ardupilot/libraries/AP_DroneCAN/AP_DroneCAN.cpp

2014 lines
70 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Author: Eugene Shamaev, Siddharth Bharat Purohit
*/
#include <AP_Common/AP_Common.h>
#include <AP_HAL/AP_HAL.h>
#if HAL_ENABLE_DRONECAN_DRIVERS
#include "AP_DroneCAN.h"
#include <GCS_MAVLink/GCS.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_CANManager/AP_CANManager.h>
#include <AP_Arming/AP_Arming.h>
#include <AP_GPS/AP_GPS_DroneCAN.h>
#include <AP_Compass/AP_Compass_DroneCAN.h>
#include <AP_Baro/AP_Baro_DroneCAN.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include <AP_BattMonitor/AP_BattMonitor_DroneCAN.h>
#include <AP_Airspeed/AP_Airspeed_DroneCAN.h>
#include <AP_OpticalFlow/AP_OpticalFlow_HereFlow.h>
#include <AP_RangeFinder/AP_RangeFinder_DroneCAN.h>
#include <AP_RCProtocol/AP_RCProtocol_DroneCAN.h>
#include <AP_EFI/AP_EFI_DroneCAN.h>
#include <AP_GPS/AP_GPS_DroneCAN.h>
#include <AP_GPS/AP_GPS.h>
#include <AP_BattMonitor/AP_BattMonitor_DroneCAN.h>
#include <AP_Compass/AP_Compass_DroneCAN.h>
#include <AP_Airspeed/AP_Airspeed_DroneCAN.h>
#include <AP_Proximity/AP_Proximity_DroneCAN.h>
#include <SRV_Channel/SRV_Channel.h>
#include <AP_ADSB/AP_ADSB.h>
#include "AP_DroneCAN_DNA_Server.h"
#include <AP_Logger/AP_Logger.h>
#include <AP_Notify/AP_Notify.h>
#include <AP_OpenDroneID/AP_OpenDroneID.h>
#include <AP_Mount/AP_Mount_Xacti.h>
#include <string.h>
#include <AP_Servo_Telem/AP_Servo_Telem.h>
#if AP_DRONECAN_SERIAL_ENABLED
#include "AP_DroneCAN_serial.h"
#endif
#if AP_RELAY_DRONECAN_ENABLED
#include <AP_Relay/AP_Relay.h>
#endif
#include <AP_TemperatureSensor/AP_TemperatureSensor_DroneCAN.h>
#include <AP_RPM/RPM_DroneCAN.h>
extern const AP_HAL::HAL& hal;
// setup default pool size
#ifndef DRONECAN_NODE_POOL_SIZE
#if HAL_CANFD_SUPPORTED
#define DRONECAN_NODE_POOL_SIZE 16384
#else
#define DRONECAN_NODE_POOL_SIZE 8192
#endif
#endif
#if HAL_CANFD_SUPPORTED
#define DRONECAN_STACK_SIZE 8192
#else
#define DRONECAN_STACK_SIZE 4096
#endif
#ifndef AP_DRONECAN_DEFAULT_NODE
#define AP_DRONECAN_DEFAULT_NODE 10
#endif
#define AP_DRONECAN_GETSET_TIMEOUT_MS 100 // timeout waiting for response from node after 0.1 sec
#define debug_dronecan(level_debug, fmt, args...) do { AP::can().log_text(level_debug, "DroneCAN", fmt, ##args); } while (0)
// Translation of all messages from DroneCAN structures into AP structures is done
// in AP_DroneCAN and not in corresponding drivers.
// The overhead of including definitions of DSDL is very high and it is best to
// concentrate in one place.
// table of user settable CAN bus parameters
const AP_Param::GroupInfo AP_DroneCAN::var_info[] = {
// @Param: NODE
// @DisplayName: Own node ID
// @Description: DroneCAN node ID used by the driver itself on this network
// @Range: 1 125
// @User: Advanced
AP_GROUPINFO("NODE", 1, AP_DroneCAN, _dronecan_node, AP_DRONECAN_DEFAULT_NODE),
// @Param: SRV_BM
// @DisplayName: Output channels to be transmitted as servo over DroneCAN
// @Description: Bitmask with one set for channel to be transmitted as a servo command over DroneCAN
// @Bitmask: 0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15, 15: Servo 16, 16: Servo 17, 17: Servo 18, 18: Servo 19, 19: Servo 20, 20: Servo 21, 21: Servo 22, 22: Servo 23, 23: Servo 24, 24: Servo 25, 25: Servo 26, 26: Servo 27, 27: Servo 28, 28: Servo 29, 29: Servo 30, 30: Servo 31, 31: Servo 32
// @User: Advanced
AP_GROUPINFO("SRV_BM", 2, AP_DroneCAN, _servo_bm, 0),
// @Param: ESC_BM
// @DisplayName: Output channels to be transmitted as ESC over DroneCAN
// @Description: Bitmask with one set for channel to be transmitted as a ESC command over DroneCAN
// @Bitmask: 0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16, 16: ESC 17, 17: ESC 18, 18: ESC 19, 19: ESC 20, 20: ESC 21, 21: ESC 22, 22: ESC 23, 23: ESC 24, 24: ESC 25, 25: ESC 26, 26: ESC 27, 27: ESC 28, 28: ESC 29, 29: ESC 30, 30: ESC 31, 31: ESC 32
// @User: Advanced
AP_GROUPINFO("ESC_BM", 3, AP_DroneCAN, _esc_bm, 0),
// @Param: SRV_RT
// @DisplayName: Servo output rate
// @Description: Maximum transmit rate for servo outputs
// @Range: 1 200
// @Units: Hz
// @User: Advanced
AP_GROUPINFO("SRV_RT", 4, AP_DroneCAN, _servo_rate_hz, 50),
// @Param: OPTION
// @DisplayName: DroneCAN options
// @Description: Option flags
// @Bitmask: 0:ClearDNADatabase,1:IgnoreDNANodeConflicts,2:EnableCanfd,3:IgnoreDNANodeUnhealthy,4:SendServoAsPWM,5:SendGNSS,6:UseHimarkServo,7:HobbyWingESC,8:EnableStats,9:EnableFlexDebug
// @User: Advanced
AP_GROUPINFO("OPTION", 5, AP_DroneCAN, _options, 0),
// @Param: NTF_RT
// @DisplayName: Notify State rate
// @Description: Maximum transmit rate for Notify State Message
// @Range: 1 200
// @Units: Hz
// @User: Advanced
AP_GROUPINFO("NTF_RT", 6, AP_DroneCAN, _notify_state_hz, 20),
// @Param: ESC_OF
// @DisplayName: ESC Output channels offset
// @Description: Offset for ESC numbering in DroneCAN ESC RawCommand messages. This allows for more efficient packing of ESC command messages. If your ESCs are on servo functions 5 to 8 and you set this parameter to 4 then the ESC RawCommand will be sent with the first 4 slots filled. This can be used for more efficient usage of CAN bandwidth
// @Range: 0 18
// @User: Advanced
AP_GROUPINFO("ESC_OF", 7, AP_DroneCAN, _esc_offset, 0),
// @Param: POOL
// @DisplayName: CAN pool size
// @Description: Amount of memory in bytes to allocate for the DroneCAN memory pool. More memory is needed for higher CAN bus loads
// @Range: 1024 16384
// @User: Advanced
AP_GROUPINFO("POOL", 8, AP_DroneCAN, _pool_size, DRONECAN_NODE_POOL_SIZE),
// @Param: ESC_RV
// @DisplayName: Bitmask for output channels for reversible ESCs over DroneCAN.
// @Description: Bitmask with one set for each output channel that uses a reversible ESC over DroneCAN. Reversible ESCs use both positive and negative values in RawCommands, with positive commanding the forward direction and negative commanding the reverse direction.
