ardupilot/libraries/AP_Servo_Telem/AP_Servo_Telem.cpp

167 lines
6.4 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Servo_Telem.h"
#if AP_SERVO_TELEM_ENABLED
#include <AP_HAL/AP_HAL.h>
#include <AP_Logger/AP_Logger.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
AP_Servo_Telem *AP_Servo_Telem::_singleton;
AP_Servo_Telem::AP_Servo_Telem()
{
if (_singleton) {
AP_HAL::panic("Too many AP_Servo_Telem instances");
}
_singleton = this;
}
// return true if the requested types of data are available
bool AP_Servo_Telem::TelemetryData::present(const uint16_t type_mask) const volatile
{
return (present_types & type_mask) != 0;
}
// record an update to the telemetry data together with timestamp
// callback to update the data in the frontend, should be called by the driver when new data is available
void AP_Servo_Telem::update_telem_data(const uint8_t servo_index, const TelemetryData& new_data)
{
// telemetry data are not protected by a semaphore even though updated from different threads
// each element is a primitive type and the timestamp is only updated at the end, thus a caller
// can only get slightly more up-to-date information that perhaps they were expecting or might
// read data that has just gone stale - both of these are safe and avoid the overhead of locking
if (servo_index >= ARRAY_SIZE(_telem_data) || (new_data.present_types == 0)) {
return;
}
active_mask |= 1U << servo_index;
volatile TelemetryData &telemdata = _telem_data[servo_index];
if (new_data.present(TelemetryData::Types::COMMANDED_POSITION)) {
telemdata.command_position = new_data.command_position;
}
if (new_data.present(TelemetryData::Types::MEASURED_POSITION)) {
telemdata.measured_position = new_data.measured_position;
}
if (new_data.present(TelemetryData::Types::FORCE)) {
telemdata.force = new_data.force;
}
if (new_data.present(TelemetryData::Types::SPEED)) {
telemdata.speed = new_data.speed;
}
if (new_data.present(TelemetryData::Types::VOLTAGE)) {
telemdata.voltage = new_data.voltage;
}
if (new_data.present(TelemetryData::Types::CURRENT)) {
telemdata.current = new_data.current;
}
if (new_data.present(TelemetryData::Types::DUTY_CYCLE)) {
telemdata.duty_cycle = new_data.duty_cycle;
}
if (new_data.present(TelemetryData::Types::MOTOR_TEMP)) {
telemdata.motor_temperature_cdeg = new_data.motor_temperature_cdeg;
}
if (new_data.present(TelemetryData::Types::PCB_TEMP)) {
telemdata.pcb_temperature_cdeg = new_data.pcb_temperature_cdeg;
}
if (new_data.present(TelemetryData::Types::PCB_TEMP)) {
telemdata.status_flags = new_data.status_flags;
}
telemdata.present_types |= new_data.present_types;
telemdata.last_update_ms = AP_HAL::millis();
}
void AP_Servo_Telem::update()
{
#if HAL_LOGGING_ENABLED
write_log();
#endif
}
#if HAL_LOGGING_ENABLED
void AP_Servo_Telem::write_log()
{
AP_Logger *logger = AP_Logger::get_singleton();
// Check logging is available and enabled
if ((logger == nullptr) || !logger->logging_enabled() || active_mask == 0) {
return;
}
const uint64_t now_us = AP_HAL::micros64();
for (uint8_t i = 0; i < ARRAY_SIZE(_telem_data); i++) {
const volatile TelemetryData &telemdata = _telem_data[i];
if (telemdata.last_update_ms == _last_telem_log_ms[i]) {
// No new data since last log call, skip
continue;
}
// Update last log timestamp
_last_telem_log_ms[i] = telemdata.last_update_ms;
// Log, use nan for float values which are not available
const struct log_CSRV pkt {
LOG_PACKET_HEADER_INIT(LOG_CSRV_MSG),
time_us : now_us,
id : i,
position : telemdata.present(TelemetryData::Types::MEASURED_POSITION) ? telemdata.measured_position : AP::logger().quiet_nanf(),
force : telemdata.present(TelemetryData::Types::FORCE) ? telemdata.force : AP::logger().quiet_nanf(),
speed : telemdata.present(TelemetryData::Types::SPEED) ? telemdata.speed : AP::logger().quiet_nanf(),
power_pct : telemdata.duty_cycle,
pos_cmd : telemdata.present(TelemetryData::Types::COMMANDED_POSITION) ? telemdata.command_position : AP::logger().quiet_nanf(),
voltage : telemdata.present(TelemetryData::Types::VOLTAGE) ? telemdata.voltage : AP::logger().quiet_nanf(),
current : telemdata.present(TelemetryData::Types::CURRENT) ? telemdata.current : AP::logger().quiet_nanf(),
mot_temp : telemdata.present(TelemetryData::Types::MOTOR_TEMP) ? telemdata.motor_temperature_cdeg * 0.01 : AP::logger().quiet_nanf(),
pcb_temp : telemdata.present(TelemetryData::Types::PCB_TEMP) ? telemdata.pcb_temperature_cdeg * 0.01 : AP::logger().quiet_nanf(),
error : telemdata.status_flags,
};
AP::logger().WriteBlock(&pkt, sizeof(pkt));
}
}
#endif // HAL_LOGGING_ENABLED
// Fill in telem structure if telem is available, return false if not
bool AP_Servo_Telem::get_telem(const uint8_t servo_index, TelemetryData& telem) const volatile
{
// Check for valid index
if (servo_index >= ARRAY_SIZE(_telem_data)) {
return false;
}
// Check if data has ever been received for the servo index provided
if ((active_mask & (1U << servo_index)) == 0) {
return false;
}
telem = *const_cast<TelemetryData*>(&_telem_data[servo_index]);
return true;
}
// Get the AP_Servo_Telem singleton
AP_Servo_Telem *AP_Servo_Telem::get_singleton()
{
return AP_Servo_Telem::_singleton;
}
#endif // AP_SERVO_TELEM_ENABLED