 0: Satellite not used, 1: used for localization (uint8_t)
satellite_elevation : Elevation (0: right on top of receiver, 90: on the horizon) of satellite (uint8_t)
satellite_azimuth : Direction of satellite, 0: 0 deg, 255: 360 deg. (uint8_t)
satellite_snr : Signal to noise ratio of satellite (uint8_t)
'''
msg = MAVLink_gps_status_message(satellites_visible, satellite_prn, satellite_used, satellite_elevation, satellite_azimuth, satellite_snr)
msg.pack(self)
return msg
def gps_status_send(self, satellites_visible, satellite_prn, satellite_used, satellite_elevation, satellite_azimuth, satellite_snr):
'''
The positioning status, as reported by GPS. This message is intended
to display status information about each satellite
visible to the receiver. See message GLOBAL_POSITION
for the global position estimate. This message can
contain information for up to 20 satellites.
satellites_visible : Number of satellites visible (uint8_t)
satellite_prn : Global satellite ID (uint8_t)
satellite_used : 0: Satellite not used, 1: used for localization (uint8_t)
satellite_elevation : Elevation (0: right on top of receiver, 90: on the horizon) of satellite (uint8_t)
satellite_azimuth : Direction of satellite, 0: 0 deg, 255: 360 deg. (uint8_t)
satellite_snr : Signal to noise ratio of satellite (uint8_t)
'''
return self.send(self.gps_status_encode(satellites_visible, satellite_prn, satellite_used, satellite_elevation, satellite_azimuth, satellite_snr))
def scaled_imu_encode(self, time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag):
'''
The RAW IMU readings for the usual 9DOF sensor setup. This message
should contain the scaled values to the described
units
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
xacc : X acceleration (mg) (int16_t)
yacc : Y acceleration (mg) (int16_t)
zacc : Z acceleration (mg) (int16_t)
xgyro : Angular speed around X axis (millirad /sec) (int16_t)
ygyro : Angular speed around Y axis (millirad /sec) (int16_t)
zgyro : Angular speed around Z axis (millirad /sec) (int16_t)
xmag : X Magnetic field (milli tesla) (int16_t)
ymag : Y Magnetic field (milli tesla) (int16_t)
zmag : Z Magnetic field (milli tesla) (int16_t)
'''
msg = MAVLink_scaled_imu_message(time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag)
msg.pack(self)
return msg
def scaled_imu_send(self, time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag):
'''
The RAW IMU readings for the usual 9DOF sensor setup. This message
should contain the scaled values to the described
units
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
xacc : X acceleration (mg) (int16_t)
yacc : Y acceleration (mg) (int16_t)
zacc : Z acceleration (mg) (int16_t)
xgyro : Angular speed around X axis (millirad /sec) (int16_t)
ygyro : Angular speed around Y axis (millirad /sec) (int16_t)
zgyro : Angular speed around Z axis (millirad /sec) (int16_t)
xmag : X Magnetic field (milli tesla) (int16_t)
ymag : Y Magnetic field (milli tesla) (int16_t)
zmag : Z Magnetic field (milli tesla) (int16_t)
'''
return self.send(self.scaled_imu_encode(time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag))
def raw_imu_encode(self, time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag):
'''
The RAW IMU readings for the usual 9DOF sensor setup. This message
should always contain the true raw values without any
scaling to allow data capture and system debugging.
time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t)
xacc : X acceleration (raw) (int16_t)
yacc : Y acceleration (raw) (int16_t)
zacc : Z acceleration (raw) (int16_t)
xgyro : Angular speed around X axis (raw) (int16_t)
ygyro : Angular speed around Y axis (raw) (int16_t)
zgyro : Angular speed around Z axis (raw) (int16_t)
xmag : X Magnetic field (raw) (int16_t)
ymag : Y Magnetic field (raw) (int16_t)
zmag : Z Magnetic field (raw) (int16_t)
'''
msg = MAVLink_raw_imu_message(time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag)
msg.pack(self)
return msg
def raw_imu_send(self, time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag):
'''
The RAW IMU readings for the usual 9DOF sensor setup. This message
should always contain the true raw values without any
scaling to allow data capture and system debugging.
time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t)
xacc : X acceleration (raw) (int16_t)
yacc : Y acceleration (raw) (int16_t)
zacc : Z acceleration (raw) (int16_t)
xgyro : Angular speed around X axis (raw) (int16_t)
ygyro : Angular speed around Y axis (raw) (int16_t)
zgyro : Angular speed around Z axis (raw) (int16_t)
xmag : X Magnetic field (raw) (int16_t)
ymag : Y Magnetic field (raw) (int16_t)
zmag : Z Magnetic field (raw) (int16_t)
'''
return self.send(self.raw_imu_encode(time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag))
def raw_pressure_encode(self, time_usec, press_abs, press_diff1, press_diff2, temperature):
'''
The RAW pressure readings for the typical setup of one absolute
pressure and one differential pressure sensor. The
sensor values should be the raw, UNSCALED ADC values.
time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t)
press_abs : Absolute pressure (raw) (int16_t)
press_diff1 : Differential pressure 1 (raw) (int16_t)
press_diff2 : Differential pressure 2 (raw) (int16_t)
temperature : Raw Temperature measurement (raw) (int16_t)
'''
msg = MAVLink_raw_pressure_message(time_usec, press_abs, press_diff1, press_diff2, temperature)
msg.pack(self)
return msg
def raw_pressure_send(self, time_usec, press_abs, press_diff1, press_diff2, temperature):
'''
The RAW pressure readings for the typical setup of one absolute
pressure and one differential pressure sensor. The
sensor values should be the raw, UNSCALED ADC values.
time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t)
press_abs : Absolute pressure (raw) (int16_t)
press_diff1 : Differential pressure 1 (raw) (int16_t)
press_diff2 : Differential pressure 2 (raw) (int16_t)
temperature : Raw Temperature measurement (raw) (int16_t)
'''
return self.send(self.raw_pressure_encode(time_usec, press_abs, press_diff1, press_diff2, temperature))
def scaled_pressure_encode(self, time_boot_ms, press_abs, press_diff, temperature):
'''
The pressure readings for the typical setup of one absolute and
differential pressure sensor. The units are as
specified in each field.
time_boot_ms : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint32_t)
press_abs : Absolute pressure (hectopascal) (float)
press_diff : Differential pressure 1 (hectopascal) (float)
temperature : Temperature measurement (0.01 degrees celsius) (int16_t)
'''
msg = MAVLink_scaled_pressure_message(time_boot_ms, press_abs, press_diff, temperature)
msg.pack(self)
return msg
def scaled_pressure_send(self, time_boot_ms, press_abs, press_diff, temperature):
'''
The pressure readings for the typical setup of one absolute and
differential pressure sensor. The units are as
specified in each field.
time_boot_ms : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint32_t)
press_abs : Absolute pressure (hectopascal) (float)
press_diff : Differential pressure 1 (hectopascal) (float)
temperature : Temperature measurement (0.01 degrees celsius) (int16_t)
'''
return self.send(self.scaled_pressure_encode(time_boot_ms, press_abs, press_diff, temperature))
def attitude_encode(self, time_boot_ms, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed):
'''
The attitude in the aeronautical frame (right-handed, Z-down, X-front,
Y-right).
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
roll : Roll angle (rad) (float)
pitch : Pitch angle (rad) (float)
yaw : Yaw angle (rad) (float)
rollspeed : Roll angular speed (rad/s) (float)
pitchspeed : Pitch angular speed (rad/s) (float)
yawspeed : Yaw angular speed (rad/s) (float)
'''
msg = MAVLink_attitude_message(time_boot_ms, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed)
msg.pack(self)
return msg
def attitude_send(self, time_boot_ms, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed):
'''
The attitude in the aeronautical frame (right-handed, Z-down, X-front,
Y-right).
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
roll : Roll angle (rad) (float)
pitch : Pitch angle (rad) (float)
yaw : Yaw angle (rad) (float)
rollspeed : Roll angular speed (rad/s) (float)
pitchspeed : Pitch angular speed (rad/s) (float)
yawspeed : Yaw angular speed (rad/s) (float)
'''
return self.send(self.attitude_encode(time_boot_ms, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed))
def attitude_quaternion_encode(self, time_boot_ms, q1, q2, q3, q4, rollspeed, pitchspeed, yawspeed):
'''
The attitude in the aeronautical frame (right-handed, Z-down, X-front,
Y-right), expressed as quaternion.
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
q1 : Quaternion component 1 (float)
q2 : Quaternion component 2 (float)
q3 : Quaternion component 3 (float)
q4 : Quaternion component 4 (float)
rollspeed : Roll angular speed (rad/s) (float)
pitchspeed : Pitch angular speed (rad/s) (float)
yawspeed : Yaw angular speed (rad/s) (float)
'''
msg = MAVLink_attitude_quaternion_message(time_boot_ms, q1, q2, q3, q4, rollspeed, pitchspeed, yawspeed)
msg.pack(self)
return msg
def attitude_quaternion_send(self, time_boot_ms, q1, q2, q3, q4, rollspeed, pitchspeed, yawspeed):
'''
The attitude in the aeronautical frame (right-handed, Z-down, X-front,
Y-right), expressed as quaternion.
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
q1 : Quaternion component 1 (float)
q2 : Quaternion component 2 (float)
q3 : Quaternion component 3 (float)
q4 : Quaternion component 4 (float)
rollspeed : Roll angular speed (rad/s) (float)
pitchspeed : Pitch angular speed (rad/s) (float)
yawspeed : Yaw angular speed (rad/s) (float)
'''
return self.send(self.attitude_quaternion_encode(time_boot_ms, q1, q2, q3, q4, rollspeed, pitchspeed, yawspeed))
def local_position_ned_encode(self, time_boot_ms, x, y, z, vx, vy, vz):
'''
The filtered local position (e.g. fused computer vision and
accelerometers). Coordinate frame is right-handed,
Z-axis down (aeronautical frame, NED / north-east-down
convention)
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
x : X Position (float)
y : Y Position (float)
z : Z Position (float)
vx : X Speed (float)
vy : Y Speed (float)
vz : Z Speed (float)
'''
msg = MAVLink_local_position_ned_message(time_boot_ms, x, y, z, vx, vy, vz)
msg.pack(self)
return msg
def local_position_ned_send(self, time_boot_ms, x, y, z, vx, vy, vz):
'''
The filtered local position (e.g. fused computer vision and
accelerometers). Coordinate frame is right-handed,
Z-axis down (aeronautical frame, NED / north-east-down
convention)
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
x : X Position (float)
y : Y Position (float)
z : Z Position (float)
vx : X Speed (float)
vy : Y Speed (float)
vz : Z Speed (float)
'''
return self.send(self.local_position_ned_encode(time_boot_ms, x, y, z, vx, vy, vz))
def global_position_int_encode(self, time_boot_ms, lat, lon, alt, relative_alt, vx, vy, vz, hdg):
'''
The filtered global position (e.g. fused GPS and accelerometers). The
position is in GPS-frame (right-handed, Z-up). It
is designed as scaled integer message since the
resolution of float is not sufficient.