// @Bitmask: 0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16, 16: ESC 17, 17: ESC 18, 18: ESC 19, 19: ESC 20, 20: ESC 21, 21: ESC 22, 22: ESC 23, 23: ESC 24, 24: ESC 25, 25: ESC 26, 26: ESC 27, 27: ESC 28, 28: ESC 29, 29: ESC 30, 30: ESC 31, 31: ESC 32
// @User: Advanced
AP_GROUPINFO("ESC_RV", 9, AP_DroneCAN, _esc_rv, 0),
#if AP_RELAY_DRONECAN_ENABLED
// @Param: RLY_RT
// @DisplayName: DroneCAN relay output rate
// @Description: Maximum transmit rate for relay outputs, note that this rate is per message each message does 1 relay, so if with more relays will take longer to update at the same rate, a extra message will be sent when a relay changes state
// @Range: 0 200
// @Units: Hz
// @User: Advanced
AP_GROUPINFO("RLY_RT", 23, AP_DroneCAN, _relay.rate_hz, 0),
#endif
#if AP_DRONECAN_SERIAL_ENABLED
/*
due to the parameter tree depth limitation we can't use a sub-table for the serial parameters
*/
// @Param: SER_EN
// @DisplayName: DroneCAN Serial enable
// @Description: Enable DroneCAN virtual serial ports
// @Values: 0:Disabled, 1:Enabled
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO_FLAGS("SER_EN", 10, AP_DroneCAN, serial.enable, 0, AP_PARAM_FLAG_ENABLE),
// @Param: S1_NOD
// @DisplayName: Serial CAN remote node number
// @Description: CAN remote node number for serial port
// @Range: 0 127
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("S1_NOD", 11, AP_DroneCAN, serial.ports[0].node, 0),
// @Param: S1_IDX
// @DisplayName: DroneCAN Serial1 index
// @Description: Serial port number on remote CAN node
// @Range: 0 100
// @Values: -1:Disabled,0:Serial0,1:Serial1,2:Serial2,3:Serial3,4:Serial4,5:Serial5,6:Serial6
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("S1_IDX", 12, AP_DroneCAN, serial.ports[0].idx, -1),
// @Param: S1_BD
// @DisplayName: DroneCAN Serial default baud rate
// @Description: Serial baud rate on remote CAN node
// @CopyFieldsFrom: SERIAL1_BAUD
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("S1_BD", 13, AP_DroneCAN, serial.ports[0].state.baud, 57600),
// @Param: S1_PRO
// @DisplayName: Serial protocol of DroneCAN serial port
// @Description: Serial protocol of DroneCAN serial port
// @CopyFieldsFrom: SERIAL1_PROTOCOL
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("S1_PRO", 14, AP_DroneCAN, serial.ports[0].state.protocol, -1),
#if AP_DRONECAN_SERIAL_NUM_PORTS > 1
// @Param: S2_NOD
// @DisplayName: Serial CAN remote node number
// @Description: CAN remote node number for serial port
// @CopyFieldsFrom: CAN_D1_UC_S1_NOD
AP_GROUPINFO("S2_NOD", 15, AP_DroneCAN, serial.ports[1].node, 0),
// @Param: S2_IDX
// @DisplayName: Serial port number on remote CAN node
// @Description: Serial port number on remote CAN node
// @CopyFieldsFrom: CAN_D1_UC_S1_IDX
AP_GROUPINFO("S2_IDX", 16, AP_DroneCAN, serial.ports[1].idx, -1),
// @Param: S2_BD
// @DisplayName: DroneCAN Serial default baud rate
// @Description: Serial baud rate on remote CAN node
// @CopyFieldsFrom: CAN_D1_UC_S1_BD
AP_GROUPINFO("S2_BD", 17, AP_DroneCAN, serial.ports[1].state.baud, 57600),
// @Param: S2_PRO
// @DisplayName: Serial protocol of DroneCAN serial port
// @Description: Serial protocol of DroneCAN serial port
// @CopyFieldsFrom: CAN_D1_UC_S1_PRO
AP_GROUPINFO("S2_PRO", 18, AP_DroneCAN, serial.ports[1].state.protocol, -1),
#endif
#if AP_DRONECAN_SERIAL_NUM_PORTS > 2
// @Param: S3_NOD
// @DisplayName: Serial CAN remote node number
// @Description: CAN node number for serial port
// @CopyFieldsFrom: CAN_D1_UC_S1_NOD
AP_GROUPINFO("S3_NOD", 19, AP_DroneCAN, serial.ports[2].node, 0),
// @Param: S3_IDX
// @DisplayName: Serial port number on remote CAN node
// @Description: Serial port number on remote CAN node
// @CopyFieldsFrom: CAN_D1_UC_S1_IDX
AP_GROUPINFO("S3_IDX", 20, AP_DroneCAN, serial.ports[2].idx, 0),
// @Param: S3_BD
// @DisplayName: Serial baud rate on remote CAN node
// @Description: Serial baud rate on remote CAN node
// @CopyFieldsFrom: CAN_D1_UC_S1_BD
AP_GROUPINFO("S3_BD", 21, AP_DroneCAN, serial.ports[2].state.baud, 57600),
// @Param: S3_PRO
// @DisplayName: Serial protocol of DroneCAN serial port
// @Description: Serial protocol of DroneCAN serial port
// @CopyFieldsFrom: CAN_D1_UC_S1_PRO
AP_GROUPINFO("S3_PRO", 22, AP_DroneCAN, serial.ports[2].state.protocol, -1),
#endif
#endif // AP_DRONECAN_SERIAL_ENABLED
// RLY_RT is index 23 but has to be above SER_EN so its not hidden
AP_GROUPEND
};
// this is the timeout in milliseconds for periodic message types. We
// set this to 1 to minimise resend of stale msgs
#define CAN_PERIODIC_TX_TIMEOUT_MS 2
AP_DroneCAN::AP_DroneCAN(const int driver_index) :
_driver_index(driver_index),
canard_iface(driver_index),
_dna_server(*this, canard_iface, driver_index)
{
AP_Param::setup_object_defaults(this, var_info);
for (uint8_t i = 0; i < DRONECAN_SRV_NUMBER; i++) {
_SRV_conf[i].esc_pending = false;
_SRV_conf[i].servo_pending = false;
}
debug_dronecan(AP_CANManager::LOG_INFO, "AP_DroneCAN constructed\n\r");
}
AP_DroneCAN::~AP_DroneCAN()
{
}
AP_DroneCAN *AP_DroneCAN::get_dronecan(uint8_t driver_index)
{
if (driver_index >= AP::can().get_num_drivers() ||
AP::can().get_driver_type(driver_index) != AP_CAN::Protocol::DroneCAN) {
return nullptr;
}
return static_cast<AP_DroneCAN*>(AP::can().get_driver(driver_index));
}
bool AP_DroneCAN::add_interface(AP_HAL::CANIface* can_iface)
{
if (!canard_iface.add_interface(can_iface)) {
debug_dronecan(AP_CANManager::LOG_ERROR, "DroneCAN: can't add DroneCAN interface\n\r");
return false;
}
return true;
}
void AP_DroneCAN::init(uint8_t driver_index, bool enable_filters)
{
if (driver_index != _driver_index) {
debug_dronecan(AP_CANManager::LOG_ERROR, "DroneCAN: init called with wrong driver_index");
return;
}
if (_initialized) {
debug_dronecan(AP_CANManager::LOG_ERROR, "DroneCAN: init called more than once\n\r");
return;
}
uint8_t node = _dronecan_node;
if (node < 1 || node > 125) { // reset to default if invalid
_dronecan_node.set(AP_DRONECAN_DEFAULT_NODE);
node = AP_DRONECAN_DEFAULT_NODE;
}
node_info_rsp.name.len = hal.util->snprintf((char*)node_info_rsp.name.data, sizeof(node_info_rsp.name.data), "org.ardupilot:%u", driver_index);
node_info_rsp.software_version.major = AP_DRONECAN_SW_VERS_MAJOR;
node_info_rsp.software_version.minor = AP_DRONECAN_SW_VERS_MINOR;
node_info_rsp.hardware_version.major = AP_DRONECAN_HW_VERS_MAJOR;
node_info_rsp.hardware_version.minor = AP_DRONECAN_HW_VERS_MINOR;
#if HAL_CANFD_SUPPORTED
if (option_is_set(Options::CANFD_ENABLED)) {
canard_iface.set_canfd(true);
}
#endif
uint8_t uid_len = sizeof(uavcan_protocol_HardwareVersion::unique_id);
uint8_t unique_id[sizeof(uavcan_protocol_HardwareVersion::unique_id)];
mem_pool = NEW_NOTHROW uint32_t[_pool_size/sizeof(uint32_t)];
if (mem_pool == nullptr) {
debug_dronecan(AP_CANManager::LOG_ERROR, "DroneCAN: Failed to allocate memory pool\n\r");
return;
}
canard_iface.init(mem_pool, (_pool_size/sizeof(uint32_t))*sizeof(uint32_t), node);
if (!hal.util->get_system_id_unformatted(unique_id, uid_len)) {
return;
}
unique_id[uid_len - 1] += node;
memcpy(node_info_rsp.hardware_version.unique_id, unique_id, uid_len);
//Start Servers
if (!_dna_server.init(unique_id, uid_len, node)) {
debug_dronecan(AP_CANManager::LOG_ERROR, "DroneCAN: Failed to start DNA Server\n\r");
return;
}
// Roundup all subscribers from supported drivers
bool subscribed = true;
#if AP_GPS_DRONECAN_ENABLED
subscribed = subscribed && AP_GPS_DroneCAN::subscribe_msgs(this);
#endif
#if AP_COMPASS_DRONECAN_ENABLED
subscribed = subscribed && AP_Compass_DroneCAN::subscribe_msgs(this);
#endif
#if AP_BARO_DRONECAN_ENABLED
subscribed = subscribed && AP_Baro_DroneCAN::subscribe_msgs(this);
#endif
subscribed = subscribed && AP_BattMonitor_DroneCAN::subscribe_msgs(this);
#if AP_AIRSPEED_DRONECAN_ENABLED
subscribed = subscribed && AP_Airspeed_DroneCAN::subscribe_msgs(this);
#endif
#if AP_OPTICALFLOW_HEREFLOW_ENABLED
subscribed = subscribed && AP_OpticalFlow_HereFlow::subscribe_msgs(this);
#endif
#if AP_RANGEFINDER_DRONECAN_ENABLED
subscribed = subscribed && AP_RangeFinder_DroneCAN::subscribe_msgs(this);
#endif
#if AP_RCPROTOCOL_DRONECAN_ENABLED
subscribed = subscribed && AP_RCProtocol_DroneCAN::subscribe_msgs(this);
#endif
#if AP_EFI_DRONECAN_ENABLED
subscribed = subscribed && AP_EFI_DroneCAN::subscribe_msgs(this);
#endif
#if AP_PROXIMITY_DRONECAN_ENABLED
subscribed = subscribed && AP_Proximity_DroneCAN::subscribe_msgs(this);
#endif
#if HAL_MOUNT_XACTI_ENABLED
subscribed = subscribed && AP_Mount_Xacti::subscribe_msgs(this);
#endif
#if AP_TEMPERATURE_SENSOR_DRONECAN_ENABLED
subscribed = subscribed && AP_TemperatureSensor_DroneCAN::subscribe_msgs(this);
#endif
#if AP_RPM_DRONECAN_ENABLED
subscribed = subscribed && AP_RPM_DroneCAN::subscribe_msgs(this);
#endif
if (!subscribed) {
AP_BoardConfig::allocation_error("DroneCAN callback");
}
act_out_array.set_timeout_ms(5);
act_out_array.set_priority(CANARD_TRANSFER_PRIORITY_HIGH);
