mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-02 14:13:42 -04:00
7b7bf3ef86
this fixes a problem where two different locations could both be mapped to the same disk block in the terrain/*.DAT files. That meant that pre-filled terrain on the microSD card would sometimes require a download in flight. It also means that a RTL with loss of GCS could sometimes fly through a region with no terrain data available Other changes in this patch: - allow for a 2cm discrepancy in the lat/lon of the grid corners. This is needed to allow for slightly different floating point rounding in tools that pre-generate terrain data to load on the microSD - added TERRAIN_OPTIONS parameter to allow the user to disable attempts to download new terrain data. This is mostly useful for testing to validate a terrain generator
184 lines
5.9 KiB
C++
184 lines
5.9 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*
|
|
handle disk IO for terrain code
|
|
*/
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <AP_Common/AP_Common.h>
|
|
#include <AP_Math/AP_Math.h>
|
|
#include <GCS_MAVLink/GCS_MAVLink.h>
|
|
#include <GCS_MAVLink/GCS.h>
|
|
#include "AP_Terrain.h"
|
|
|
|
#if AP_TERRAIN_AVAILABLE
|
|
|
|
#include <AP_Filesystem/AP_Filesystem.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
/*
|
|
calculate bit number in grid_block bitmap. This corresponds to a
|
|
bit representing a 4x4 mavlink transmitted block
|
|
*/
|
|
uint8_t AP_Terrain::grid_bitnum(uint8_t idx_x, uint8_t idx_y)
|
|
{
|
|
ASSERT_RANGE(idx_x,0,27);
|
|
ASSERT_RANGE(idx_y,0,31);
|
|
uint8_t subgrid_x = idx_x / TERRAIN_GRID_MAVLINK_SIZE;
|
|
uint8_t subgrid_y = idx_y / TERRAIN_GRID_MAVLINK_SIZE;
|
|
ASSERT_RANGE(subgrid_x,0,TERRAIN_GRID_BLOCK_MUL_X-1);
|
|
ASSERT_RANGE(subgrid_y,0,TERRAIN_GRID_BLOCK_MUL_Y-1);
|
|
return subgrid_y + TERRAIN_GRID_BLOCK_MUL_Y*subgrid_x;
|
|
}
|
|
|
|
/*
|
|
given a grid_info check that a given idx_x/idx_y is available (set
|
|
in the bitmap)
|
|
*/
|
|
bool AP_Terrain::check_bitmap(const struct grid_block &grid, uint8_t idx_x, uint8_t idx_y)
|
|
{
|
|
uint8_t bitnum = grid_bitnum(idx_x, idx_y);
|
|
return (grid.bitmap & (((uint64_t)1U)<<bitnum)) != 0;
|
|
}
|
|
|
|
/*
|
|
given a location, calculate the 32x28 grid SW corner, plus the
|
|
grid indices
|
|
*/
|
|
void AP_Terrain::calculate_grid_info(const Location &loc, struct grid_info &info) const
|
|
{
|
|
// grids start on integer degrees. This makes storing terrain data
|
|
// on the SD card a bit easier
|
|
info.lat_degrees = (loc.lat<0?(loc.lat-9999999L):loc.lat) / (10*1000*1000L);
|
|
info.lon_degrees = (loc.lng<0?(loc.lng-9999999L):loc.lng) / (10*1000*1000L);
|
|
|
|
// create reference position for this rounded degree position
|
|
Location ref;
|
|
ref.lat = info.lat_degrees*10*1000*1000L;
|
|
ref.lng = info.lon_degrees*10*1000*1000L;
|
|
|
|
// find offset from reference
|
|
const Vector2f offset = ref.get_distance_NE(loc);
|
|
|
|
// get indices in terms of grid_spacing elements
|
|
uint32_t idx_x = offset.x / grid_spacing;
|
|
uint32_t idx_y = offset.y / grid_spacing;
|
|
|
|
// find indexes into 32*28 grids for this degree reference. Note
|
|
// the use of TERRAIN_GRID_BLOCK_SPACING_{X,Y} which gives a one square
|
|