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
lat : Latitude, expressed as * 1E7 (int32_t)
lon : Longitude, expressed as * 1E7 (int32_t)
alt : Altitude in meters, expressed as * 1000 (millimeters), above MSL (int32_t)
relative_alt : Altitude above ground in meters, expressed as * 1000 (millimeters) (int32_t)
vx : Ground X Speed (Latitude), expressed as m/s * 100 (int16_t)
vy : Ground Y Speed (Longitude), expressed as m/s * 100 (int16_t)
vz : Ground Z Speed (Altitude), expressed as m/s * 100 (int16_t)
hdg : Compass heading in degrees * 100, 0.0..359.99 degrees. If unknown, set to: 65535 (uint16_t)
'''
msg = MAVLink_global_position_int_message(time_boot_ms, lat, lon, alt, relative_alt, vx, vy, vz, hdg)
msg.pack(self)
return msg
def global_position_int_send(self, time_boot_ms, lat, lon, alt, relative_alt, vx, vy, vz, hdg):
'''
The filtered global position (e.g. fused GPS and accelerometers). The
position is in GPS-frame (right-handed, Z-up). It
is designed as scaled integer message since the
resolution of float is not sufficient.
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
lat : Latitude, expressed as * 1E7 (int32_t)
lon : Longitude, expressed as * 1E7 (int32_t)
alt : Altitude in meters, expressed as * 1000 (millimeters), above MSL (int32_t)
relative_alt : Altitude above ground in meters, expressed as * 1000 (millimeters) (int32_t)
vx : Ground X Speed (Latitude), expressed as m/s * 100 (int16_t)
vy : Ground Y Speed (Longitude), expressed as m/s * 100 (int16_t)
vz : Ground Z Speed (Altitude), expressed as m/s * 100 (int16_t)
hdg : Compass heading in degrees * 100, 0.0..359.99 degrees. If unknown, set to: 65535 (uint16_t)
'''
return self.send(self.global_position_int_encode(time_boot_ms, lat, lon, alt, relative_alt, vx, vy, vz, hdg))
def rc_channels_scaled_encode(self, time_boot_ms, port, chan1_scaled, chan2_scaled, chan3_scaled, chan4_scaled, chan5_scaled, chan6_scaled, chan7_scaled, chan8_scaled, rssi):
'''
The scaled values of the RC channels received. (-100%) -10000, (0%) 0,
(100%) 10000
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows to encode more than 8 servos. (uint8_t)
chan1_scaled : RC channel 1 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t)
chan2_scaled : RC channel 2 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t)
chan3_scaled : RC channel 3 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t)
chan4_scaled : RC channel 4 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t)
chan5_scaled : RC channel 5 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t)
chan6_scaled : RC channel 6 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t)
chan7_scaled : RC channel 7 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t)
chan8_scaled : RC channel 8 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t)
rssi : Receive signal strength indicator, 0: 0%, 255: 100% (uint8_t)
'''
msg = MAVLink_rc_channels_scaled_message(time_boot_ms, port, chan1_scaled, chan2_scaled, chan3_scaled, chan4_scaled, chan5_scaled, chan6_scaled, chan7_scaled, chan8_scaled, rssi)
msg.pack(self)
return msg
def rc_channels_scaled_send(self, time_boot_ms, port, chan1_scaled, chan2_scaled, chan3_scaled, chan4_scaled, chan5_scaled, chan6_scaled, chan7_scaled, chan8_scaled, rssi):
'''
The scaled values of the RC channels received. (-100%) -10000, (0%) 0,
(100%) 10000
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows to encode more than 8 servos. (uint8_t)
chan1_scaled : RC channel 1 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t)
chan2_scaled : RC channel 2 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t)
chan3_scaled : RC channel 3 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t)
chan4_scaled : RC channel 4 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t)
chan5_scaled : RC channel 5 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t)
chan6_scaled : RC channel 6 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t)
chan7_scaled : RC channel 7 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t)
chan8_scaled : RC channel 8 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t)
rssi : Receive signal strength indicator, 0: 0%, 255: 100% (uint8_t)
'''
return self.send(self.rc_channels_scaled_encode(time_boot_ms, port, chan1_scaled, chan2_scaled, chan3_scaled, chan4_scaled, chan5_scaled, chan6_scaled, chan7_scaled, chan8_scaled, rssi))
def rc_channels_raw_encode(self, time_boot_ms, port, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, rssi):
'''
The RAW values of the RC channels received. The standard PPM
modulation is as follows: 1000 microseconds: 0%, 2000
microseconds: 100%. Individual receivers/transmitters
might violate this specification.
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows to encode more than 8 servos. (uint8_t)
chan1_raw : RC channel 1 value, in microseconds (uint16_t)
chan2_raw : RC channel 2 value, in microseconds (uint16_t)
chan3_raw : RC channel 3 value, in microseconds (uint16_t)
chan4_raw : RC channel 4 value, in microseconds (uint16_t)
chan5_raw : RC channel 5 value, in microseconds (uint16_t)
chan6_raw : RC channel 6 value, in microseconds (uint16_t)
chan7_raw : RC channel 7 value, in microseconds (uint16_t)
chan8_raw : RC channel 8 value, in microseconds (uint16_t)
rssi : Receive signal strength indicator, 0: 0%, 255: 100% (uint8_t)
'''
msg = MAVLink_rc_channels_raw_message(time_boot_ms, port, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, rssi)
msg.pack(self)
return msg
def rc_channels_raw_send(self, time_boot_ms, port, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, rssi):
'''
The RAW values of the RC channels received. The standard PPM
modulation is as follows: 1000 microseconds: 0%, 2000
microseconds: 100%. Individual receivers/transmitters
might violate this specification.
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows to encode more than 8 servos. (uint8_t)
chan1_raw : RC channel 1 value, in microseconds (uint16_t)
chan2_raw : RC channel 2 value, in microseconds (uint16_t)
chan3_raw : RC channel 3 value, in microseconds (uint16_t)
chan4_raw : RC channel 4 value, in microseconds (uint16_t)
chan5_raw : RC channel 5 value, in microseconds (uint16_t)
chan6_raw : RC channel 6 value, in microseconds (uint16_t)
chan7_raw : RC channel 7 value, in microseconds (uint16_t)
chan8_raw : RC channel 8 value, in microseconds (uint16_t)
rssi : Receive signal strength indicator, 0: 0%, 255: 100% (uint8_t)
'''
return self.send(self.rc_channels_raw_encode(time_boot_ms, port, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, rssi))
def servo_output_raw_encode(self, time_usec, port, servo1_raw, servo2_raw, servo3_raw, servo4_raw, servo5_raw, servo6_raw, servo7_raw, servo8_raw):
'''
The RAW values of the servo outputs (for RC input from the remote, use
the RC_CHANNELS messages). The standard PPM modulation
is as follows: 1000 microseconds: 0%, 2000
microseconds: 100%.
time_usec : Timestamp (since UNIX epoch or microseconds since system boot) (uint32_t)
port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows to encode more than 8 servos. (uint8_t)
servo1_raw : Servo output 1 value, in microseconds (uint16_t)
servo2_raw : Servo output 2 value, in microseconds (uint16_t)
servo3_raw : Servo output 3 value, in microseconds (uint16_t)
servo4_raw : Servo output 4 value, in microseconds (uint16_t)
servo5_raw : Servo output 5 value, in microseconds (uint16_t)
servo6_raw : Servo output 6 value, in microseconds (uint16_t)
servo7_raw : Servo output 7 value, in microseconds (uint16_t)
servo8_raw : Servo output 8 value, in microseconds (uint16_t)
'''
msg = MAVLink_servo_output_raw_message(time_usec, port, servo1_raw, servo2_raw, servo3_raw, servo4_raw, servo5_raw, servo6_raw, servo7_raw, servo8_raw)
msg.pack(self)
return msg
def servo_output_raw_send(self, time_usec, port, servo1_raw, servo2_raw, servo3_raw, servo4_raw, servo5_raw, servo6_raw, servo7_raw, servo8_raw):
'''
The RAW values of the servo outputs (for RC input from the remote, use
the RC_CHANNELS messages). The standard PPM modulation
is as follows: 1000 microseconds: 0%, 2000
microseconds: 100%.
time_usec : Timestamp (since UNIX epoch or microseconds since system boot) (uint32_t)
port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows to encode more than 8 servos. (uint8_t)
servo1_raw : Servo output 1 value, in microseconds (uint16_t)
servo2_raw : Servo output 2 value, in microseconds (uint16_t)
servo3_raw : Servo output 3 value, in microseconds (uint16_t)
servo4_raw : Servo output 4 value, in microseconds (uint16_t)
servo5_raw : Servo output 5 value, in microseconds (uint16_t)
servo6_raw : Servo output 6 value, in microseconds (uint16_t)
servo7_raw : Servo output 7 value, in microseconds (uint16_t)
servo8_raw : Servo output 8 value, in microseconds (uint16_t)
'''
return self.send(self.servo_output_raw_encode(time_usec, port, servo1_raw, servo2_raw, servo3_raw, servo4_raw, servo5_raw, servo6_raw, servo7_raw, servo8_raw))
def mission_request_partial_list_encode(self, target_system, target_component, start_index, end_index):
'''
Request the overall list of MISSIONs from the system/component.
http://qgroundcontrol.org/mavlink/waypoint_protocol
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
start_index : Start index, 0 by default (int16_t)
end_index : End index, -1 by default (-1: send list to end). Else a valid index of the list (int16_t)
'''
msg = MAVLink_mission_request_partial_list_message(target_system, target_component, start_index, end_index)
msg.pack(self)
return msg
def mission_request_partial_list_send(self, target_system, target_component, start_index, end_index):
'''
Request the overall list of MISSIONs from the system/component.
http://qgroundcontrol.org/mavlink/waypoint_protocol
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
start_index : Start index, 0 by default (int16_t)
end_index : End index, -1 by default (-1: send list to end). Else a valid index of the list (int16_t)
'''
return self.send(self.mission_request_partial_list_encode(target_system, target_component, start_index, end_index))
def mission_write_partial_list_encode(self, target_system, target_component, start_index, end_index):
'''
This message is sent to the MAV to write a partial list. If start
index == end index, only one item will be transmitted
/ updated. If the start index is NOT 0 and above the
current list size, this request should be REJECTED!