esc_raw.set_timeout_ms(2);
// esc_raw is one higher than high priority to ensure that it is given higher priority over act_out_array
esc_raw.set_priority(CANARD_TRANSFER_PRIORITY_HIGH - 1);
#if AP_DRONECAN_HOBBYWING_ESC_SUPPORT
esc_hobbywing_raw.set_timeout_ms(2);
esc_hobbywing_raw.set_priority(CANARD_TRANSFER_PRIORITY_HIGH);
#endif
#if AP_DRONECAN_HIMARK_SERVO_SUPPORT
himark_out.set_timeout_ms(2);
himark_out.set_priority(CANARD_TRANSFER_PRIORITY_HIGH);
#endif
rgb_led.set_timeout_ms(20);
rgb_led.set_priority(CANARD_TRANSFER_PRIORITY_LOW);
buzzer.set_timeout_ms(20);
buzzer.set_priority(CANARD_TRANSFER_PRIORITY_LOW);
safety_state.set_timeout_ms(20);
safety_state.set_priority(CANARD_TRANSFER_PRIORITY_LOW);
arming_status.set_timeout_ms(20);
arming_status.set_priority(CANARD_TRANSFER_PRIORITY_LOW);
#if AP_DRONECAN_SEND_GPS
gnss_fix2.set_timeout_ms(20);
gnss_fix2.set_priority(CANARD_TRANSFER_PRIORITY_LOW);
gnss_auxiliary.set_timeout_ms(20);
gnss_auxiliary.set_priority(CANARD_TRANSFER_PRIORITY_LOW);
gnss_heading.set_timeout_ms(20);
gnss_heading.set_priority(CANARD_TRANSFER_PRIORITY_LOW);
gnss_status.set_timeout_ms(20);
gnss_status.set_priority(CANARD_TRANSFER_PRIORITY_LOW);
#endif
rtcm_stream.set_timeout_ms(20);
rtcm_stream.set_priority(CANARD_TRANSFER_PRIORITY_LOW);
notify_state.set_timeout_ms(20);
notify_state.set_priority(CANARD_TRANSFER_PRIORITY_LOW);
#if HAL_MOUNT_XACTI_ENABLED
xacti_copter_att_status.set_timeout_ms(20);
xacti_copter_att_status.set_priority(CANARD_TRANSFER_PRIORITY_LOW);
xacti_gimbal_control_data.set_timeout_ms(20);
xacti_gimbal_control_data.set_priority(CANARD_TRANSFER_PRIORITY_LOW);
xacti_gnss_status.set_timeout_ms(20);
xacti_gnss_status.set_priority(CANARD_TRANSFER_PRIORITY_LOW);
#endif
#if AP_RELAY_DRONECAN_ENABLED
relay_hardpoint.set_timeout_ms(20);
relay_hardpoint.set_priority(CANARD_TRANSFER_PRIORITY_LOW);
#endif
param_save_client.set_timeout_ms(20);
param_save_client.set_priority(CANARD_TRANSFER_PRIORITY_LOW);
param_get_set_client.set_timeout_ms(20);
param_get_set_client.set_priority(CANARD_TRANSFER_PRIORITY_LOW);
node_status.set_priority(CANARD_TRANSFER_PRIORITY_LOWEST);
node_status.set_timeout_ms(1000);
protocol_stats.set_priority(CANARD_TRANSFER_PRIORITY_LOWEST);
protocol_stats.set_timeout_ms(3000);
can_stats.set_priority(CANARD_TRANSFER_PRIORITY_LOWEST);
can_stats.set_timeout_ms(3000);
node_info_server.set_timeout_ms(20);
// setup node status
node_status_msg.health = UAVCAN_PROTOCOL_NODESTATUS_HEALTH_OK;
node_status_msg.mode = UAVCAN_PROTOCOL_NODESTATUS_MODE_OPERATIONAL;
node_status_msg.sub_mode = 0;
// Spin node for device discovery
for (uint8_t i = 0; i < 5; i++) {
send_node_status();
canard_iface.process(1000);
}
hal.util->snprintf(_thread_name, sizeof(_thread_name), "dronecan_%u", driver_index);
if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_DroneCAN::loop, void), _thread_name, DRONECAN_STACK_SIZE, AP_HAL::Scheduler::PRIORITY_CAN, 0)) {
debug_dronecan(AP_CANManager::LOG_ERROR, "DroneCAN: couldn't create thread\n\r");
return;
}
#if AP_DRONECAN_SERIAL_ENABLED
serial.init(this);
#endif
_initialized = true;
debug_dronecan(AP_CANManager::LOG_INFO, "DroneCAN: init done\n\r");
}
void AP_DroneCAN::loop(void)
{
while (true) {
if (!_initialized) {
hal.scheduler->delay_microseconds(1000);
continue;
}
// ensure that the DroneCAN thread cannot completely saturate
// the CPU, preventing low priority threads from running
hal.scheduler->delay_microseconds(100);
canard_iface.process(1);
safety_state_send();
notify_state_send();
check_parameter_callback_timeout();
send_parameter_request();
send_parameter_save_request();
send_node_status();
_dna_server.verify_nodes();
#if AP_DRONECAN_SEND_GPS && AP_GPS_DRONECAN_ENABLED
if (option_is_set(AP_DroneCAN::Options::SEND_GNSS) && !AP_GPS_DroneCAN::instance_exists(this)) {
// send if enabled and this interface/driver is not used by the AP_GPS driver
gnss_send_fix();
gnss_send_yaw();
}
#endif
logging();
#if AP_DRONECAN_HOBBYWING_ESC_SUPPORT
hobbywing_ESC_update();
#endif
if (_SRV_armed_mask != 0) {
// we have active servos
uint32_t now = AP_HAL::micros();
const uint32_t servo_period_us = 1000000UL / unsigned(_servo_rate_hz.get());
if (now - _SRV_last_send_us >= servo_period_us) {
_SRV_last_send_us = now;
#if AP_DRONECAN_HIMARK_SERVO_SUPPORT
if (option_is_set(Options::USE_HIMARK_SERVO)) {
SRV_send_himark();
} else
#endif
{
SRV_send_actuator();
}
for (uint8_t i = 0; i < DRONECAN_SRV_NUMBER; i++) {
_SRV_conf[i].servo_pending = false;
}
}
}
#if AP_DRONECAN_SERIAL_ENABLED
serial.update();
#endif
#if AP_RELAY_DRONECAN_ENABLED
relay_hardpoint_send();
#endif
}
}
#if AP_DRONECAN_HOBBYWING_ESC_SUPPORT
void AP_DroneCAN::hobbywing_ESC_update(void)
{
if (hal.util->get_soft_armed()) {
// don't update ID database while disarmed, as it can cause
// some hobbywing ESCs to stutter
return;
}
uint32_t now = AP_HAL::millis();
if (now - hobbywing.last_GetId_send_ms >= 1000U) {
hobbywing.last_GetId_send_ms = now;
com_hobbywing_esc_GetEscID msg;
msg.payload.len = 1;
msg.payload.data[0] = 0;
esc_hobbywing_GetEscID.broadcast(msg);
}
}
/*
handle hobbywing GetEscID reply. This gets us the mapping between CAN NodeID and throttle channel
*/
void AP_DroneCAN::handle_hobbywing_GetEscID(const CanardRxTransfer& transfer, const com_hobbywing_esc_GetEscID& msg)
{
if (msg.payload.len == 2 &&
msg.payload.data[0] == transfer.source_node_id) {
// throttle channel is 2nd payload byte
const uint8_t thr_channel = msg.payload.data[1];
if (thr_channel > 0 && thr_channel <= HOBBYWING_MAX_ESC) {
hobbywing.thr_chan[thr_channel-1] = transfer.source_node_id;
}
}
}
/*
find the ESC index given a CAN node ID
*/
bool AP_DroneCAN::hobbywing_find_esc_index(uint8_t node_id, uint8_t &esc_index) const
{
for (uint8_t i=0; i<HOBBYWING_MAX_ESC; i++) {
if (hobbywing.thr_chan[i] == node_id) {
const uint8_t esc_offset = constrain_int16(_esc_offset.get(), 0, DRONECAN_SRV_NUMBER);
esc_index = i + esc_offset;
return true;
}
}
return false;
}
/*
handle hobbywing StatusMsg1 reply
*/
void AP_DroneCAN::handle_hobbywing_StatusMsg1(const CanardRxTransfer& transfer, const com_hobbywing_esc_StatusMsg1& msg)
{
uint8_t esc_index;
if (hobbywing_find_esc_index(transfer.source_node_id, esc_index)) {
update_rpm(esc_index, msg.rpm);
}
}
/*
handle hobbywing StatusMsg2 reply
*/
void AP_DroneCAN::handle_hobbywing_StatusMsg2(const CanardRxTransfer& transfer, const com_hobbywing_esc_StatusMsg2& msg)
{
uint8_t esc_index;
if (hobbywing_find_esc_index(transfer.source_node_id, esc_index)) {
TelemetryData t {
.temperature_cdeg = int16_t(msg.temperature*100),
.voltage = msg.input_voltage*0.1f,
.current = msg.current*0.1f,
};
update_telem_data(esc_index, t,
AP_ESC_Telem_Backend::TelemetryType::CURRENT|
AP_ESC_Telem_Backend::TelemetryType::VOLTAGE|
AP_ESC_Telem_Backend::TelemetryType::TEMPERATURE);
}
}
#endif // AP_DRONECAN_HOBBYWING_ESC_SUPPORT
void AP_DroneCAN::send_node_status(void)
{
const uint32_t now = AP_HAL::millis();
if (now - _node_status_last_send_ms < 1000) {
return;
}
_node_status_last_send_ms = now;
node_status_msg.uptime_sec = now / 1000;
node_status.broadcast(node_status_msg);
if (option_is_set(Options::ENABLE_STATS)) {
// also send protocol and can stats
protocol_stats.broadcast(canard_iface.protocol_stats);
// get can stats
for (uint8_t i=0; i<canard_iface.num_ifaces; i++) {
if (canard_iface.ifaces[i] == nullptr) {
continue;
}
auto* iface = hal.can[0];
for (uint8_t j=0; j<HAL_NUM_CAN_IFACES; j++) {
if (hal.can[j] == canard_iface.ifaces[i]) {
iface = hal.can[j];
break;
}
}
auto* bus_stats = iface->get_statistics();
if (bus_stats == nullptr) {
continue;
}
dronecan_protocol_CanStats can_stats_msg;
can_stats_msg.interface = i;
can_stats_msg.tx_requests = bus_stats->tx_requests;
can_stats_msg.tx_rejected = bus_stats->tx_rejected;
can_stats_msg.tx_overflow = bus_stats->tx_overflow;
can_stats_msg.tx_success = bus_stats->tx_success;
can_stats_msg.tx_timedout = bus_stats->tx_timedout;
can_stats_msg.tx_abort = bus_stats->tx_abort;
can_stats_msg.rx_received = bus_stats->rx_received;
can_stats_msg.rx_overflow = bus_stats->rx_overflow;
can_stats_msg.rx_errors = bus_stats->rx_errors;
can_stats_msg.busoff_errors = bus_stats->num_busoff_err;
can_stats.broadcast(can_stats_msg);
}
}
}
void AP_DroneCAN::handle_node_info_request(const CanardRxTransfer& transfer, const uavcan_protocol_GetNodeInfoRequest& req)
{
node_info_rsp.status = node_status_msg;
node_info_rsp.status.uptime_sec = AP_HAL::millis() / 1000;
node_info_server.respond(transfer, node_info_rsp);
}
int16_t AP_DroneCAN::scale_esc_output(uint8_t idx){
static const int16_t cmd_max = ((1<<13)-1);
float scaled = hal.rcout->scale_esc_to_unity(_SRV_conf[idx].pulse);
// Prevent invalid values (from misconfigured scaling parameters) from sending non-zero commands
if (!isfinite(scaled)) {
return 0;
}
scaled = constrain_float(scaled, -1, 1);
//Check if this channel has a reversible ESC. If it does, we can send negative commands.