// overlap between grids
|
|
info.grid_idx_x = idx_x / TERRAIN_GRID_BLOCK_SPACING_X;
|
|
info.grid_idx_y = idx_y / TERRAIN_GRID_BLOCK_SPACING_Y;
|
|
|
|
// find the indices within the 32*28 grid
|
|
info.idx_x = idx_x % TERRAIN_GRID_BLOCK_SPACING_X;
|
|
info.idx_y = idx_y % TERRAIN_GRID_BLOCK_SPACING_Y;
|
|
|
|
// find the fraction (0..1) within the square
|
|
info.frac_x = (offset.x - idx_x * grid_spacing) / grid_spacing;
|
|
info.frac_y = (offset.y - idx_y * grid_spacing) / grid_spacing;
|
|
|
|
// calculate lat/lon of SW corner of 32*28 grid_block
|
|
ref.offset(info.grid_idx_x * TERRAIN_GRID_BLOCK_SPACING_X * (float)grid_spacing,
|
|
info.grid_idx_y * TERRAIN_GRID_BLOCK_SPACING_Y * (float)grid_spacing);
|
|
info.grid_lat = ref.lat;
|
|
info.grid_lon = ref.lng;
|
|
|
|
ASSERT_RANGE(info.idx_x,0,TERRAIN_GRID_BLOCK_SPACING_X-1);
|
|
ASSERT_RANGE(info.idx_y,0,TERRAIN_GRID_BLOCK_SPACING_Y-1);
|
|
ASSERT_RANGE(info.frac_x,0,1);
|
|
ASSERT_RANGE(info.frac_y,0,1);
|
|
}
|
|
|
|
|
|
/*
|
|
find a grid structure given a grid_info
|
|
*/
|
|
AP_Terrain::grid_cache &AP_Terrain::find_grid_cache(const struct grid_info &info)
|
|
{
|
|
uint16_t oldest_i = 0;
|
|
|
|
// see if we have that grid
|
|
for (uint16_t i=0; i<cache_size; i++) {
|
|
if (TERRAIN_LATLON_EQUAL(cache[i].grid.lat,info.grid_lat) &&
|
|
TERRAIN_LATLON_EQUAL(cache[i].grid.lon,info.grid_lon) &&
|
|
cache[i].grid.spacing == grid_spacing) {
|
|
cache[i].last_access_ms = AP_HAL::millis();
|
|
return cache[i];
|
|
}
|
|
if (cache[i].last_access_ms < cache[oldest_i].last_access_ms) {
|
|
oldest_i = i;
|
|
}
|
|
}
|
|
|
|
// Not found. Use the oldest grid and make it this grid,
|
|
// initially unpopulated
|
|
struct grid_cache &grid = cache[oldest_i];
|
|
memset(&grid, 0, sizeof(grid));
|
|
|
|
grid.grid.lat = info.grid_lat;
|
|
grid.grid.lon = info.grid_lon;
|
|
grid.grid.spacing = grid_spacing;
|
|
grid.grid.grid_idx_x = info.grid_idx_x;
|
|
grid.grid.grid_idx_y = info.grid_idx_y;
|
|
grid.grid.lat_degrees = info.lat_degrees;
|
|
grid.grid.lon_degrees = info.lon_degrees;
|
|
grid.grid.version = TERRAIN_GRID_FORMAT_VERSION;
|
|
grid.last_access_ms = AP_HAL::millis();
|
|
|
|
// mark as waiting for disk read
|
|
grid.state = GRID_CACHE_DISKWAIT;
|
|
|
|
return grid;
|
|
}
|
|
|
|
/*
|
|
find cache index of disk_block
|
|
*/
|
|
int16_t AP_Terrain::find_io_idx(enum GridCacheState state)
|
|
{
|
|
// try first with given state
|
|
for (uint16_t i=0; i<cache_size; i++) {
|
|
if (TERRAIN_LATLON_EQUAL(disk_block.block.lat,cache[i].grid.lat) &&
|
|
TERRAIN_LATLON_EQUAL(disk_block.block.lon,cache[i].grid.lon) &&
|
|
cache[i].state == state) {
|
|
return i;
|
|
}
|
|
}
|
|
// then any state
|
|
for (uint16_t i=0; i<cache_size; i++) {
|
|
if (TERRAIN_LATLON_EQUAL(disk_block.block.lat,cache[i].grid.lat) &&
|
|
TERRAIN_LATLON_EQUAL(disk_block.block.lon,cache[i].grid.lon)) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
get CRC for a block
|
|
*/
|
|
uint16_t AP_Terrain::get_block_crc(struct grid_block &block)
|
|
{
|
|
uint16_t saved_crc = block.crc;
|
|
block.crc = 0;
|
|
uint16_t ret = crc16_ccitt((const uint8_t *)&block, sizeof(block), 0);
|
|
block.crc = saved_crc;
|
|
return ret;
|
|
}
|
|
|
|
#endif // AP_TERRAIN_AVAILABLE
|