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
start_index : Start index, 0 by default and smaller / equal to the largest index of the current onboard list. (int16_t)
end_index : End index, equal or greater than start index. (int16_t)
'''
msg = MAVLink_mission_write_partial_list_message(target_system, target_component, start_index, end_index)
msg.pack(self)
return msg
def mission_write_partial_list_send(self, target_system, target_component, start_index, end_index):
'''
This message is sent to the MAV to write a partial list. If start
index == end index, only one item will be transmitted
/ updated. If the start index is NOT 0 and above the
current list size, this request should be REJECTED!
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
start_index : Start index, 0 by default and smaller / equal to the largest index of the current onboard list. (int16_t)
end_index : End index, equal or greater than start index. (int16_t)
'''
return self.send(self.mission_write_partial_list_encode(target_system, target_component, start_index, end_index))
def mission_item_encode(self, target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z):
'''
Message encoding a mission item. This message is emitted to announce
the presence of a mission item and to set a mission
item on the system. The mission item can be either in
x, y, z meters (type: LOCAL) or x:lat, y:lon,
z:altitude. Local frame is Z-down, right handed (NED),
global frame is Z-up, right handed (ENU). See also
http://qgroundcontrol.org/mavlink/waypoint_protocol.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
seq : Sequence (uint16_t)
frame : The coordinate system of the MISSION. see MAV_FRAME in mavlink_types.h (uint8_t)
command : The scheduled action for the MISSION. see MAV_CMD in common.xml MAVLink specs (uint16_t)
current : false:0, true:1 (uint8_t)
autocontinue : autocontinue to next wp (uint8_t)
param1 : PARAM1 / For NAV command MISSIONs: Radius in which the MISSION is accepted as reached, in meters (float)
param2 : PARAM2 / For NAV command MISSIONs: Time that the MAV should stay inside the PARAM1 radius before advancing, in milliseconds (float)
param3 : PARAM3 / For LOITER command MISSIONs: Orbit to circle around the MISSION, in meters. If positive the orbit direction should be clockwise, if negative the orbit direction should be counter-clockwise. (float)
param4 : PARAM4 / For NAV and LOITER command MISSIONs: Yaw orientation in degrees, [0..360] 0 = NORTH (float)
x : PARAM5 / local: x position, global: latitude (float)
y : PARAM6 / y position: global: longitude (float)
z : PARAM7 / z position: global: altitude (float)
'''
msg = MAVLink_mission_item_message(target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z)
msg.pack(self)
return msg
def mission_item_send(self, target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z):
'''
Message encoding a mission item. This message is emitted to announce
the presence of a mission item and to set a mission
item on the system. The mission item can be either in
x, y, z meters (type: LOCAL) or x:lat, y:lon,
z:altitude. Local frame is Z-down, right handed (NED),
global frame is Z-up, right handed (ENU). See also
http://qgroundcontrol.org/mavlink/waypoint_protocol.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
seq : Sequence (uint16_t)
frame : The coordinate system of the MISSION. see MAV_FRAME in mavlink_types.h (uint8_t)
command : The scheduled action for the MISSION. see MAV_CMD in common.xml MAVLink specs (uint16_t)
current : false:0, true:1 (uint8_t)
autocontinue : autocontinue to next wp (uint8_t)
param1 : PARAM1 / For NAV command MISSIONs: Radius in which the MISSION is accepted as reached, in meters (float)
param2 : PARAM2 / For NAV command MISSIONs: Time that the MAV should stay inside the PARAM1 radius before advancing, in milliseconds (float)
param3 : PARAM3 / For LOITER command MISSIONs: Orbit to circle around the MISSION, in meters. If positive the orbit direction should be clockwise, if negative the orbit direction should be counter-clockwise. (float)
param4 : PARAM4 / For NAV and LOITER command MISSIONs: Yaw orientation in degrees, [0..360] 0 = NORTH (float)
x : PARAM5 / local: x position, global: latitude (float)
y : PARAM6 / y position: global: longitude (float)
z : PARAM7 / z position: global: altitude (float)
'''
return self.send(self.mission_item_encode(target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z))
def mission_request_encode(self, target_system, target_component, seq):
'''
Request the information of the mission item with the sequence number
seq. The response of the system to this message should
be a MISSION_ITEM message.
http://qgroundcontrol.org/mavlink/waypoint_protocol
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
seq : Sequence (uint16_t)
'''
msg = MAVLink_mission_request_message(target_system, target_component, seq)
msg.pack(self)
return msg
def mission_request_send(self, target_system, target_component, seq):
'''
Request the information of the mission item with the sequence number
seq. The response of the system to this message should
be a MISSION_ITEM message.
http://qgroundcontrol.org/mavlink/waypoint_protocol
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
seq : Sequence (uint16_t)
'''
return self.send(self.mission_request_encode(target_system, target_component, seq))
def mission_set_current_encode(self, target_system, target_component, seq):
'''
Set the mission item with sequence number seq as current item. This
means that the MAV will continue to this mission item
on the shortest path (not following the mission items
in-between).
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
seq : Sequence (uint16_t)
'''
msg = MAVLink_mission_set_current_message(target_system, target_component, seq)
msg.pack(self)
return msg
def mission_set_current_send(self, target_system, target_component, seq):
'''
Set the mission item with sequence number seq as current item. This
means that the MAV will continue to this mission item
on the shortest path (not following the mission items
in-between).
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
seq : Sequence (uint16_t)
'''
return self.send(self.mission_set_current_encode(target_system, target_component, seq))
def mission_current_encode(self, seq):
'''
Message that announces the sequence number of the current active
mission item. The MAV will fly towards this mission
item.
seq : Sequence (uint16_t)
'''
msg = MAVLink_mission_current_message(seq)
msg.pack(self)
return msg
def mission_current_send(self, seq):
'''
Message that announces the sequence number of the current active
mission item. The MAV will fly towards this mission
item.
seq : Sequence (uint16_t)
'''
return self.send(self.mission_current_encode(seq))
def mission_request_list_encode(self, target_system, target_component):
'''
Request the overall list of mission items from the system/component.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
'''
msg = MAVLink_mission_request_list_message(target_system, target_component)
msg.pack(self)
return msg
def mission_request_list_send(self, target_system, target_component):
'''
Request the overall list of mission items from the system/component.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
'''
return self.send(self.mission_request_list_encode(target_system, target_component))
def mission_count_encode(self, target_system, target_component, count):
'''
This message is emitted as response to MISSION_REQUEST_LIST by the MAV
and to initiate a write transaction. The GCS can then
request the individual mission item based on the
knowledge of the total number of MISSIONs.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
count : Number of mission items in the sequence (uint16_t)
'''
msg = MAVLink_mission_count_message(target_system, target_component, count)
msg.pack(self)
return msg
def mission_count_send(self, target_system, target_component, count):
'''
This message is emitted as response to MISSION_REQUEST_LIST by the MAV
and to initiate a write transaction. The GCS can then
request the individual mission item based on the
knowledge of the total number of MISSIONs.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
count : Number of mission items in the sequence (uint16_t)
'''
return self.send(self.mission_count_encode(target_system, target_component, count))
def mission_clear_all_encode(self, target_system, target_component):
'''
Delete all mission items at once.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
'''
msg = MAVLink_mission_clear_all_message(target_system, target_component)
msg.pack(self)
return msg
def mission_clear_all_send(self, target_system, target_component):
'''
Delete all mission items at once.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
'''
return self.send(self.mission_clear_all_encode(target_system, target_component))
def mission_item_reached_encode(self, seq):
'''
A certain mission item has been reached. The system will either hold
this position (or circle on the orbit) or (if the
autocontinue on the WP was set) continue to the next
MISSION.
seq : Sequence (uint16_t)
'''
msg = MAVLink_mission_item_reached_message(seq)
msg.pack(self)
return msg
def mission_item_reached_send(self, seq):
'''
A certain mission item has been reached. The system will either hold
this position (or circle on the orbit) or (if the
autocontinue on the WP was set) continue to the next
MISSION.
seq : Sequence (uint16_t)
'''
return self.send(self.mission_item_reached_encode(seq))
def mission_ack_encode(self, target_system, target_component, type):
'''
Ack message during MISSION handling. The type field states if this
message is a positive ack (type=0) or if an error
happened (type=non-zero).
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
type : See MAV_MISSION_RESULT enum (uint8_t)
'''
msg = MAVLink_mission_ack_message(target_system, target_component, type)
msg.pack(self)
return msg
def mission_ack_send(self, target_system, target_component, type):
'''
Ack message during MISSION handling. The type field states if this
message is a positive ack (type=0) or if an error
happened (type=non-zero).