if ((((uint32_t) 1) << idx) & _esc_rv) {
scaled *= cmd_max;
} else {
scaled = cmd_max * (scaled + 1.0) / 2.0;
}
return static_cast<int16_t>(scaled);
}
///// SRV output /////
void AP_DroneCAN::SRV_send_actuator(void)
{
uint8_t starting_servo = 0;
bool repeat_send;
WITH_SEMAPHORE(SRV_sem);
do {
repeat_send = false;
uavcan_equipment_actuator_ArrayCommand msg;
uint8_t i;
// DroneCAN can hold maximum of 15 commands in one frame
for (i = 0; starting_servo < DRONECAN_SRV_NUMBER && i < 15; starting_servo++) {
uavcan_equipment_actuator_Command cmd;
/*
* Servo output uses a range of 1000-2000 PWM for scaling.
* This converts output PWM from [1000:2000] range to [-1:1] range that
* is passed to servo as unitless type via DroneCAN.
* This approach allows for MIN/TRIM/MAX values to be used fully on
* autopilot side and for servo it should have the setup to provide maximum
* physically possible throws at [-1:1] limits.
*/
if (_SRV_conf[starting_servo].servo_pending && ((((uint32_t) 1) << starting_servo) & _SRV_armed_mask)) {
cmd.actuator_id = starting_servo + 1;
if (option_is_set(Options::USE_ACTUATOR_PWM)) {
cmd.command_type = UAVCAN_EQUIPMENT_ACTUATOR_COMMAND_COMMAND_TYPE_PWM;
cmd.command_value = _SRV_conf[starting_servo].pulse;
} else {
cmd.command_type = UAVCAN_EQUIPMENT_ACTUATOR_COMMAND_COMMAND_TYPE_UNITLESS;
cmd.command_value = constrain_float(((float) _SRV_conf[starting_servo].pulse - 1000.0) / 500.0 - 1.0, -1.0, 1.0);
}
msg.commands.data[i] = cmd;
i++;
}
}
msg.commands.len = i;
if (i > 0) {
if (act_out_array.broadcast(msg) > 0) {
_srv_send_count++;
} else {
_fail_send_count++;
}
if (i == 15) {
repeat_send = true;
}
}
} while (repeat_send);
}
#if AP_DRONECAN_HIMARK_SERVO_SUPPORT
/*
Himark servo output. This uses com.himark.servo.ServoCmd packets
*/
void AP_DroneCAN::SRV_send_himark(void)
{
WITH_SEMAPHORE(SRV_sem);
// ServoCmd can hold maximum of 17 commands. First find the highest pending servo < 17
int8_t highest_to_send = -1;
for (int8_t i = 16; i >= 0; i--) {
if (_SRV_conf[i].servo_pending && ((1U<<i) & _SRV_armed_mask) != 0) {
highest_to_send = i;
break;
}
}
if (highest_to_send == -1) {
// nothing to send
return;
}
com_himark_servo_ServoCmd msg {};
for (uint8_t i = 0; i <= highest_to_send; i++) {
if ((1U<<i) & _SRV_armed_mask) {
const uint16_t pulse = constrain_int16(_SRV_conf[i].pulse - 1000, 0, 1000);
msg.cmd.data[i] = pulse;
}
}
msg.cmd.len = highest_to_send+1;
himark_out.broadcast(msg);
}
#endif // AP_DRONECAN_HIMARK_SERVO_SUPPORT
void AP_DroneCAN::SRV_send_esc(void)
{
uavcan_equipment_esc_RawCommand esc_msg;
uint8_t active_esc_num = 0, max_esc_num = 0;
uint8_t k = 0;
// esc offset allows for efficient packing of higher ESC numbers in RawCommand
const uint8_t esc_offset = constrain_int16(_esc_offset.get(), 0, DRONECAN_SRV_NUMBER);
// find out how many esc we have enabled and if they are active at all
for (uint8_t i = esc_offset; i < DRONECAN_SRV_NUMBER; i++) {
if ((((uint32_t) 1) << i) & _ESC_armed_mask) {
max_esc_num = i + 1;
if (_SRV_conf[i].esc_pending) {
active_esc_num++;
}
}
}
// if at least one is active (update) we need to send to all
if (active_esc_num > 0) {
k = 0;
const bool armed = hal.util->get_soft_armed();
for (uint8_t i = esc_offset; i < max_esc_num && k < 20; i++) {
if (armed && ((((uint32_t) 1U) << i) & _ESC_armed_mask)) {
esc_msg.cmd.data[k] = scale_esc_output(i);
} else {
esc_msg.cmd.data[k] = static_cast<unsigned>(0);
}
k++;
}
esc_msg.cmd.len = k;
if (esc_raw.broadcast(esc_msg)) {
_esc_send_count++;
} else {
_fail_send_count++;
}
// immediately push data to CAN bus
canard_iface.processTx(true);
}
for (uint8_t i = 0; i < DRONECAN_SRV_NUMBER; i++) {
_SRV_conf[i].esc_pending = false;
}
}
#if AP_DRONECAN_HOBBYWING_ESC_SUPPORT
/*
support for Hobbywing DroneCAN ESCs
*/
void AP_DroneCAN::SRV_send_esc_hobbywing(void)
{
com_hobbywing_esc_RawCommand esc_msg;
uint8_t active_esc_num = 0, max_esc_num = 0;
uint8_t k = 0;
// esc offset allows for efficient packing of higher ESC numbers in RawCommand
const uint8_t esc_offset = constrain_int16(_esc_offset.get(), 0, DRONECAN_SRV_NUMBER);
// find out how many esc we have enabled and if they are active at all
for (uint8_t i = esc_offset; i < DRONECAN_SRV_NUMBER; i++) {
if ((((uint32_t) 1) << i) & _ESC_armed_mask) {
max_esc_num = i + 1;
if (_SRV_conf[i].esc_pending) {
active_esc_num++;
}
}
}
// if at least one is active (update) we need to send to all
if (active_esc_num > 0) {
k = 0;
const bool armed = hal.util->get_soft_armed();
for (uint8_t i = esc_offset; i < max_esc_num && k < 20; i++) {
if (armed && ((((uint32_t) 1U) << i) & _ESC_armed_mask)) {
esc_msg.command.data[k] = scale_esc_output(i);
} else {
esc_msg.command.data[k] = static_cast<unsigned>(0);
}
k++;
}
esc_msg.command.len = k;
if (esc_hobbywing_raw.broadcast(esc_msg)) {
_esc_send_count++;
} else {
_fail_send_count++;
}
// immediately push data to CAN bus
canard_iface.processTx(true);
}
}
#endif // AP_DRONECAN_HOBBYWING_ESC_SUPPORT
void AP_DroneCAN::SRV_push_servos()
{
WITH_SEMAPHORE(SRV_sem);
for (uint8_t i = 0; i < DRONECAN_SRV_NUMBER; i++) {
// Check if this channels has any function assigned
if (SRV_Channels::channel_function(i) >= SRV_Channel::k_none) {
_SRV_conf[i].pulse = SRV_Channels::srv_channel(i)->get_output_pwm();
_SRV_conf[i].esc_pending = true;
_SRV_conf[i].servo_pending = true;
}
}
uint32_t servo_armed_mask = _servo_bm;
uint32_t esc_armed_mask = _esc_bm;
const bool safety_off = hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED;
if (!safety_off) {
AP_BoardConfig *boardconfig = AP_BoardConfig::get_singleton();
if (boardconfig != nullptr) {
const uint32_t safety_mask = boardconfig->get_safety_mask();
servo_armed_mask &= safety_mask;
esc_armed_mask &= safety_mask;
} else {
servo_armed_mask = 0;
esc_armed_mask = 0;
}
}
_SRV_armed_mask = servo_armed_mask;
_ESC_armed_mask = esc_armed_mask;
if (_ESC_armed_mask != 0) {
// push ESCs as fast as we can
#if AP_DRONECAN_HOBBYWING_ESC_SUPPORT
if (option_is_set(Options::USE_HOBBYWING_ESC)) {
SRV_send_esc_hobbywing();
} else
#endif
{
SRV_send_esc();
}
}
}
// notify state send
void AP_DroneCAN::notify_state_send()
{
uint32_t now = AP_HAL::millis();
if (_notify_state_hz == 0 || (now - _last_notify_state_ms) < uint32_t(1000 / _notify_state_hz)) {
return;
}
ardupilot_indication_NotifyState msg;
msg.vehicle_state = 0;
if (AP_Notify::flags.initialising) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_INITIALISING;
}
if (AP_Notify::flags.armed) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_ARMED;
}
if (AP_Notify::flags.flying) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_FLYING;
}
if (AP_Notify::flags.compass_cal_running) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_MAGCAL_RUN;
}
if (AP_Notify::flags.ekf_bad) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_EKF_BAD;
}
if (AP_Notify::flags.esc_calibration) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_ESC_CALIBRATION;
}
if (AP_Notify::flags.failsafe_battery) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_FAILSAFE_BATT;
}
if (AP_Notify::flags.failsafe_gcs) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_FAILSAFE_GCS;
}
if (AP_Notify::flags.failsafe_radio) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_FAILSAFE_RADIO;
}
if (AP_Notify::flags.firmware_update) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_FW_UPDATE;
