ardupilot/libraries/SITL/SIM_SilentWings.cpp
2019-08-15 15:16:11 +10:00

319 lines
10 KiB
C++
Executable File

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
simulator connector for ardupilot version of SilentWings
*/
#include "SIM_SilentWings.h"
#include <stdio.h>
#include <errno.h>
#include <AP_HAL/AP_HAL.h>
extern const AP_HAL::HAL& hal;
using namespace SITL;
static const struct {
const char *name;
float value;
bool save;
} sim_defaults[] = {
{ "AHRS_EKF_TYPE", 10 },
{ "INS_GYR_CAL", 0 },
{ "EK2_ENABLE", 0 },
{ "ARSPD_ENABLE", 1 },
{ "ARSPD_USE", 1 },
{ "INS_ACC2OFFS_X", 0.001 },
{ "INS_ACC2OFFS_Y", 0.001 },
{ "INS_ACC2OFFS_Z", 0.001 },
{ "INS_ACC2SCAL_X", 1.001 },
{ "INS_ACC2SCAL_Y", 1.001 },
{ "INS_ACC2SCAL_Z", 1.001 },
{ "INS_ACCOFFS_X", 0.001 },
{ "INS_ACCOFFS_Y", 0.001 },
{ "INS_ACCOFFS_Z", 0.001 },
{ "INS_ACCSCAL_X", 1.001 },
{ "INS_ACCSCAL_Y", 1.001 },
{ "INS_ACCSCAL_Z", 1.001 },
};
SilentWings::SilentWings(const char *frame_str) :
Aircraft(frame_str),
last_data_time_ms(0),
first_pkt_timestamp_ms(0),
time_base_us(0),
sock(true),
home_initialized(false),
inited_first_pkt_timestamp(false)
{
// Force ArduPlane to use sensor data from SilentWings as the actual state,
// without using EKF, i.e., using "fake EKF (type 10)". Disable gyro calibration.
// Set a few other parameters to specific values to keep the calibration checks happy.
// TO DO: fix this. Setting parameters in this way doesn't appear to have any effect.
for (uint8_t i = 0; i < ARRAY_SIZE(sim_defaults); i++) {
AP_Param::set_default_by_name(sim_defaults[i].name, sim_defaults[i].value);
if (sim_defaults[i].save) {
enum ap_var_type ptype;
AP_Param *p = AP_Param::find(sim_defaults[i].name, &ptype);
if (!p->configured()) {
p->save();
}
}
}
}
/*
Create and set in/out socket
*/
void SilentWings::set_interface_ports(const char* address, const int port_in, const int port_out)
{
// Ignore the specified port_in.
// try to bind to a specific port so that if we restart ArduPilot
// Gazebo keeps sending us packets. Not strictly necessary but
// useful for debugging
if (!sock.bind("127.0.0.1", _port_in)) {
fprintf(stderr, "SITL: socket in bind failed on sim in : %d - %s\n", _port_in, strerror(errno));
fprintf(stderr, "Aborting launch...\n");
exit(1);
}
printf("Bind %s:%d for SITL in\n", "127.0.0.1", _port_in);
sock.reuseaddress();
sock.set_blocking(false);
_sw_address = address;
// Ignore the specified port_out.
printf("Setting Silent Wings interface to %s:%d \n", _sw_address, _sw_port);
}
/*
decode and send servos
*/
void SilentWings::send_servos(const struct sitl_input &input)
{
char *buf = nullptr;
// Turn off direct joystick input to the simulator. All joystick commands
// should go through Mission Planner and get properly fused with ArduPlane's
// control inputs when in automatic flight modes.
float joystick = 0.0f;
float aileron = filtered_servo_angle(input, 0);
float elevator = filtered_servo_angle(input, 1);
float throttle = filtered_servo_range(input, 2);
float rudder = filtered_servo_angle(input, 3);
ssize_t buflen = asprintf(&buf,
"JOY %f\n"
"AIL %f\n"
"ELE %f\n"
"RUD %f\n"
"THR %f\n",
joystick, aileron, elevator, rudder, throttle) - 1;
if (buflen < 0) {
fprintf(stderr, "Fatal: Failed to allocate enough space for data\n"),
exit(1);
}
ssize_t sent = sock.sendto(buf, buflen, _sw_address, _sw_port);
free(buf);
if (sent < 0) {
fprintf(stderr, "Fatal: Failed to send on control socket\n"),
exit(1);
}
if (sent < buflen) {
fprintf(stderr, "Failed to send all bytes on control socket\n");
}
}
/*
Receive an update from the FDM
This is a blocking function
*/
bool SilentWings::recv_fdm(void)
{
fdm_packet tmp_pkt;
memset(&pkt, 0, sizeof(pkt));
ssize_t nread = sock.recv(&tmp_pkt, sizeof(pkt), 0);
// nread == -1 (255) means no data has arrived
if (nread != sizeof(pkt)) {
return false;
}
memcpy(&pkt, &tmp_pkt, sizeof(pkt));
// data received successfully
return true;
}
void SilentWings::process_packet()
{
// pkt.timestamp is the time of day in SilentWings, measured in ms
// since midnight.