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
type : See MAV_MISSION_RESULT enum (uint8_t)
'''
return self.send(self.mission_ack_encode(target_system, target_component, type))
def set_gps_global_origin_encode(self, target_system, latitude, longitude, altitude):
'''
As local MISSIONs exist, the global MISSION reference allows to
transform between the local coordinate frame and the
global (GPS) coordinate frame. This can be necessary
when e.g. in- and outdoor settings are connected and
the MAV should move from in- to outdoor.
target_system : System ID (uint8_t)
latitude : global position * 1E7 (int32_t)
longitude : global position * 1E7 (int32_t)
altitude : global position * 1000 (int32_t)
'''
msg = MAVLink_set_gps_global_origin_message(target_system, latitude, longitude, altitude)
msg.pack(self)
return msg
def set_gps_global_origin_send(self, target_system, latitude, longitude, altitude):
'''
As local MISSIONs exist, the global MISSION reference allows to
transform between the local coordinate frame and the
global (GPS) coordinate frame. This can be necessary
when e.g. in- and outdoor settings are connected and
the MAV should move from in- to outdoor.
target_system : System ID (uint8_t)
latitude : global position * 1E7 (int32_t)
longitude : global position * 1E7 (int32_t)
altitude : global position * 1000 (int32_t)
'''
return self.send(self.set_gps_global_origin_encode(target_system, latitude, longitude, altitude))
def gps_global_origin_encode(self, latitude, longitude, altitude):
'''
Once the MAV sets a new GPS-Local correspondence, this message
announces the origin (0,0,0) position
latitude : Latitude (WGS84), expressed as * 1E7 (int32_t)
longitude : Longitude (WGS84), expressed as * 1E7 (int32_t)
altitude : Altitude(WGS84), expressed as * 1000 (int32_t)
'''
msg = MAVLink_gps_global_origin_message(latitude, longitude, altitude)
msg.pack(self)
return msg
def gps_global_origin_send(self, latitude, longitude, altitude):
'''
Once the MAV sets a new GPS-Local correspondence, this message
announces the origin (0,0,0) position
latitude : Latitude (WGS84), expressed as * 1E7 (int32_t)
longitude : Longitude (WGS84), expressed as * 1E7 (int32_t)
altitude : Altitude(WGS84), expressed as * 1000 (int32_t)
'''
return self.send(self.gps_global_origin_encode(latitude, longitude, altitude))
def set_local_position_setpoint_encode(self, target_system, target_component, coordinate_frame, x, y, z, yaw):
'''
Set the setpoint for a local position controller. This is the position
in local coordinates the MAV should fly to. This
message is sent by the path/MISSION planner to the
onboard position controller. As some MAVs have a
degree of freedom in yaw (e.g. all
helicopters/quadrotors), the desired yaw angle is part
of the message.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_LOCAL_NED or MAV_FRAME_LOCAL_ENU (uint8_t)
x : x position (float)
y : y position (float)
z : z position (float)
yaw : Desired yaw angle (float)
'''
msg = MAVLink_set_local_position_setpoint_message(target_system, target_component, coordinate_frame, x, y, z, yaw)
msg.pack(self)
return msg
def set_local_position_setpoint_send(self, target_system, target_component, coordinate_frame, x, y, z, yaw):
'''
Set the setpoint for a local position controller. This is the position
in local coordinates the MAV should fly to. This
message is sent by the path/MISSION planner to the
onboard position controller. As some MAVs have a
degree of freedom in yaw (e.g. all
helicopters/quadrotors), the desired yaw angle is part
of the message.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_LOCAL_NED or MAV_FRAME_LOCAL_ENU (uint8_t)
x : x position (float)
y : y position (float)
z : z position (float)
yaw : Desired yaw angle (float)
'''
return self.send(self.set_local_position_setpoint_encode(target_system, target_component, coordinate_frame, x, y, z, yaw))
def local_position_setpoint_encode(self, coordinate_frame, x, y, z, yaw):
'''
Transmit the current local setpoint of the controller to other MAVs
(collision avoidance) and to the GCS.
coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_LOCAL_NED or MAV_FRAME_LOCAL_ENU (uint8_t)
x : x position (float)
y : y position (float)
z : z position (float)
yaw : Desired yaw angle (float)
'''
msg = MAVLink_local_position_setpoint_message(coordinate_frame, x, y, z, yaw)
msg.pack(self)
return msg
def local_position_setpoint_send(self, coordinate_frame, x, y, z, yaw):
'''
Transmit the current local setpoint of the controller to other MAVs
(collision avoidance) and to the GCS.
coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_LOCAL_NED or MAV_FRAME_LOCAL_ENU (uint8_t)
x : x position (float)
y : y position (float)
z : z position (float)
yaw : Desired yaw angle (float)
'''
return self.send(self.local_position_setpoint_encode(coordinate_frame, x, y, z, yaw))
def global_position_setpoint_int_encode(self, coordinate_frame, latitude, longitude, altitude, yaw):
'''
Transmit the current local setpoint of the controller to other MAVs
(collision avoidance) and to the GCS.
coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_GLOBAL or MAV_FRAME_GLOBAL_RELATIVE_ALT (uint8_t)
latitude : WGS84 Latitude position in degrees * 1E7 (int32_t)
longitude : WGS84 Longitude position in degrees * 1E7 (int32_t)
altitude : WGS84 Altitude in meters * 1000 (positive for up) (int32_t)
yaw : Desired yaw angle in degrees * 100 (int16_t)
'''
msg = MAVLink_global_position_setpoint_int_message(coordinate_frame, latitude, longitude, altitude, yaw)
msg.pack(self)
return msg
def global_position_setpoint_int_send(self, coordinate_frame, latitude, longitude, altitude, yaw):
'''
Transmit the current local setpoint of the controller to other MAVs
(collision avoidance) and to the GCS.
coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_GLOBAL or MAV_FRAME_GLOBAL_RELATIVE_ALT (uint8_t)
latitude : WGS84 Latitude position in degrees * 1E7 (int32_t)
longitude : WGS84 Longitude position in degrees * 1E7 (int32_t)
altitude : WGS84 Altitude in meters * 1000 (positive for up) (int32_t)
yaw : Desired yaw angle in degrees * 100 (int16_t)
'''
return self.send(self.global_position_setpoint_int_encode(coordinate_frame, latitude, longitude, altitude, yaw))
def set_global_position_setpoint_int_encode(self, coordinate_frame, latitude, longitude, altitude, yaw):
'''
Set the current global position setpoint.
coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_GLOBAL or MAV_FRAME_GLOBAL_RELATIVE_ALT (uint8_t)
latitude : WGS84 Latitude position in degrees * 1E7 (int32_t)
longitude : WGS84 Longitude position in degrees * 1E7 (int32_t)
altitude : WGS84 Altitude in meters * 1000 (positive for up) (int32_t)
yaw : Desired yaw angle in degrees * 100 (int16_t)
'''
msg = MAVLink_set_global_position_setpoint_int_message(coordinate_frame, latitude, longitude, altitude, yaw)
msg.pack(self)
return msg
def set_global_position_setpoint_int_send(self, coordinate_frame, latitude, longitude, altitude, yaw):
'''
Set the current global position setpoint.
coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_GLOBAL or MAV_FRAME_GLOBAL_RELATIVE_ALT (uint8_t)
latitude : WGS84 Latitude position in degrees * 1E7 (int32_t)
longitude : WGS84 Longitude position in degrees * 1E7 (int32_t)
altitude : WGS84 Altitude in meters * 1000 (positive for up) (int32_t)
yaw : Desired yaw angle in degrees * 100 (int16_t)
'''
return self.send(self.set_global_position_setpoint_int_encode(coordinate_frame, latitude, longitude, altitude, yaw))
def safety_set_allowed_area_encode(self, target_system, target_component, frame, p1x, p1y, p1z, p2x, p2y, p2z):
'''
Set a safety zone (volume), which is defined by two corners of a cube.
This message can be used to tell the MAV which
setpoints/MISSIONs to accept and which to reject.
Safety areas are often enforced by national or
competition regulations.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
frame : Coordinate frame, as defined by MAV_FRAME enum in mavlink_types.h. Can be either global, GPS, right-handed with Z axis up or local, right handed, Z axis down. (uint8_t)
p1x : x position 1 / Latitude 1 (float)
p1y : y position 1 / Longitude 1 (float)
p1z : z position 1 / Altitude 1 (float)
p2x : x position 2 / Latitude 2 (float)
p2y : y position 2 / Longitude 2 (float)
p2z : z position 2 / Altitude 2 (float)
'''
msg = MAVLink_safety_set_allowed_area_message(target_system, target_component, frame, p1x, p1y, p1z, p2x, p2y, p2z)
msg.pack(self)
return msg
def safety_set_allowed_area_send(self, target_system, target_component, frame, p1x, p1y, p1z, p2x, p2y, p2z):
'''
Set a safety zone (volume), which is defined by two corners of a cube.
This message can be used to tell the MAV which
setpoints/MISSIONs to accept and which to reject.
Safety areas are often enforced by national or
competition regulations.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
frame : Coordinate frame, as defined by MAV_FRAME enum in mavlink_types.h. Can be either global, GPS, right-handed with Z axis up or local, right handed, Z axis down. (uint8_t)
p1x : x position 1 / Latitude 1 (float)
p1y : y position 1 / Longitude 1 (float)
p1z : z position 1 / Altitude 1 (float)
p2x : x position 2 / Latitude 2 (float)
p2y : y position 2 / Longitude 2 (float)
p2z : z position 2 / Altitude 2 (float)
'''
return self.send(self.safety_set_allowed_area_encode(target_system, target_component, frame, p1x, p1y, p1z, p2x, p2y, p2z))
def safety_allowed_area_encode(self, frame, p1x, p1y, p1z, p2x, p2y, p2z):
'''
Read out the safety zone the MAV currently assumes.
frame : Coordinate frame, as defined by MAV_FRAME enum in mavlink_types.h. Can be either global, GPS, right-handed with Z axis up or local, right handed, Z axis down. (uint8_t)
p1x : x position 1 / Latitude 1 (float)
p1y : y position 1 / Longitude 1 (float)
p1z : z position 1 / Altitude 1 (float)
p2x : x position 2 / Latitude 2 (float)
p2y : y position 2 / Longitude 2 (float)
p2z : z position 2 / Altitude 2 (float)
'''
msg = MAVLink_safety_allowed_area_message(frame, p1x, p1y, p1z, p2x, p2y, p2z)
msg.pack(self)
return msg
def safety_allowed_area_send(self, frame, p1x, p1y, p1z, p2x, p2y, p2z):
'''
Read out the safety zone the MAV currently assumes.