}
if (AP_Notify::flags.gps_fusion) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_GPS_FUSION;
}
if (AP_Notify::flags.gps_glitching) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_GPS_GLITCH;
}
if (AP_Notify::flags.have_pos_abs) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_POS_ABS_AVAIL;
}
if (AP_Notify::flags.leak_detected) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_LEAK_DET;
}
if (AP_Notify::flags.parachute_release) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_CHUTE_RELEASED;
}
if (AP_Notify::flags.powering_off) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_POWERING_OFF;
}
if (AP_Notify::flags.pre_arm_check) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_PREARM;
}
if (AP_Notify::flags.pre_arm_gps_check) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_PREARM_GPS;
}
if (AP_Notify::flags.save_trim) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_SAVE_TRIM;
}
if (AP_Notify::flags.vehicle_lost) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_LOST;
}
if (AP_Notify::flags.video_recording) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_VIDEO_RECORDING;
}
if (AP_Notify::flags.waiting_for_throw) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_THROW_READY;
}
#ifndef HAL_BUILD_AP_PERIPH
const AP_Vehicle* vehicle = AP::vehicle();
if (vehicle != nullptr) {
if (vehicle->is_landing()) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_IS_LANDING;
}
if (vehicle->is_taking_off()) {
msg.vehicle_state |= 1 << ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_STATE_IS_TAKING_OFF;
}
}
#endif // HAL_BUILD_AP_PERIPH
msg.aux_data_type = ARDUPILOT_INDICATION_NOTIFYSTATE_VEHICLE_YAW_EARTH_CENTIDEGREES;
uint16_t yaw_cd = (uint16_t)(360.0f - degrees(AP::ahrs().get_yaw()))*100.0f;
const uint8_t *data = (uint8_t *)&yaw_cd;
for (uint8_t i=0; i<2; i++) {
msg.aux_data.data[i] = data[i];
}
msg.aux_data.len = 2;
notify_state.broadcast(msg);
_last_notify_state_ms = AP_HAL::millis();
}
#if AP_DRONECAN_SEND_GPS
void AP_DroneCAN::gnss_send_fix()
{
const AP_GPS &gps = AP::gps();
const uint32_t gps_lib_time_ms = gps.last_message_time_ms();
if (_gnss.last_gps_lib_fix_ms == gps_lib_time_ms) {
return;
}
_gnss.last_gps_lib_fix_ms = gps_lib_time_ms;
/*
send Fix2 packet
*/
uavcan_equipment_gnss_Fix2 pkt {};
const Location &loc = gps.location();
const Vector3f &vel = gps.velocity();
pkt.timestamp.usec = AP_HAL::micros64();
pkt.gnss_timestamp.usec = gps.time_epoch_usec();
if (pkt.gnss_timestamp.usec == 0) {
pkt.gnss_time_standard = UAVCAN_EQUIPMENT_GNSS_FIX2_GNSS_TIME_STANDARD_NONE;
} else {
pkt.gnss_time_standard = UAVCAN_EQUIPMENT_GNSS_FIX2_GNSS_TIME_STANDARD_UTC;
}
pkt.longitude_deg_1e8 = uint64_t(loc.lng) * 10ULL;
pkt.latitude_deg_1e8 = uint64_t(loc.lat) * 10ULL;
pkt.height_ellipsoid_mm = loc.alt * 10;
pkt.height_msl_mm = loc.alt * 10;
for (uint8_t i=0; i<3; i++) {
pkt.ned_velocity[i] = vel[i];
}
pkt.sats_used = gps.num_sats();
switch (gps.status()) {
case AP_GPS::GPS_Status::NO_GPS:
case AP_GPS::GPS_Status::NO_FIX:
pkt.status = UAVCAN_EQUIPMENT_GNSS_FIX2_STATUS_NO_FIX;
pkt.mode = UAVCAN_EQUIPMENT_GNSS_FIX2_MODE_SINGLE;
pkt.sub_mode = UAVCAN_EQUIPMENT_GNSS_FIX2_SUB_MODE_DGPS_OTHER;
break;
case AP_GPS::GPS_Status::GPS_OK_FIX_2D:
pkt.status = UAVCAN_EQUIPMENT_GNSS_FIX2_STATUS_2D_FIX;
pkt.mode = UAVCAN_EQUIPMENT_GNSS_FIX2_MODE_SINGLE;
pkt.sub_mode = UAVCAN_EQUIPMENT_GNSS_FIX2_SUB_MODE_DGPS_OTHER;
break;
case AP_GPS::GPS_Status::GPS_OK_FIX_3D:
pkt.status = UAVCAN_EQUIPMENT_GNSS_FIX2_STATUS_3D_FIX;
pkt.mode = UAVCAN_EQUIPMENT_GNSS_FIX2_MODE_SINGLE;
pkt.sub_mode = UAVCAN_EQUIPMENT_GNSS_FIX2_SUB_MODE_DGPS_OTHER;
break;
case AP_GPS::GPS_Status::GPS_OK_FIX_3D_DGPS:
pkt.status = UAVCAN_EQUIPMENT_GNSS_FIX2_STATUS_3D_FIX;
pkt.mode = UAVCAN_EQUIPMENT_GNSS_FIX2_MODE_DGPS;
pkt.sub_mode = UAVCAN_EQUIPMENT_GNSS_FIX2_SUB_MODE_DGPS_SBAS;
break;
case AP_GPS::GPS_Status::GPS_OK_FIX_3D_RTK_FLOAT:
pkt.status = UAVCAN_EQUIPMENT_GNSS_FIX2_STATUS_3D_FIX;
pkt.mode = UAVCAN_EQUIPMENT_GNSS_FIX2_MODE_RTK;
pkt.sub_mode = UAVCAN_EQUIPMENT_GNSS_FIX2_SUB_MODE_RTK_FLOAT;
break;
case AP_GPS::GPS_Status::GPS_OK_FIX_3D_RTK_FIXED:
pkt.status = UAVCAN_EQUIPMENT_GNSS_FIX2_STATUS_3D_FIX;
pkt.mode = UAVCAN_EQUIPMENT_GNSS_FIX2_MODE_RTK;
pkt.sub_mode = UAVCAN_EQUIPMENT_GNSS_FIX2_SUB_MODE_RTK_FIXED;
break;
}
pkt.covariance.len = 6;
float hacc;
if (gps.horizontal_accuracy(hacc)) {
pkt.covariance.data[0] = pkt.covariance.data[1] = sq(hacc);
}
float vacc;
if (gps.vertical_accuracy(vacc)) {
pkt.covariance.data[2] = sq(vacc);
}
float sacc;
if (gps.speed_accuracy(sacc)) {
const float vc3 = sq(sacc);
pkt.covariance.data[3] = pkt.covariance.data[4] = pkt.covariance.data[5] = vc3;
}
gnss_fix2.broadcast(pkt);
const uint32_t now_ms = AP_HAL::millis();
if (now_ms - _gnss.last_send_status_ms >= 1000) {
_gnss.last_send_status_ms = now_ms;
/*
send aux packet
*/
uavcan_equipment_gnss_Auxiliary pkt_auxiliary {};
pkt_auxiliary.hdop = gps.get_hdop() * 0.01;
pkt_auxiliary.vdop = gps.get_vdop() * 0.01;
gnss_auxiliary.broadcast(pkt_auxiliary);
/*
send Status packet
*/
ardupilot_gnss_Status pkt_status {};
pkt_status.healthy = gps.is_healthy();
if (gps.logging_present() && gps.logging_enabled() && !gps.logging_failed()) {
pkt_status.status |= ARDUPILOT_GNSS_STATUS_STATUS_LOGGING;
}
uint8_t idx; // unused
if (pkt_status.healthy && !gps.first_unconfigured_gps(idx)) {
pkt_status.status |= ARDUPILOT_GNSS_STATUS_STATUS_ARMABLE;
}
uint32_t error_codes;
if (gps.get_error_codes(error_codes)) {
pkt_status.error_codes = error_codes;
}
gnss_status.broadcast(pkt_status);
}
}
void AP_DroneCAN::gnss_send_yaw()
{
const AP_GPS &gps = AP::gps();
if (!gps.have_gps_yaw()) {
return;
}
float yaw_deg, yaw_acc_deg;
uint32_t yaw_time_ms;
if (!gps.gps_yaw_deg(yaw_deg, yaw_acc_deg, yaw_time_ms) && yaw_time_ms != _gnss.last_lib_yaw_time_ms) {
return;
}
_gnss.last_lib_yaw_time_ms = yaw_time_ms;
ardupilot_gnss_Heading pkt_heading {};
pkt_heading.heading_valid = true;
pkt_heading.heading_accuracy_valid = is_positive(yaw_acc_deg);
pkt_heading.heading_rad = radians(yaw_deg);
pkt_heading.heading_accuracy_rad = radians(yaw_acc_deg);
gnss_heading.broadcast(pkt_heading);
}
#endif // AP_DRONECAN_SEND_GPS
// SafetyState send
void AP_DroneCAN::safety_state_send()
{
uint32_t now = AP_HAL::millis();
if (now - _last_safety_state_ms < 500) {
// update at 2Hz
return;
}
_last_safety_state_ms = now;
{ // handle SafetyState
ardupilot_indication_SafetyState safety_msg;
auto state = hal.util->safety_switch_state();
if (_SRV_armed_mask != 0 || _ESC_armed_mask != 0) {
// if we are outputting any servos or ESCs due to
// BRD_SAFETY_MASK then we need to advertise safety as
// off, this changes LEDs to indicate unsafe and allows
// AP_Periph ESCs and servos to run
state = AP_HAL::Util::SAFETY_ARMED;
}
switch (state) {
case AP_HAL::Util::SAFETY_ARMED:
safety_msg.status = ARDUPILOT_INDICATION_SAFETYSTATE_STATUS_SAFETY_OFF;
safety_state.broadcast(safety_msg);
break;
case AP_HAL::Util::SAFETY_DISARMED:
safety_msg.status = ARDUPILOT_INDICATION_SAFETYSTATE_STATUS_SAFETY_ON;
safety_state.broadcast(safety_msg);
break;
default:
// nothing to send
break;
}
}
{ // handle ArmingStatus
uavcan_equipment_safety_ArmingStatus arming_msg;
arming_msg.status = hal.util->get_soft_armed() ? UAVCAN_EQUIPMENT_SAFETY_ARMINGSTATUS_STATUS_FULLY_ARMED :
UAVCAN_EQUIPMENT_SAFETY_ARMINGSTATUS_STATUS_DISARMED;