// TO DO: check what happens when a flight in SW crosses midnight
if (inited_first_pkt_timestamp) {
uint64_t tus = (pkt.timestamp - first_pkt_timestamp_ms) * 1.0e3f;
time_now_us = time_base_us + tus;
}
else {
first_pkt_timestamp_ms = pkt.timestamp;
time_base_us = time_now_us;
inited_first_pkt_timestamp = true;
}
dcm.from_euler(radians(pkt.roll), radians(pkt.pitch), radians(pkt.yaw));
accel_body = Vector3f(pkt.ax * GRAVITY_MSS, pkt.ay * GRAVITY_MSS, pkt.az * GRAVITY_MSS); // This is g-load.
gyro = Vector3f(radians(pkt.d_roll), radians(pkt.d_pitch), radians(pkt.d_yaw));
// SilentWings provides velocity in body frame.
velocity_ef = dcm * Vector3f(pkt.vx, pkt.vy, pkt.vz);
// SilentWings also provides velocity in body frame w.r.t. the wind, from which we can infer the wind.
wind_ef = dcm * (Vector3f(pkt.vx, pkt.vy, pkt.vz) - Vector3f(pkt.vx_wind, pkt.vy_wind, pkt.vz_wind));
airspeed = pkt.v_eas;
airspeed_pitot = pkt.v_eas;
Location curr_location;
curr_location.lat = pkt.position_latitude * 1.0e7;
curr_location.lng = pkt.position_longitude * 1.0e7;
curr_location.alt = pkt.altitude_msl * 100.0f;
ground_level = curr_location.alt * 0.01f - pkt.altitude_ground;
Vector3f posdelta = home.get_distance_NED(curr_location);
position.x = posdelta.x;
position.y = posdelta.y;
position.z = posdelta.z;
update_position();
// In case Silent Wings' reported location and our location calculated using an offset from the home location diverge, we need
// to reset the home location.
if (curr_location.get_distance(location) > 4 || abs(curr_location.alt - location.alt)*0.01f > 2.0f || !home_initialized) {
printf("SilentWings home reset dist=%f alt=%.1f/%.1f\n",
curr_location.get_distance(location), curr_location.alt*0.01f, location.alt*0.01f);
// reset home location
home.lat = curr_location.lat;
home.lng = curr_location.lng;
// Resetting altitude reference point in flight can throw off a bunch
// of important calculations, so let the home altitude always be 0m MSL
home.alt = 0;
position.x = 0;
position.y = 0;
position.z = -curr_location.alt;
home_initialized = true;
update_position();
}
// Auto-adjust to Silent Wings' frame rate
// This affects the data rate (without this adjustment, the data rate is
// low no matter what the output_udp_rate in SW's options.dat file is).
double deltat = (AP_HAL::millis() - last_data_time_ms) / 1000.0f;
if (deltat < 0.01 && deltat > 0) {
adjust_frame_time(1.0/deltat);
}
last_data_time_ms = AP_HAL::millis();
report.data_count++;
report.frame_count++;
if (0) {
printf("Delta: %f Time: %" PRIu64 "\n", deltat, time_now_us);
printf("Accel.x %f\n", accel_body.x);
printf("Accel.y %f\n", accel_body.y);
printf("Accel.z %f\n", accel_body.z);
printf("Gyro.x %f\n", gyro.x);
printf("Gyro.y %f\n", gyro.y);
printf("Gyro.z %f\n", gyro.z);
printf("Pos.x %f\n", position.x);
printf("Pos.y %f\n", position.y);
printf("Pos.z %f\n", position.z);
printf("Roll %f\n", pkt.roll);
printf("Pitch %f\n", pkt.pitch);
printf("Yaw %f\n", pkt.yaw);
}
}
/*
Extrapolates sensor data if Silent Wings hasn't sent us a data packet in a while.
*/
bool SilentWings::interim_update()
{
if (AP_HAL::millis() - last_data_time_ms > 200) {
// don't extrapolate beyond 0.2s
return false;
}
float delta_time = frame_time_us * 1e-6f;
time_now_us += frame_time_us;
extrapolate_sensors(delta_time);
update_position();
report.frame_count++;
return true;
}
/*
Update the Silent Wings simulation by one time step.
*/
void SilentWings::update(const struct sitl_input &input)
{
if (recv_fdm()) {
process_packet();
// Time has been advanced by process_packet(.)
send_servos(input);
}
else if (interim_update()) {
// This clause is triggered only if we previously
// received at least one data packet.
// Time has been advanced by interim_update(.)
send_servos(input);
}
// This clause is triggered if and only if we haven't received
// any data packets yet (and therefore didn't attempt
// extrapolating data via interim_update(.) either).
if (!inited_first_pkt_timestamp){
time_advance();
}
else {
if (use_time_sync) {
sync_frame_time();
}
}
update_mag_field_bf();
uint32_t now = AP_HAL::millis();
if (report.last_report_ms == 0) {
report.last_report_ms = now;
printf("Resetting last report time to now\n");
}
if (now - report.last_report_ms > 5000) {
float dt = (now - report.last_report_ms) * 1.0e-3f;
printf("Data rate: %.1f FPS Frame rate: %.1f FPS\n",
report.data_count/dt, report.frame_count/dt);
report.last_report_ms = now;
report.data_count = 0;
report.frame_count = 0;
}
}