frame : Coordinate frame, as defined by MAV_FRAME enum in mavlink_types.h. Can be either global, GPS, right-handed with Z axis up or local, right handed, Z axis down. (uint8_t)
p1x : x position 1 / Latitude 1 (float)
p1y : y position 1 / Longitude 1 (float)
p1z : z position 1 / Altitude 1 (float)
p2x : x position 2 / Latitude 2 (float)
p2y : y position 2 / Longitude 2 (float)
p2z : z position 2 / Altitude 2 (float)
'''
return self.send(self.safety_allowed_area_encode(frame, p1x, p1y, p1z, p2x, p2y, p2z))
def set_roll_pitch_yaw_thrust_encode(self, target_system, target_component, roll, pitch, yaw, thrust):
'''
Set roll, pitch and yaw.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
roll : Desired roll angle in radians (float)
pitch : Desired pitch angle in radians (float)
yaw : Desired yaw angle in radians (float)
thrust : Collective thrust, normalized to 0 .. 1 (float)
'''
msg = MAVLink_set_roll_pitch_yaw_thrust_message(target_system, target_component, roll, pitch, yaw, thrust)
msg.pack(self)
return msg
def set_roll_pitch_yaw_thrust_send(self, target_system, target_component, roll, pitch, yaw, thrust):
'''
Set roll, pitch and yaw.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
roll : Desired roll angle in radians (float)
pitch : Desired pitch angle in radians (float)
yaw : Desired yaw angle in radians (float)
thrust : Collective thrust, normalized to 0 .. 1 (float)
'''
return self.send(self.set_roll_pitch_yaw_thrust_encode(target_system, target_component, roll, pitch, yaw, thrust))
def set_roll_pitch_yaw_speed_thrust_encode(self, target_system, target_component, roll_speed, pitch_speed, yaw_speed, thrust):
'''
Set roll, pitch and yaw.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
roll_speed : Desired roll angular speed in rad/s (float)
pitch_speed : Desired pitch angular speed in rad/s (float)
yaw_speed : Desired yaw angular speed in rad/s (float)
thrust : Collective thrust, normalized to 0 .. 1 (float)
'''
msg = MAVLink_set_roll_pitch_yaw_speed_thrust_message(target_system, target_component, roll_speed, pitch_speed, yaw_speed, thrust)
msg.pack(self)
return msg
def set_roll_pitch_yaw_speed_thrust_send(self, target_system, target_component, roll_speed, pitch_speed, yaw_speed, thrust):
'''
Set roll, pitch and yaw.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
roll_speed : Desired roll angular speed in rad/s (float)
pitch_speed : Desired pitch angular speed in rad/s (float)
yaw_speed : Desired yaw angular speed in rad/s (float)
thrust : Collective thrust, normalized to 0 .. 1 (float)
'''
return self.send(self.set_roll_pitch_yaw_speed_thrust_encode(target_system, target_component, roll_speed, pitch_speed, yaw_speed, thrust))
def roll_pitch_yaw_thrust_setpoint_encode(self, time_boot_ms, roll, pitch, yaw, thrust):
'''
Setpoint in roll, pitch, yaw currently active on the system.
time_boot_ms : Timestamp in milliseconds since system boot (uint32_t)
roll : Desired roll angle in radians (float)
pitch : Desired pitch angle in radians (float)
yaw : Desired yaw angle in radians (float)
thrust : Collective thrust, normalized to 0 .. 1 (float)
'''
msg = MAVLink_roll_pitch_yaw_thrust_setpoint_message(time_boot_ms, roll, pitch, yaw, thrust)
msg.pack(self)
return msg
def roll_pitch_yaw_thrust_setpoint_send(self, time_boot_ms, roll, pitch, yaw, thrust):
'''
Setpoint in roll, pitch, yaw currently active on the system.
time_boot_ms : Timestamp in milliseconds since system boot (uint32_t)
roll : Desired roll angle in radians (float)
pitch : Desired pitch angle in radians (float)
yaw : Desired yaw angle in radians (float)
thrust : Collective thrust, normalized to 0 .. 1 (float)
'''
return self.send(self.roll_pitch_yaw_thrust_setpoint_encode(time_boot_ms, roll, pitch, yaw, thrust))
def roll_pitch_yaw_speed_thrust_setpoint_encode(self, time_boot_ms, roll_speed, pitch_speed, yaw_speed, thrust):
'''
Setpoint in rollspeed, pitchspeed, yawspeed currently active on the
system.
time_boot_ms : Timestamp in milliseconds since system boot (uint32_t)
roll_speed : Desired roll angular speed in rad/s (float)
pitch_speed : Desired pitch angular speed in rad/s (float)
yaw_speed : Desired yaw angular speed in rad/s (float)
thrust : Collective thrust, normalized to 0 .. 1 (float)
'''
msg = MAVLink_roll_pitch_yaw_speed_thrust_setpoint_message(time_boot_ms, roll_speed, pitch_speed, yaw_speed, thrust)
msg.pack(self)
return msg
def roll_pitch_yaw_speed_thrust_setpoint_send(self, time_boot_ms, roll_speed, pitch_speed, yaw_speed, thrust):
'''
Setpoint in rollspeed, pitchspeed, yawspeed currently active on the
system.
time_boot_ms : Timestamp in milliseconds since system boot (uint32_t)
roll_speed : Desired roll angular speed in rad/s (float)
pitch_speed : Desired pitch angular speed in rad/s (float)
yaw_speed : Desired yaw angular speed in rad/s (float)
thrust : Collective thrust, normalized to 0 .. 1 (float)
'''
return self.send(self.roll_pitch_yaw_speed_thrust_setpoint_encode(time_boot_ms, roll_speed, pitch_speed, yaw_speed, thrust))
def set_quad_motors_setpoint_encode(self, target_system, motor_front_nw, motor_right_ne, motor_back_se, motor_left_sw):
'''
Setpoint in the four motor speeds
target_system : System ID of the system that should set these motor commands (uint8_t)
motor_front_nw : Front motor in + configuration, front left motor in x configuration (uint16_t)
motor_right_ne : Right motor in + configuration, front right motor in x configuration (uint16_t)
motor_back_se : Back motor in + configuration, back right motor in x configuration (uint16_t)
motor_left_sw : Left motor in + configuration, back left motor in x configuration (uint16_t)
'''
msg = MAVLink_set_quad_motors_setpoint_message(target_system, motor_front_nw, motor_right_ne, motor_back_se, motor_left_sw)
msg.pack(self)
return msg
def set_quad_motors_setpoint_send(self, target_system, motor_front_nw, motor_right_ne, motor_back_se, motor_left_sw):
'''
Setpoint in the four motor speeds
target_system : System ID of the system that should set these motor commands (uint8_t)
motor_front_nw : Front motor in + configuration, front left motor in x configuration (uint16_t)
motor_right_ne : Right motor in + configuration, front right motor in x configuration (uint16_t)
motor_back_se : Back motor in + configuration, back right motor in x configuration (uint16_t)
motor_left_sw : Left motor in + configuration, back left motor in x configuration (uint16_t)
'''
return self.send(self.set_quad_motors_setpoint_encode(target_system, motor_front_nw, motor_right_ne, motor_back_se, motor_left_sw))
def set_quad_swarm_roll_pitch_yaw_thrust_encode(self, target_systems, roll, pitch, yaw, thrust):
'''
target_systems : System IDs for 6 quadrotors: 0..5, the ID's are the MAVLink IDs (uint8_t)
roll : Desired roll angle in radians, scaled to int16 for 6 quadrotors: 0..5 (int16_t)
pitch : Desired pitch angle in radians, scaled to int16 for 6 quadrotors: 0..5 (int16_t)
yaw : Desired yaw angle in radians, scaled to int16 for 6 quadrotors: 0..5 (int16_t)
thrust : Collective thrust, scaled to uint16 for 6 quadrotors: 0..5 (uint16_t)
'''
msg = MAVLink_set_quad_swarm_roll_pitch_yaw_thrust_message(target_systems, roll, pitch, yaw, thrust)
msg.pack(self)
return msg
def set_quad_swarm_roll_pitch_yaw_thrust_send(self, target_systems, roll, pitch, yaw, thrust):
'''
target_systems : System IDs for 6 quadrotors: 0..5, the ID's are the MAVLink IDs (uint8_t)
roll : Desired roll angle in radians, scaled to int16 for 6 quadrotors: 0..5 (int16_t)
pitch : Desired pitch angle in radians, scaled to int16 for 6 quadrotors: 0..5 (int16_t)
yaw : Desired yaw angle in radians, scaled to int16 for 6 quadrotors: 0..5 (int16_t)
thrust : Collective thrust, scaled to uint16 for 6 quadrotors: 0..5 (uint16_t)
'''
return self.send(self.set_quad_swarm_roll_pitch_yaw_thrust_encode(target_systems, roll, pitch, yaw, thrust))
def nav_controller_output_encode(self, nav_roll, nav_pitch, nav_bearing, target_bearing, wp_dist, alt_error, aspd_error, xtrack_error):
'''
Outputs of the APM navigation controller. The primary use of this
message is to check the response and signs of the
controller before actual flight and to assist with
tuning controller parameters.
nav_roll : Current desired roll in degrees (float)
nav_pitch : Current desired pitch in degrees (float)
nav_bearing : Current desired heading in degrees (int16_t)
target_bearing : Bearing to current MISSION/target in degrees (int16_t)
wp_dist : Distance to active MISSION in meters (uint16_t)
alt_error : Current altitude error in meters (float)
aspd_error : Current airspeed error in meters/second (float)
xtrack_error : Current crosstrack error on x-y plane in meters (float)
'''
msg = MAVLink_nav_controller_output_message(nav_roll, nav_pitch, nav_bearing, target_bearing, wp_dist, alt_error, aspd_error, xtrack_error)
msg.pack(self)
return msg
def nav_controller_output_send(self, nav_roll, nav_pitch, nav_bearing, target_bearing, wp_dist, alt_error, aspd_error, xtrack_error):
'''
Outputs of the APM navigation controller. The primary use of this
message is to check the response and signs of the
controller before actual flight and to assist with
tuning controller parameters.