arming_status.broadcast(arming_msg);
}
}
// Send relay outputs with hardpoint msg
#if AP_RELAY_DRONECAN_ENABLED
void AP_DroneCAN::relay_hardpoint_send()
{
const uint32_t now = AP_HAL::millis();
if ((_relay.rate_hz == 0) || ((now - _relay.last_send_ms) < uint32_t(1000 / _relay.rate_hz))) {
// Rate limit per user config
return;
}
_relay.last_send_ms = now;
AP_Relay *relay = AP::relay();
if (relay == nullptr) {
return;
}
uavcan_equipment_hardpoint_Command msg {};
// Relay will populate the next command to send and update the last index
// This will cycle through each relay in turn
if (relay->dronecan.populate_next_command(_relay.last_index, msg)) {
relay_hardpoint.broadcast(msg);
}
}
#endif // AP_RELAY_DRONECAN_ENABLED
/*
handle Button message
*/
void AP_DroneCAN::handle_button(const CanardRxTransfer& transfer, const ardupilot_indication_Button& msg)
{
switch (msg.button) {
case ARDUPILOT_INDICATION_BUTTON_BUTTON_SAFETY: {
AP_BoardConfig *brdconfig = AP_BoardConfig::get_singleton();
if (brdconfig && brdconfig->safety_button_handle_pressed(msg.press_time)) {
AP_HAL::Util::safety_state state = hal.util->safety_switch_state();
if (state == AP_HAL::Util::SAFETY_ARMED) {
hal.rcout->force_safety_on();
} else {
hal.rcout->force_safety_off();
}
}
break;
}
}
}
/*
handle traffic report
*/
void AP_DroneCAN::handle_traffic_report(const CanardRxTransfer& transfer, const ardupilot_equipment_trafficmonitor_TrafficReport& msg)
{
#if HAL_ADSB_ENABLED
AP_ADSB *adsb = AP::ADSB();
if (!adsb || !adsb->enabled()) {
// ADSB not enabled
return;
}
AP_ADSB::adsb_vehicle_t vehicle;
mavlink_adsb_vehicle_t &pkt = vehicle.info;
pkt.ICAO_address = msg.icao_address;
pkt.tslc = msg.tslc;
pkt.lat = msg.latitude_deg_1e7;
pkt.lon = msg.longitude_deg_1e7;
pkt.altitude = msg.alt_m * 1000;
pkt.heading = degrees(msg.heading) * 100;
pkt.hor_velocity = norm(msg.velocity[0], msg.velocity[1]) * 100;
pkt.ver_velocity = -msg.velocity[2] * 100;
pkt.squawk = msg.squawk;
for (uint8_t i=0; i<9; i++) {
pkt.callsign[i] = msg.callsign[i];
}
pkt.emitter_type = msg.traffic_type;
if (msg.alt_type == ARDUPILOT_EQUIPMENT_TRAFFICMONITOR_TRAFFICREPORT_ALT_TYPE_PRESSURE_AMSL) {
pkt.flags |= ADSB_FLAGS_VALID_ALTITUDE;
pkt.altitude_type = ADSB_ALTITUDE_TYPE_PRESSURE_QNH;
} else if (msg.alt_type == ARDUPILOT_EQUIPMENT_TRAFFICMONITOR_TRAFFICREPORT_ALT_TYPE_WGS84) {
pkt.flags |= ADSB_FLAGS_VALID_ALTITUDE;
pkt.altitude_type = ADSB_ALTITUDE_TYPE_GEOMETRIC;
}
if (msg.lat_lon_valid) {
pkt.flags |= ADSB_FLAGS_VALID_COORDS;
}
if (msg.heading_valid) {
pkt.flags |= ADSB_FLAGS_VALID_HEADING;
}
if (msg.velocity_valid) {
pkt.flags |= ADSB_FLAGS_VALID_VELOCITY;
}
if (msg.callsign_valid) {
pkt.flags |= ADSB_FLAGS_VALID_CALLSIGN;
}
if (msg.ident_valid) {
pkt.flags |= ADSB_FLAGS_VALID_SQUAWK;
}
if (msg.simulated_report) {
pkt.flags |= ADSB_FLAGS_SIMULATED;
}
if (msg.vertical_velocity_valid) {
pkt.flags |= ADSB_FLAGS_VERTICAL_VELOCITY_VALID;
}
if (msg.baro_valid) {
pkt.flags |= ADSB_FLAGS_BARO_VALID;
}
vehicle.last_update_ms = AP_HAL::millis() - (vehicle.info.tslc * 1000);
adsb->handle_adsb_vehicle(vehicle);
#endif
}
/*
handle actuator status message
*/
#if AP_SERVO_TELEM_ENABLED
void AP_DroneCAN::handle_actuator_status(const CanardRxTransfer& transfer, const uavcan_equipment_actuator_Status& msg)
{
AP_Servo_Telem *servo_telem = AP_Servo_Telem::get_singleton();
if (servo_telem == nullptr) {
return;
}
const AP_Servo_Telem::TelemetryData telem_data {
.measured_position = ToDeg(msg.position),
.force = msg.force,
.speed = msg.speed,
.duty_cycle = msg.power_rating_pct,
.present_types = AP_Servo_Telem::TelemetryData::Types::MEASURED_POSITION |
AP_Servo_Telem::TelemetryData::Types::FORCE |
AP_Servo_Telem::TelemetryData::Types::SPEED |
AP_Servo_Telem::TelemetryData::Types::DUTY_CYCLE
};
servo_telem->update_telem_data(msg.actuator_id, telem_data);
}
#endif
#if AP_DRONECAN_HIMARK_SERVO_SUPPORT && AP_SERVO_TELEM_ENABLED
/*
handle himark ServoInfo message
*/
void AP_DroneCAN::handle_himark_servoinfo(const CanardRxTransfer& transfer, const com_himark_servo_ServoInfo &msg)
{
AP_Servo_Telem *servo_telem = AP_Servo_Telem::get_singleton();
if (servo_telem == nullptr) {
return;
}
const AP_Servo_Telem::TelemetryData telem_data {
.command_position = msg.pos_cmd * 0.01,
.measured_position = msg.pos_sensor * 0.01,
.voltage = msg.voltage * 0.01,
.current = msg.current * 0.01,
.motor_temperature_cdeg = int16_t(((msg.motor_temp * 0.2) - 40) * 100),
.pcb_temperature_cdeg = int16_t(((msg.pcb_temp * 0.2) - 40) * 100),
.status_flags = msg.error_status,
.present_types = AP_Servo_Telem::TelemetryData::Types::COMMANDED_POSITION |
AP_Servo_Telem::TelemetryData::Types::MEASURED_POSITION |
AP_Servo_Telem::TelemetryData::Types::VOLTAGE |
AP_Servo_Telem::TelemetryData::Types::CURRENT |
AP_Servo_Telem::TelemetryData::Types::MOTOR_TEMP |
AP_Servo_Telem::TelemetryData::Types::PCB_TEMP |
AP_Servo_Telem::TelemetryData::Types::STATUS
};
servo_telem->update_telem_data(msg.servo_id, telem_data);
}
#endif // AP_DRONECAN_HIMARK_SERVO_SUPPORT
#if AP_DRONECAN_VOLZ_FEEDBACK_ENABLED
void AP_DroneCAN::handle_actuator_status_Volz(const CanardRxTransfer& transfer, const com_volz_servo_ActuatorStatus& msg)
{
AP_Servo_Telem *servo_telem = AP_Servo_Telem::get_singleton();
if (servo_telem == nullptr) {
return;
}
const AP_Servo_Telem::TelemetryData telem_data {
.measured_position = ToDeg(msg.actual_position),
.voltage = msg.voltage * 0.2,
.current = msg.current * 0.025,
.duty_cycle = uint8_t(msg.motor_pwm * (100.0/255.0)),
.motor_temperature_cdeg = int16_t((msg.motor_temperature - 50) * 100),
.present_types = AP_Servo_Telem::TelemetryData::Types::MEASURED_POSITION |
AP_Servo_Telem::TelemetryData::Types::VOLTAGE |
AP_Servo_Telem::TelemetryData::Types::CURRENT |
AP_Servo_Telem::TelemetryData::Types::DUTY_CYCLE |
AP_Servo_Telem::TelemetryData::Types::MOTOR_TEMP
};
servo_telem->update_telem_data(msg.actuator_id, telem_data);
}
#endif
/*
handle ESC status message
*/
void AP_DroneCAN::handle_ESC_status(const CanardRxTransfer& transfer, const uavcan_equipment_esc_Status& msg)
{
#if HAL_WITH_ESC_TELEM
const uint8_t esc_offset = constrain_int16(_esc_offset.get(), 0, DRONECAN_SRV_NUMBER);
const uint8_t esc_index = msg.esc_index + esc_offset;
if (!is_esc_data_index_valid(esc_index)) {
return;
}
TelemetryData t {
.temperature_cdeg = int16_t((KELVIN_TO_C(msg.temperature)) * 100),
.voltage = msg.voltage,
.current = msg.current,
#if AP_EXTENDED_ESC_TELEM_ENABLED
.power_percentage = msg.power_rating_pct,
#endif
};
update_rpm(esc_index, msg.rpm, msg.error_count);
update_telem_data(esc_index, t,
(isnan(msg.current) ? 0 : AP_ESC_Telem_Backend::TelemetryType::CURRENT)
| (isnan(msg.voltage) ? 0 : AP_ESC_Telem_Backend::TelemetryType::VOLTAGE)
| (isnan(msg.temperature) ? 0 : AP_ESC_Telem_Backend::TelemetryType::TEMPERATURE)
#if AP_EXTENDED_ESC_TELEM_ENABLED
| AP_ESC_Telem_Backend::TelemetryType::POWER_PERCENTAGE
#endif
);
#endif // HAL_WITH_ESC_TELEM
}
#if AP_EXTENDED_ESC_TELEM_ENABLED
/*
handle Extended ESC status message
*/
void AP_DroneCAN::handle_esc_ext_status(const CanardRxTransfer& transfer, const uavcan_equipment_esc_StatusExtended& msg)
{
const uint8_t esc_offset = constrain_int16(_esc_offset.get(), 0, DRONECAN_SRV_NUMBER);
const uint8_t esc_index = msg.esc_index + esc_offset;
if (!is_esc_data_index_valid(esc_index)) {
return;
}
TelemetryData telemetryData {
.motor_temp_cdeg = (int16_t)(msg.motor_temperature_degC * 100),
.input_duty = msg.input_pct,
.output_duty = msg.output_pct,
.flags = msg.status_flags,
};
update_telem_data(esc_index, telemetryData,
AP_ESC_Telem_Backend::TelemetryType::MOTOR_TEMPERATURE
| AP_ESC_Telem_Backend::TelemetryType::INPUT_DUTY
| AP_ESC_Telem_Backend::TelemetryType::OUTPUT_DUTY
| AP_ESC_Telem_Backend::TelemetryType::FLAGS);
}
#endif // AP_EXTENDED_ESC_TELEM_ENABLED
bool AP_DroneCAN::is_esc_data_index_valid(const uint8_t index) {
if (index > DRONECAN_SRV_NUMBER) {
// printf("DroneCAN: invalid esc index: %d. max index allowed: %d\n\r", index, DRONECAN_SRV_NUMBER);
return false;
}
return true;
}
#if AP_SCRIPTING_ENABLED
/*
handle FlexDebug message, holding a copy locally for a lua script to access
*/
void AP_DroneCAN::handle_FlexDebug(const CanardRxTransfer& transfer, const dronecan_protocol_FlexDebug &msg)
{
if (!option_is_set(Options::ENABLE_FLEX_DEBUG)) {
return;
}
// find an existing element in the list
const uint8_t source_node = transfer.source_node_id;
for (auto *p = flexDebug_list; p != nullptr; p = p->next) {
if (p->node_id == source_node && p->msg.id == msg.id) {
p->msg = msg;
p->timestamp_us = uint32_t(transfer.timestamp_usec);
return;
}
}
// new message ID, add to the list. Note that this gets called
// only from one thread, so no lock needed
auto *p = NEW_NOTHROW FlexDebug;
if (p == nullptr) {
return;
}
p->node_id = source_node;
p->msg = msg;
p->timestamp_us = uint32_t(transfer.timestamp_usec);
p->next = flexDebug_list;
// link into the list
flexDebug_list = p;
}
/*
get the last FlexDebug message from a node
*/
bool AP_DroneCAN::get_FlexDebug(uint8_t node_id, uint16_t msg_id, uint32_t &timestamp_us, dronecan_protocol_FlexDebug &msg) const
{
for (const auto *p = flexDebug_list; p != nullptr; p = p->next) {
if (p->node_id == node_id && p->msg.id == msg_id) {
if (timestamp_us == p->timestamp_us) {
// stale message
return false;
}
timestamp_us = p->timestamp_us;
msg = p->msg;
return true;
}
}
return false;
}
#endif // AP_SCRIPTING_ENABLED
/*
handle LogMessage debug
*/
void AP_DroneCAN::handle_debug(const CanardRxTransfer& transfer, const uavcan_protocol_debug_LogMessage& msg)
{
#if AP_HAVE_GCS_SEND_TEXT
const auto log_level = AP::can().get_log_level();
const auto msg_level = msg.level.value;
bool send_mavlink = false;
if (log_level != AP_CANManager::LOG_NONE) {
// log to onboard log and mavlink
enum MAV_SEVERITY mavlink_level = MAV_SEVERITY_INFO;
switch (msg_level) {
case UAVCAN_PROTOCOL_DEBUG_LOGLEVEL_DEBUG:
mavlink_level = MAV_SEVERITY_DEBUG;
send_mavlink = uint8_t(log_level) >= uint8_t(AP_CANManager::LogLevel::LOG_DEBUG);
break;
case UAVCAN_PROTOCOL_DEBUG_LOGLEVEL_INFO:
mavlink_level = MAV_SEVERITY_INFO;
send_mavlink = uint8_t(log_level) >= uint8_t(AP_CANManager::LogLevel::LOG_INFO);
break;
case UAVCAN_PROTOCOL_DEBUG_LOGLEVEL_WARNING:
mavlink_level = MAV_SEVERITY_WARNING;
send_mavlink = uint8_t(log_level) >= uint8_t(AP_CANManager::LogLevel::LOG_WARNING);
break;
default:
send_mavlink = uint8_t(log_level) >= uint8_t(AP_CANManager::LogLevel::LOG_ERROR);
mavlink_level = MAV_SEVERITY_ERROR;
break;
}
if (send_mavlink) {
// when we send as MAVLink it also gets logged locally, so
// we return to avoid a duplicate
GCS_SEND_TEXT(mavlink_level, "CAN[%u] %s", transfer.source_node_id, msg.text.data);
return;
}
}
#endif // AP_HAVE_GCS_SEND_TEXT
#if HAL_LOGGING_ENABLED
// always log locally if we have logging enabled
AP::logger().Write_MessageF("CAN[%u] %s", transfer.source_node_id, msg.text.data);
#endif
}
/*
check for parameter get/set response timeout
*/
void AP_DroneCAN::check_parameter_callback_timeout()
{
WITH_SEMAPHORE(_param_sem);
// return immediately if not waiting for get/set parameter response
if (param_request_sent_ms == 0) {
return;
}
const uint32_t now_ms = AP_HAL::millis();
if (now_ms - param_request_sent_ms > AP_DRONECAN_GETSET_TIMEOUT_MS) {
param_request_sent_ms = 0;
param_int_cb = nullptr;
param_float_cb = nullptr;
param_string_cb = nullptr;
}
}
/*
send any queued request to get/set parameter
called from loop
*/
void AP_DroneCAN::send_parameter_request()
{
WITH_SEMAPHORE(_param_sem);
if (param_request_sent) {
return;
}
param_get_set_client.request(param_request_node_id, param_getset_req);
param_request_sent = true;
}
/*
set named float parameter on node
*/
bool AP_DroneCAN::set_parameter_on_node(uint8_t node_id, const char *name, float value, ParamGetSetFloatCb *cb)
{
WITH_SEMAPHORE(_param_sem);
// fail if waiting for any previous get/set request
if (param_int_cb != nullptr ||
param_float_cb != nullptr ||
param_string_cb != nullptr) {
return false;
}
param_getset_req.index = 0;
param_getset_req.name.len = strncpy_noterm((char*)param_getset_req.name.data, name, sizeof(param_getset_req.name.data)-1);
param_getset_req.value.real_value = value;
param_getset_req.value.union_tag = UAVCAN_PROTOCOL_PARAM_VALUE_REAL_VALUE;
param_float_cb = cb;
param_request_sent = false;
param_request_sent_ms = AP_HAL::millis();
param_request_node_id = node_id;
return true;
}
/*
set named integer parameter on node
*/
bool AP_DroneCAN::set_parameter_on_node(uint8_t node_id, const char *name, int32_t value, ParamGetSetIntCb *cb)
{
WITH_SEMAPHORE(_param_sem);
// fail if waiting for any previous get/set request
if (param_int_cb != nullptr ||
param_float_cb != nullptr ||
param_string_cb != nullptr) {
return false;
}
param_getset_req.index = 0;
param_getset_req.name.len = strncpy_noterm((char*)param_getset_req.name.data, name, sizeof(param_getset_req.name.data)-1);
param_getset_req.value.integer_value = value;
param_getset_req.value.union_tag = UAVCAN_PROTOCOL_PARAM_VALUE_INTEGER_VALUE;
param_int_cb = cb;
param_request_sent = false;
param_request_sent_ms = AP_HAL::millis();
param_request_node_id = node_id;
return true;
}
/*
set named string parameter on node
*/
bool AP_DroneCAN::set_parameter_on_node(uint8_t node_id, const char *name, const string &value, ParamGetSetStringCb *cb)
{
WITH_SEMAPHORE(_param_sem);
// fail if waiting for any previous get/set request
if (param_int_cb != nullptr ||
param_float_cb != nullptr ||
param_string_cb != nullptr) {
return false;
}
param_getset_req.index = 0;
param_getset_req.name.len = strncpy_noterm((char*)param_getset_req.name.data, name, sizeof(param_getset_req.name.data)-1);
memcpy(&param_getset_req.value.string_value, (const void*)&value, sizeof(value));
param_getset_req.value.union_tag = UAVCAN_PROTOCOL_PARAM_VALUE_STRING_VALUE;
param_string_cb = cb;
param_request_sent = false;
param_request_sent_ms = AP_HAL::millis();
param_request_node_id = node_id;
return true;
}
/*
get named float parameter on node
*/
bool AP_DroneCAN::get_parameter_on_node(uint8_t node_id, const char *name, ParamGetSetFloatCb *cb)
{
WITH_SEMAPHORE(_param_sem);
// fail if waiting for any previous get/set request
if (param_int_cb != nullptr ||
param_float_cb != nullptr ||
param_string_cb != nullptr) {
return false;
}
param_getset_req.index = 0;
param_getset_req.name.len = strncpy_noterm((char*)param_getset_req.name.data, name, sizeof(param_getset_req.name.data));
param_getset_req.value.union_tag = UAVCAN_PROTOCOL_PARAM_VALUE_EMPTY;
param_float_cb = cb;
param_request_sent = false;
param_request_sent_ms = AP_HAL::millis();
param_request_node_id = node_id;
return true;
}
/*