nav_roll : Current desired roll in degrees (float)
nav_pitch : Current desired pitch in degrees (float)
nav_bearing : Current desired heading in degrees (int16_t)
target_bearing : Bearing to current MISSION/target in degrees (int16_t)
wp_dist : Distance to active MISSION in meters (uint16_t)
alt_error : Current altitude error in meters (float)
aspd_error : Current airspeed error in meters/second (float)
xtrack_error : Current crosstrack error on x-y plane in meters (float)
'''
return self.send(self.nav_controller_output_encode(nav_roll, nav_pitch, nav_bearing, target_bearing, wp_dist, alt_error, aspd_error, xtrack_error))
def state_correction_encode(self, xErr, yErr, zErr, rollErr, pitchErr, yawErr, vxErr, vyErr, vzErr):
'''
Corrects the systems state by adding an error correction term to the
position and velocity, and by rotating the attitude by
a correction angle.
xErr : x position error (float)
yErr : y position error (float)
zErr : z position error (float)
rollErr : roll error (radians) (float)
pitchErr : pitch error (radians) (float)
yawErr : yaw error (radians) (float)
vxErr : x velocity (float)
vyErr : y velocity (float)
vzErr : z velocity (float)
'''
msg = MAVLink_state_correction_message(xErr, yErr, zErr, rollErr, pitchErr, yawErr, vxErr, vyErr, vzErr)
msg.pack(self)
return msg
def state_correction_send(self, xErr, yErr, zErr, rollErr, pitchErr, yawErr, vxErr, vyErr, vzErr):
'''
Corrects the systems state by adding an error correction term to the
position and velocity, and by rotating the attitude by
a correction angle.
xErr : x position error (float)
yErr : y position error (float)
zErr : z position error (float)
rollErr : roll error (radians) (float)
pitchErr : pitch error (radians) (float)
yawErr : yaw error (radians) (float)
vxErr : x velocity (float)
vyErr : y velocity (float)
vzErr : z velocity (float)
'''
return self.send(self.state_correction_encode(xErr, yErr, zErr, rollErr, pitchErr, yawErr, vxErr, vyErr, vzErr))
def request_data_stream_encode(self, target_system, target_component, req_stream_id, req_message_rate, start_stop):
'''
target_system : The target requested to send the message stream. (uint8_t)
target_component : The target requested to send the message stream. (uint8_t)
req_stream_id : The ID of the requested data stream (uint8_t)
req_message_rate : The requested interval between two messages of this type (uint16_t)
start_stop : 1 to start sending, 0 to stop sending. (uint8_t)
'''
msg = MAVLink_request_data_stream_message(target_system, target_component, req_stream_id, req_message_rate, start_stop)
msg.pack(self)
return msg
def request_data_stream_send(self, target_system, target_component, req_stream_id, req_message_rate, start_stop):
'''
target_system : The target requested to send the message stream. (uint8_t)
target_component : The target requested to send the message stream. (uint8_t)
req_stream_id : The ID of the requested data stream (uint8_t)
req_message_rate : The requested interval between two messages of this type (uint16_t)
start_stop : 1 to start sending, 0 to stop sending. (uint8_t)
'''
return self.send(self.request_data_stream_encode(target_system, target_component, req_stream_id, req_message_rate, start_stop))
def data_stream_encode(self, stream_id, message_rate, on_off):
'''
stream_id : The ID of the requested data stream (uint8_t)
message_rate : The requested interval between two messages of this type (uint16_t)
on_off : 1 stream is enabled, 0 stream is stopped. (uint8_t)
'''
msg = MAVLink_data_stream_message(stream_id, message_rate, on_off)
msg.pack(self)
return msg
def data_stream_send(self, stream_id, message_rate, on_off):
'''
stream_id : The ID of the requested data stream (uint8_t)
message_rate : The requested interval between two messages of this type (uint16_t)
on_off : 1 stream is enabled, 0 stream is stopped. (uint8_t)
'''
return self.send(self.data_stream_encode(stream_id, message_rate, on_off))
def manual_control_encode(self, target, roll, pitch, yaw, thrust, roll_manual, pitch_manual, yaw_manual, thrust_manual):
'''
target : The system to be controlled (uint8_t)
roll : roll (float)
pitch : pitch (float)
yaw : yaw (float)
thrust : thrust (float)
roll_manual : roll control enabled auto:0, manual:1 (uint8_t)
pitch_manual : pitch auto:0, manual:1 (uint8_t)
yaw_manual : yaw auto:0, manual:1 (uint8_t)
thrust_manual : thrust auto:0, manual:1 (uint8_t)
'''
msg = MAVLink_manual_control_message(target, roll, pitch, yaw, thrust, roll_manual, pitch_manual, yaw_manual, thrust_manual)
msg.pack(self)
return msg
def manual_control_send(self, target, roll, pitch, yaw, thrust, roll_manual, pitch_manual, yaw_manual, thrust_manual):
'''
target : The system to be controlled (uint8_t)
roll : roll (float)
pitch : pitch (float)
yaw : yaw (float)
thrust : thrust (float)
roll_manual : roll control enabled auto:0, manual:1 (uint8_t)
pitch_manual : pitch auto:0, manual:1 (uint8_t)
yaw_manual : yaw auto:0, manual:1 (uint8_t)
thrust_manual : thrust auto:0, manual:1 (uint8_t)
'''
return self.send(self.manual_control_encode(target, roll, pitch, yaw, thrust, roll_manual, pitch_manual, yaw_manual, thrust_manual))
def rc_channels_override_encode(self, target_system, target_component, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw):
'''
The RAW values of the RC channels sent to the MAV to override info
received from the RC radio. A value of -1 means no
change to that channel. A value of 0 means control of
that channel should be released back to the RC radio.
The standard PPM modulation is as follows: 1000
microseconds: 0%, 2000 microseconds: 100%. Individual
receivers/transmitters might violate this
specification.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
chan1_raw : RC channel 1 value, in microseconds (uint16_t)
chan2_raw : RC channel 2 value, in microseconds (uint16_t)
chan3_raw : RC channel 3 value, in microseconds (uint16_t)
chan4_raw : RC channel 4 value, in microseconds (uint16_t)
chan5_raw : RC channel 5 value, in microseconds (uint16_t)
chan6_raw : RC channel 6 value, in microseconds (uint16_t)
chan7_raw : RC channel 7 value, in microseconds (uint16_t)
chan8_raw : RC channel 8 value, in microseconds (uint16_t)
'''
msg = MAVLink_rc_channels_override_message(target_system, target_component, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw)
msg.pack(self)
return msg
def rc_channels_override_send(self, target_system, target_component, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw):
'''
The RAW values of the RC channels sent to the MAV to override info
received from the RC radio. A value of -1 means no
change to that channel. A value of 0 means control of
that channel should be released back to the RC radio.
The standard PPM modulation is as follows: 1000
microseconds: 0%, 2000 microseconds: 100%. Individual
receivers/transmitters might violate this
specification.
target_system : System ID (uint8_t)
target_component : Component ID (uint8_t)
chan1_raw : RC channel 1 value, in microseconds (uint16_t)
chan2_raw : RC channel 2 value, in microseconds (uint16_t)
chan3_raw : RC channel 3 value, in microseconds (uint16_t)
chan4_raw : RC channel 4 value, in microseconds (uint16_t)
chan5_raw : RC channel 5 value, in microseconds (uint16_t)
chan6_raw : RC channel 6 value, in microseconds (uint16_t)
chan7_raw : RC channel 7 value, in microseconds (uint16_t)
chan8_raw : RC channel 8 value, in microseconds (uint16_t)
'''
return self.send(self.rc_channels_override_encode(target_system, target_component, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw))
def vfr_hud_encode(self, airspeed, groundspeed, heading, throttle, alt, climb):
'''
Metrics typically displayed on a HUD for fixed wing aircraft
airspeed : Current airspeed in m/s (float)
groundspeed : Current ground speed in m/s (float)
heading : Current heading in degrees, in compass units (0..360, 0=north) (int16_t)
throttle : Current throttle setting in integer percent, 0 to 100 (uint16_t)
alt : Current altitude (MSL), in meters (float)
climb : Current climb rate in meters/second (float)
'''
msg = MAVLink_vfr_hud_message(airspeed, groundspeed, heading, throttle, alt, climb)
msg.pack(self)
return msg
def vfr_hud_send(self, airspeed, groundspeed, heading, throttle, alt, climb):
'''
Metrics typically displayed on a HUD for fixed wing aircraft
airspeed : Current airspeed in m/s (float)
groundspeed : Current ground speed in m/s (float)
heading : Current heading in degrees, in compass units (0..360, 0=north) (int16_t)
throttle : Current throttle setting in integer percent, 0 to 100 (uint16_t)
alt : Current altitude (MSL), in meters (float)
climb : Current climb rate in meters/second (float)
'''
return self.send(self.vfr_hud_encode(airspeed, groundspeed, heading, throttle, alt, climb))
def command_long_encode(self, target_system, target_component, command, confirmation, param1, param2, param3, param4, param5, param6, param7):
'''
Send a command with up to four parameters to the MAV
target_system : System which should execute the command (uint8_t)
target_component : Component which should execute the command, 0 for all components (uint8_t)
command : Command ID, as defined by MAV_CMD enum. (uint16_t)
confirmation : 0: First transmission of this command. 1-255: Confirmation transmissions (e.g. for kill command) (uint8_t)
param1 : Parameter 1, as defined by MAV_CMD enum. (float)
param2 : Parameter 2, as defined by MAV_CMD enum. (float)
param3 : Parameter 3, as defined by MAV_CMD enum. (float)
param4 : Parameter 4, as defined by MAV_CMD enum. (float)
param5 : Parameter 5, as defined by MAV_CMD enum. (float)
param6 : Parameter 6, as defined by MAV_CMD enum. (float)
param7 : Parameter 7, as defined by MAV_CMD enum. (float)
'''
msg = MAVLink_command_long_message(target_system, target_component, command, confirmation, param1, param2, param3, param4, param5, param6, param7)
msg.pack(self)
return msg
def command_long_send(self, target_system, target_component, command, confirmation, param1, param2, param3, param4, param5, param6, param7):
'''
Send a command with up to four parameters to the MAV
target_system : System which should execute the command (uint8_t)
target_component : Component which should execute the command, 0 for all components (uint8_t)
command : Command ID, as defined by MAV_CMD enum. (uint16_t)
confirmation : 0: First transmission of this command. 1-255: Confirmation transmissions (e.g. for kill command) (uint8_t)
param1 : Parameter 1, as defined by MAV_CMD enum. (float)
param2 : Parameter 2, as defined by MAV_CMD enum. (float)
param3 : Parameter 3, as defined by MAV_CMD enum. (float)
param4 : Parameter 4, as defined by MAV_CMD enum. (float)
param5 : Parameter 5, as defined by MAV_CMD enum. (float)
param6 : Parameter 6, as defined by MAV_CMD enum. (float)
param7 : Parameter 7, as defined by MAV_CMD enum. (float)
'''
return self.send(self.command_long_encode(target_system, target_component, command, confirmation, param1, param2, param3, param4, param5, param6, param7))
def command_ack_encode(self, command, result):
'''
Report status of a command. Includes feedback wether the command was
executed.
command : Command ID, as defined by MAV_CMD enum. (uint16_t)
result : See MAV_RESULT enum (uint8_t)
'''
msg = MAVLink_command_ack_message(command, result)
msg.pack(self)
return msg
def command_ack_send(self, command, result):
'''
Report status of a command. Includes feedback wether the command was
executed.
command : Command ID, as defined by MAV_CMD enum. (uint16_t)
result : See MAV_RESULT enum (uint8_t)
'''
return self.send(self.command_ack_encode(command, result))
def local_position_ned_system_global_offset_encode(self, time_boot_ms, x, y, z, roll, pitch, yaw):
'''
The offset in X, Y, Z and yaw between the LOCAL_POSITION_NED messages
of MAV X and the global coordinate frame in NED
coordinates. Coordinate frame is right-handed, Z-axis
down (aeronautical frame, NED / north-east-down
convention)
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
x : X Position (float)
y : Y Position (float)
z : Z Position (float)
roll : Roll (float)
pitch : Pitch (float)
yaw : Yaw (float)
'''
msg = MAVLink_local_position_ned_system_global_offset_message(time_boot_ms, x, y, z, roll, pitch, yaw)
msg.pack(self)
return msg
def local_position_ned_system_global_offset_send(self, time_boot_ms, x, y, z, roll, pitch, yaw):
'''
The offset in X, Y, Z and yaw between the LOCAL_POSITION_NED messages
of MAV X and the global coordinate frame in NED
coordinates. Coordinate frame is right-handed, Z-axis
down (aeronautical frame, NED / north-east-down
convention)
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
x : X Position (float)
y : Y Position (float)
z : Z Position (float)
roll : Roll (float)
pitch : Pitch (float)
yaw : Yaw (float)
'''
return self.send(self.local_position_ned_system_global_offset_encode(time_boot_ms, x, y, z, roll, pitch, yaw))
def hil_state_encode(self, time_usec, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, xacc, yacc, zacc):
'''
Sent from simulation to autopilot. This packet is useful for high
throughput applications such as hardware in the loop
simulations.
time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t)
roll : Roll angle (rad) (float)
pitch : Pitch angle (rad) (float)
yaw : Yaw angle (rad) (float)
rollspeed : Roll angular speed (rad/s) (float)
pitchspeed : Pitch angular speed (rad/s) (float)
yawspeed : Yaw angular speed (rad/s) (float)
lat : Latitude, expressed as * 1E7 (int32_t)
lon : Longitude, expressed as * 1E7 (int32_t)
alt : Altitude in meters, expressed as * 1000 (millimeters) (int32_t)
vx : Ground X Speed (Latitude), expressed as m/s * 100 (int16_t)
vy : Ground Y Speed (Longitude), expressed as m/s * 100 (int16_t)
vz : Ground Z Speed (Altitude), expressed as m/s * 100 (int16_t)
xacc : X acceleration (mg) (int16_t)
yacc : Y acceleration (mg) (int16_t)
zacc : Z acceleration (mg) (int16_t)
'''
msg = MAVLink_hil_state_message(time_usec, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, xacc, yacc, zacc)
msg.pack(self)
return msg
def hil_state_send(self, time_usec, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, xacc, yacc, zacc):
'''
Sent from simulation to autopilot. This packet is useful for high
throughput applications such as hardware in the loop
simulations.
time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t)
roll : Roll angle (rad) (float)
pitch : Pitch angle (rad) (float)
yaw : Yaw angle (rad) (float)
rollspeed : Roll angular speed (rad/s) (float)
pitchspeed : Pitch angular speed (rad/s) (float)
yawspeed : Yaw angular speed (rad/s) (float)
lat : Latitude, expressed as * 1E7 (int32_t)
lon : Longitude, expressed as * 1E7 (int32_t)
alt : Altitude in meters, expressed as * 1000 (millimeters) (int32_t)
vx : Ground X Speed (Latitude), expressed as m/s * 100 (int16_t)
vy : Ground Y Speed (Longitude), expressed as m/s * 100 (int16_t)
vz : Ground Z Speed (Altitude), expressed as m/s * 100 (int16_t)
xacc : X acceleration (mg) (int16_t)
yacc : Y acceleration (mg) (int16_t)
zacc : Z acceleration (mg) (int16_t)
'''
return self.send(self.hil_state_encode(time_usec, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, xacc, yacc, zacc))
def hil_controls_encode(self, time_usec, roll_ailerons, pitch_elevator, yaw_rudder, throttle, aux1, aux2, aux3, aux4, mode, nav_mode):
'''
Sent from autopilot to simulation. Hardware in the loop control
outputs
time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t)
roll_ailerons : Control output -1 .. 1 (float)
pitch_elevator : Control output -1 .. 1 (float)
yaw_rudder : Control output -1 .. 1 (float)
throttle : Throttle 0 .. 1 (float)
aux1 : Aux 1, -1 .. 1 (float)
aux2 : Aux 2, -1 .. 1 (float)
aux3 : Aux 3, -1 .. 1 (float)
aux4 : Aux 4, -1 .. 1 (float)
mode : System mode (MAV_MODE) (uint8_t)
nav_mode : Navigation mode (MAV_NAV_MODE) (uint8_t)
'''
msg = MAVLink_hil_controls_message(time_usec, roll_ailerons, pitch_elevator, yaw_rudder, throttle, aux1, aux2, aux3, aux4, mode, nav_mode)
msg.pack(self)
return msg
def hil_controls_send(self, time_usec, roll_ailerons, pitch_elevator, yaw_rudder, throttle, aux1, aux2, aux3, aux4, mode, nav_mode):
'''
Sent from autopilot to simulation. Hardware in the loop control
outputs
time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t)
roll_ailerons : Control output -1 .. 1 (float)
pitch_elevator : Control output -1 .. 1 (float)
yaw_rudder : Control output -1 .. 1 (float)
throttle : Throttle 0 .. 1 (float)
aux1 : Aux 1, -1 .. 1 (float)
aux2 : Aux 2, -1 .. 1 (float)
aux3 : Aux 3, -1 .. 1 (float)
aux4 : Aux 4, -1 .. 1 (float)
mode : System mode (MAV_MODE) (uint8_t)
nav_mode : Navigation mode (MAV_NAV_MODE) (uint8_t)
'''
return self.send(self.hil_controls_encode(time_usec, roll_ailerons, pitch_elevator, yaw_rudder, throttle, aux1, aux2, aux3, aux4, mode, nav_mode))
def hil_rc_inputs_raw_encode(self, time_usec, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, rssi):
'''
Sent from simulation to autopilot. The RAW values of the RC channels
received. The standard PPM modulation is as follows:
1000 microseconds: 0%, 2000 microseconds: 100%.
Individual receivers/transmitters might violate this
specification.
time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t)
chan1_raw : RC channel 1 value, in microseconds (uint16_t)
chan2_raw : RC channel 2 value, in microseconds (uint16_t)
chan3_raw : RC channel 3 value, in microseconds (uint16_t)
chan4_raw : RC channel 4 value, in microseconds (uint16_t)
chan5_raw : RC channel 5 value, in microseconds (uint16_t)
chan6_raw : RC channel 6 value, in microseconds (uint16_t)
chan7_raw : RC channel 7 value, in microseconds (uint16_t)
chan8_raw : RC channel 8 value, in microseconds (uint16_t)
chan9_raw : RC channel 9 value, in microseconds (uint16_t)
chan10_raw : RC channel 10 value, in microseconds (uint16_t)
chan11_raw : RC channel 11 value, in microseconds (uint16_t)
chan12_raw : RC channel 12 value, in microseconds (uint16_t)
rssi : Receive signal strength indicator, 0: 0%, 255: 100% (uint8_t)
'''
msg = MAVLink_hil_rc_inputs_raw_message(time_usec, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, rssi)
msg.pack(self)
return msg
def hil_rc_inputs_raw_send(self, time_usec, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, rssi):
'''
Sent from simulation to autopilot. The RAW values of the RC channels
received. The standard PPM modulation is as follows:
1000 microseconds: 0%, 2000 microseconds: 100%.
Individual receivers/transmitters might violate this
specification.