get named integer parameter on node
*/
bool AP_DroneCAN::get_parameter_on_node(uint8_t node_id, const char *name, ParamGetSetIntCb *cb)
{
WITH_SEMAPHORE(_param_sem);
// fail if waiting for any previous get/set request
if (param_int_cb != nullptr ||
param_float_cb != nullptr ||
param_string_cb != nullptr) {
return false;
}
param_getset_req.index = 0;
param_getset_req.name.len = strncpy_noterm((char*)param_getset_req.name.data, name, sizeof(param_getset_req.name.data));
param_getset_req.value.union_tag = UAVCAN_PROTOCOL_PARAM_VALUE_EMPTY;
param_int_cb = cb;
param_request_sent = false;
param_request_sent_ms = AP_HAL::millis();
param_request_node_id = node_id;
return true;
}
/*
get named string parameter on node
*/
bool AP_DroneCAN::get_parameter_on_node(uint8_t node_id, const char *name, ParamGetSetStringCb *cb)
{
WITH_SEMAPHORE(_param_sem);
// fail if waiting for any previous get/set request
if (param_int_cb != nullptr ||
param_float_cb != nullptr ||
param_string_cb != nullptr) {
return false;
}
param_getset_req.index = 0;
param_getset_req.name.len = strncpy_noterm((char*)param_getset_req.name.data, name, sizeof(param_getset_req.name.data));
param_getset_req.value.union_tag = UAVCAN_PROTOCOL_PARAM_VALUE_EMPTY;
param_string_cb = cb;
param_request_sent = false;
param_request_sent_ms = AP_HAL::millis();
param_request_node_id = node_id;
return true;
}
void AP_DroneCAN::handle_param_get_set_response(const CanardRxTransfer& transfer, const uavcan_protocol_param_GetSetResponse& rsp)
{
WITH_SEMAPHORE(_param_sem);
if (!param_int_cb &&
!param_float_cb &&
!param_string_cb) {
return;
}
if ((rsp.value.union_tag == UAVCAN_PROTOCOL_PARAM_VALUE_INTEGER_VALUE) && param_int_cb) {
int32_t val = rsp.value.integer_value;
if ((*param_int_cb)(this, transfer.source_node_id, (const char*)rsp.name.data, val)) {
// we want the parameter to be set with val
param_getset_req.index = 0;
memcpy(param_getset_req.name.data, rsp.name.data, rsp.name.len);
param_getset_req.value.integer_value = val;
param_getset_req.value.union_tag = UAVCAN_PROTOCOL_PARAM_VALUE_INTEGER_VALUE;
param_request_sent = false;
param_request_sent_ms = AP_HAL::millis();
param_request_node_id = transfer.source_node_id;
return;
}
} else if ((rsp.value.union_tag == UAVCAN_PROTOCOL_PARAM_VALUE_REAL_VALUE) && param_float_cb) {
float val = rsp.value.real_value;
if ((*param_float_cb)(this, transfer.source_node_id, (const char*)rsp.name.data, val)) {
// we want the parameter to be set with val
param_getset_req.index = 0;
memcpy(param_getset_req.name.data, rsp.name.data, rsp.name.len);
param_getset_req.value.real_value = val;
param_getset_req.value.union_tag = UAVCAN_PROTOCOL_PARAM_VALUE_REAL_VALUE;
param_request_sent = false;
param_request_sent_ms = AP_HAL::millis();
param_request_node_id = transfer.source_node_id;
return;
}
} else if ((rsp.value.union_tag == UAVCAN_PROTOCOL_PARAM_VALUE_STRING_VALUE) && param_string_cb) {
string val;
memcpy(&val, &rsp.value.string_value, sizeof(val));
if ((*param_string_cb)(this, transfer.source_node_id, (const char*)rsp.name.data, val)) {
// we want the parameter to be set with val
param_getset_req.index = 0;
memcpy(param_getset_req.name.data, rsp.name.data, rsp.name.len);
memcpy(&param_getset_req.value.string_value, &val, sizeof(val));
param_getset_req.value.union_tag = UAVCAN_PROTOCOL_PARAM_VALUE_STRING_VALUE;
param_request_sent = false;
param_request_sent_ms = AP_HAL::millis();
param_request_node_id = transfer.source_node_id;
return;
}
}
param_request_sent_ms = 0;
param_int_cb = nullptr;
param_float_cb = nullptr;
param_string_cb = nullptr;
}
void AP_DroneCAN::send_parameter_save_request()
{
WITH_SEMAPHORE(_param_save_sem);
if (param_save_request_sent) {
return;
}
param_save_client.request(param_save_request_node_id, param_save_req);
param_save_request_sent = true;
}
bool AP_DroneCAN::save_parameters_on_node(uint8_t node_id, ParamSaveCb *cb)
{
WITH_SEMAPHORE(_param_save_sem);
if (save_param_cb != nullptr) {
//busy
return false;
}
param_save_req.opcode = UAVCAN_PROTOCOL_PARAM_EXECUTEOPCODE_REQUEST_OPCODE_SAVE;
param_save_request_sent = false;
param_save_request_node_id = node_id;
save_param_cb = cb;
return true;
}
// handle parameter save request response
void AP_DroneCAN::handle_param_save_response(const CanardRxTransfer& transfer, const uavcan_protocol_param_ExecuteOpcodeResponse& rsp)
{
WITH_SEMAPHORE(_param_save_sem);
if (!save_param_cb) {
return;
}
(*save_param_cb)(this, transfer.source_node_id, rsp.ok);
save_param_cb = nullptr;
}
// Send Reboot command
// Note: Do not call this from outside DroneCAN thread context,
// THIS IS NOT A THREAD SAFE API!
void AP_DroneCAN::send_reboot_request(uint8_t node_id)
{
uavcan_protocol_RestartNodeRequest request;
request.magic_number = UAVCAN_PROTOCOL_RESTARTNODE_REQUEST_MAGIC_NUMBER;
restart_node_client.request(node_id, request);
}
// check if a option is set and if it is then reset it to 0.
// return true if it was set
bool AP_DroneCAN::check_and_reset_option(Options option)
{
bool ret = option_is_set(option);
if (ret) {
_options.set_and_save(int16_t(_options.get() & ~uint16_t(option)));
}
return ret;
}
// handle prearm check
bool AP_DroneCAN::prearm_check(char* fail_msg, uint8_t fail_msg_len) const
{
// forward this to DNA_Server
return _dna_server.prearm_check(fail_msg, fail_msg_len);
}
/*
periodic logging
*/
void AP_DroneCAN::logging(void)
{
#if HAL_LOGGING_ENABLED
const uint32_t now_ms = AP_HAL::millis();
if (now_ms - last_log_ms < 1000) {
return;
}
last_log_ms = now_ms;
if (HAL_NUM_CAN_IFACES <= _driver_index) {
// no interface?
return;
}
const auto *iface = hal.can[_driver_index];
if (iface == nullptr) {
return;
}
const auto *stats = iface->get_statistics();
if (stats == nullptr) {
// statistics not implemented on this interface
return;
}
const auto &s = *stats;
// @LoggerMessage: CANS
// @Description: CAN Bus Statistics
// @Field: TimeUS: Time since system startup
// @Field: I: driver index
// @Field: T: transmit success count
// @Field: Trq: transmit request count
// @Field: Trej: transmit reject count
// @Field: Tov: transmit overflow count
// @Field: Tto: transmit timeout count
// @Field: Tab: transmit abort count
// @Field: R: receive count
// @Field: Rov: receive overflow count
// @Field: Rer: receive error count
// @Field: Bo: bus offset error count
// @Field: Etx: ESC successful send count
// @Field: Stx: Servo successful send count
// @Field: Ftx: ESC/Servo failed-to-send count
AP::logger().WriteStreaming("CANS",
"TimeUS,I,T,Trq,Trej,Tov,Tto,Tab,R,Rov,Rer,Bo,Etx,Stx,Ftx",
"s#-------------",
"F--------------",
"QBIIIIIIIIIIIII",
AP_HAL::micros64(),
_driver_index,
s.tx_success,
s.tx_requests,
s.tx_rejected,
s.tx_overflow,
s.tx_timedout,
s.tx_abort,
s.rx_received,
s.rx_overflow,
s.rx_errors,
s.num_busoff_err,
_esc_send_count,
_srv_send_count,
_fail_send_count);
#endif // HAL_LOGGING_ENABLED
}
// add an 11 bit auxillary driver
bool AP_DroneCAN::add_11bit_driver(CANSensor *sensor)
{
return canard_iface.add_11bit_driver(sensor);
}
// handler for outgoing frames for auxillary drivers
bool AP_DroneCAN::write_aux_frame(AP_HAL::CANFrame &out_frame, const uint32_t timeout_us)
{
if (out_frame.isExtended()) {
// don't allow extended frames to be sent by auxillary driver
return false;
}
return canard_iface.write_aux_frame(out_frame, timeout_us);
}
#endif // HAL_NUM_CAN_IFACES