time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t)
chan1_raw : RC channel 1 value, in microseconds (uint16_t)
chan2_raw : RC channel 2 value, in microseconds (uint16_t)
chan3_raw : RC channel 3 value, in microseconds (uint16_t)
chan4_raw : RC channel 4 value, in microseconds (uint16_t)
chan5_raw : RC channel 5 value, in microseconds (uint16_t)
chan6_raw : RC channel 6 value, in microseconds (uint16_t)
chan7_raw : RC channel 7 value, in microseconds (uint16_t)
chan8_raw : RC channel 8 value, in microseconds (uint16_t)
chan9_raw : RC channel 9 value, in microseconds (uint16_t)
chan10_raw : RC channel 10 value, in microseconds (uint16_t)
chan11_raw : RC channel 11 value, in microseconds (uint16_t)
chan12_raw : RC channel 12 value, in microseconds (uint16_t)
rssi : Receive signal strength indicator, 0: 0%, 255: 100% (uint8_t)
'''
return self.send(self.hil_rc_inputs_raw_encode(time_usec, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, rssi))
def optical_flow_encode(self, time_usec, sensor_id, flow_x, flow_y, flow_comp_m_x, flow_comp_m_y, quality, ground_distance):
'''
Optical flow from a flow sensor (e.g. optical mouse sensor)
time_usec : Timestamp (UNIX) (uint64_t)
sensor_id : Sensor ID (uint8_t)
flow_x : Flow in pixels in x-sensor direction (int16_t)
flow_y : Flow in pixels in y-sensor direction (int16_t)
flow_comp_m_x : Flow in meters in x-sensor direction, angular-speed compensated (float)
flow_comp_m_y : Flow in meters in y-sensor direction, angular-speed compensated (float)
quality : Optical flow quality / confidence. 0: bad, 255: maximum quality (uint8_t)
ground_distance : Ground distance in meters. Positive value: distance known. Negative value: Unknown distance (float)
'''
msg = MAVLink_optical_flow_message(time_usec, sensor_id, flow_x, flow_y, flow_comp_m_x, flow_comp_m_y, quality, ground_distance)
msg.pack(self)
return msg
def optical_flow_send(self, time_usec, sensor_id, flow_x, flow_y, flow_comp_m_x, flow_comp_m_y, quality, ground_distance):
'''
Optical flow from a flow sensor (e.g. optical mouse sensor)
time_usec : Timestamp (UNIX) (uint64_t)
sensor_id : Sensor ID (uint8_t)
flow_x : Flow in pixels in x-sensor direction (int16_t)
flow_y : Flow in pixels in y-sensor direction (int16_t)
flow_comp_m_x : Flow in meters in x-sensor direction, angular-speed compensated (float)
flow_comp_m_y : Flow in meters in y-sensor direction, angular-speed compensated (float)
quality : Optical flow quality / confidence. 0: bad, 255: maximum quality (uint8_t)
ground_distance : Ground distance in meters. Positive value: distance known. Negative value: Unknown distance (float)
'''
return self.send(self.optical_flow_encode(time_usec, sensor_id, flow_x, flow_y, flow_comp_m_x, flow_comp_m_y, quality, ground_distance))
def global_vision_position_estimate_encode(self, usec, x, y, z, roll, pitch, yaw):
'''
usec : Timestamp (milliseconds) (uint64_t)
x : Global X position (float)
y : Global Y position (float)
z : Global Z position (float)
roll : Roll angle in rad (float)
pitch : Pitch angle in rad (float)
yaw : Yaw angle in rad (float)
'''
msg = MAVLink_global_vision_position_estimate_message(usec, x, y, z, roll, pitch, yaw)
msg.pack(self)
return msg
def global_vision_position_estimate_send(self, usec, x, y, z, roll, pitch, yaw):
'''
usec : Timestamp (milliseconds) (uint64_t)
x : Global X position (float)
y : Global Y position (float)
z : Global Z position (float)
roll : Roll angle in rad (float)
pitch : Pitch angle in rad (float)
yaw : Yaw angle in rad (float)
'''
return self.send(self.global_vision_position_estimate_encode(usec, x, y, z, roll, pitch, yaw))
def vision_position_estimate_encode(self, usec, x, y, z, roll, pitch, yaw):
'''
usec : Timestamp (milliseconds) (uint64_t)
x : Global X position (float)
y : Global Y position (float)
z : Global Z position (float)
roll : Roll angle in rad (float)
pitch : Pitch angle in rad (float)
yaw : Yaw angle in rad (float)
'''
msg = MAVLink_vision_position_estimate_message(usec, x, y, z, roll, pitch, yaw)
msg.pack(self)
return msg
def vision_position_estimate_send(self, usec, x, y, z, roll, pitch, yaw):
'''
usec : Timestamp (milliseconds) (uint64_t)
x : Global X position (float)
y : Global Y position (float)
z : Global Z position (float)
roll : Roll angle in rad (float)
pitch : Pitch angle in rad (float)
yaw : Yaw angle in rad (float)
'''
return self.send(self.vision_position_estimate_encode(usec, x, y, z, roll, pitch, yaw))
def vision_speed_estimate_encode(self, usec, x, y, z):
'''
usec : Timestamp (milliseconds) (uint64_t)
x : Global X speed (float)
y : Global Y speed (float)
z : Global Z speed (float)
'''
msg = MAVLink_vision_speed_estimate_message(usec, x, y, z)
msg.pack(self)
return msg
def vision_speed_estimate_send(self, usec, x, y, z):
'''
usec : Timestamp (milliseconds) (uint64_t)
x : Global X speed (float)
y : Global Y speed (float)
z : Global Z speed (float)
'''
return self.send(self.vision_speed_estimate_encode(usec, x, y, z))
def vicon_position_estimate_encode(self, usec, x, y, z, roll, pitch, yaw):
'''
usec : Timestamp (milliseconds) (uint64_t)
x : Global X position (float)
y : Global Y position (float)
z : Global Z position (float)
roll : Roll angle in rad (float)
pitch : Pitch angle in rad (float)
yaw : Yaw angle in rad (float)
'''
msg = MAVLink_vicon_position_estimate_message(usec, x, y, z, roll, pitch, yaw)
msg.pack(self)
return msg
def vicon_position_estimate_send(self, usec, x, y, z, roll, pitch, yaw):
'''
usec : Timestamp (milliseconds) (uint64_t)
x : Global X position (float)
y : Global Y position (float)
z : Global Z position (float)
roll : Roll angle in rad (float)
pitch : Pitch angle in rad (float)
yaw : Yaw angle in rad (float)
'''
return self.send(self.vicon_position_estimate_encode(usec, x, y, z, roll, pitch, yaw))
def memory_vect_encode(self, address, ver, type, value):
'''
Send raw controller memory. The use of this message is discouraged for
normal packets, but a quite efficient way for testing
new messages and getting experimental debug output.
address : Starting address of the debug variables (uint16_t)
ver : Version code of the type variable. 0=unknown, type ignored and assumed int16_t. 1=as below (uint8_t)
type : Type code of the memory variables. for ver = 1: 0=16 x int16_t, 1=16 x uint16_t, 2=16 x Q15, 3=16 x 1Q14 (uint8_t)
value : Memory contents at specified address (int8_t)
'''
msg = MAVLink_memory_vect_message(address, ver, type, value)
msg.pack(self)
return msg
def memory_vect_send(self, address, ver, type, value):
'''
Send raw controller memory. The use of this message is discouraged for
normal packets, but a quite efficient way for testing
new messages and getting experimental debug output.
address : Starting address of the debug variables (uint16_t)
ver : Version code of the type variable. 0=unknown, type ignored and assumed int16_t. 1=as below (uint8_t)
type : Type code of the memory variables. for ver = 1: 0=16 x int16_t, 1=16 x uint16_t, 2=16 x Q15, 3=16 x 1Q14 (uint8_t)
value : Memory contents at specified address (int8_t)
'''
return self.send(self.memory_vect_encode(address, ver, type, value))
def debug_vect_encode(self, name, time_usec, x, y, z):
'''
name : Name (char)
time_usec : Timestamp (uint64_t)
x : x (float)
y : y (float)
z : z (float)
'''
msg = MAVLink_debug_vect_message(name, time_usec, x, y, z)
msg.pack(self)
return msg
def debug_vect_send(self, name, time_usec, x, y, z):
'''
name : Name (char)
time_usec : Timestamp (uint64_t)
x : x (float)
y : y (float)
z : z (float)
'''
return self.send(self.debug_vect_encode(name, time_usec, x, y, z))
def named_value_float_encode(self, time_boot_ms, name, value):
'''
Send a key-value pair as float. The use of this message is discouraged
for normal packets, but a quite efficient way for
testing new messages and getting experimental debug
output.
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
name : Name of the debug variable (char)
value : Floating point value (float)
'''
msg = MAVLink_named_value_float_message(time_boot_ms, name, value)
msg.pack(self)
return msg
def named_value_float_send(self, time_boot_ms, name, value):
'''
Send a key-value pair as float. The use of this message is discouraged
for normal packets, but a quite efficient way for
testing new messages and getting experimental debug
output.
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
name : Name of the debug variable (char)
value : Floating point value (float)
'''
return self.send(self.named_value_float_encode(time_boot_ms, name, value))
def named_value_int_encode(self, time_boot_ms, name, value):
'''
Send a key-value pair as integer. The use of this message is
discouraged for normal packets, but a quite efficient
way for testing new messages and getting experimental
debug output.
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
name : Name of the debug variable (char)
value : Signed integer value (int32_t)
'''
msg = MAVLink_named_value_int_message(time_boot_ms, name, value)
msg.pack(self)
return msg
def named_value_int_send(self, time_boot_ms, name, value):
'''
Send a key-value pair as integer. The use of this message is
discouraged for normal packets, but a quite efficient
way for testing new messages and getting experimental
debug output.
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
name : Name of the debug variable (char)
value : Signed integer value (int32_t)
'''
return self.send(self.named_value_int_encode(time_boot_ms, name, value))
def statustext_encode(self, severity, text):
'''
Status text message. These messages are printed in yellow in the COMM
console of QGroundControl. WARNING: They consume quite
some bandwidth, so use only for important status and
error messages. If implemented wisely, these messages
are buffered on the MCU and sent only at a limited
rate (e.g. 10 Hz).
severity : Severity of status. Relies on the definitions within RFC-5424. See enum MAV_SEVERITY. (uint8_t)
text : Status text message, without null termination character (char)
'''
msg = MAVLink_statustext_message(severity, text)
msg.pack(self)
return msg
def statustext_send(self, severity, text):
'''
Status text message. These messages are printed in yellow in the COMM
console of QGroundControl. WARNING: They consume quite
some bandwidth, so use only for important status and
error messages. If implemented wisely, these messages
are buffered on the MCU and sent only at a limited
rate (e.g. 10 Hz).
severity : Severity of status. Relies on the definitions within RFC-5424. See enum MAV_SEVERITY. (uint8_t)
text : Status text message, without null termination character (char)
'''
return self.send(self.statustext_encode(severity, text))
def debug_encode(self, time_boot_ms, ind, value):
'''
Send a debug value. The index is used to discriminate between values.
These values show up in the plot of QGroundControl as
DEBUG N.
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
ind : index of debug variable (uint8_t)
value : DEBUG value (float)
'''
msg = MAVLink_debug_message(time_boot_ms, ind, value)
msg.pack(self)
return msg
def debug_send(self, time_boot_ms, ind, value):
'''
Send a debug value. The index is used to discriminate between values.
These values show up in the plot of QGroundControl as
DEBUG N.
time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t)
ind : index of debug variable (uint8_t)
value : DEBUG value (float)
'''
return self.send(self.debug_encode(time_boot_ms, ind, value))