ardupilot/libraries/AP_HAL_ChibiOS/Util.cpp
Andrew Tridgell 6fab8feeae HAL_ChibiOS: implement uart_info per-uart
this allows for some UARTs to be of EMPTY type
2021-06-05 18:52:33 +10:00

602 lines
20 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Andrew Tridgell and Siddharth Bharat Purohit
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include "Util.h"
#include <ch.h>
#include "RCOutput.h"
#include "UARTDriver.h"
#include "hwdef/common/stm32_util.h"
#include "hwdef/common/watchdog.h"
#include "hwdef/common/flash.h"
#include <AP_ROMFS/AP_ROMFS.h>
#include <AP_Common/ExpandingString.h>
#include "sdcard.h"
#include "shared_dma.h"
#include <AP_Common/ExpandingString.h>
#if defined(HAL_PWM_ALARM) || HAL_DSHOT_ALARM || HAL_ENABLE_LIBUAVCAN_DRIVERS
#include <AP_Notify/AP_Notify.h>
#endif
#if HAL_ENABLE_SAVE_PERSISTENT_PARAMS
#include <AP_InertialSensor/AP_InertialSensor.h>
#endif
#if HAL_WITH_IO_MCU
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_IOMCU/AP_IOMCU.h>
extern AP_IOMCU iomcu;
#endif
extern const AP_HAL::HAL& hal;
using namespace ChibiOS;
#if CH_CFG_USE_HEAP == TRUE
/**
how much free memory do we have in bytes.
*/
uint32_t Util::available_memory(void)
{
// from malloc.c in hwdef
return mem_available();
}
/*
Special Allocation Routines
*/
void* Util::malloc_type(size_t size, AP_HAL::Util::Memory_Type mem_type)
{
if (mem_type == AP_HAL::Util::MEM_DMA_SAFE) {
return malloc_dma(size);
} else if (mem_type == AP_HAL::Util::MEM_FAST) {
return malloc_fastmem(size);
} else {
return calloc(1, size);
}
}
void Util::free_type(void *ptr, size_t size, AP_HAL::Util::Memory_Type mem_type)
{
if (ptr != NULL) {
free(ptr);
}
}
#ifdef ENABLE_HEAP
void *Util::allocate_heap_memory(size_t size)
{
void *buf = malloc(size);
if (buf == nullptr) {
return nullptr;
}
memory_heap_t *heap = (memory_heap_t *)malloc(sizeof(memory_heap_t));
if (heap != nullptr) {
chHeapObjectInit(heap, buf, size);
}
return heap;
}
/*
realloc implementation thanks to wolfssl, used by AP_Scripting
*/
void *Util::std_realloc(void *addr, size_t size)
{
if (size == 0) {
free(addr);
return nullptr;
}
if (addr == nullptr) {
return malloc(size);
}
void *new_mem = malloc(size);
if (new_mem != nullptr) {
memcpy(new_mem, addr, chHeapGetSize(addr) > size ? size : chHeapGetSize(addr));
free(addr);
}
return new_mem;
}
void *Util::heap_realloc(void *heap, void *ptr, size_t new_size)
{
if (heap == nullptr) {
return nullptr;
}
if (new_size == 0) {
if (ptr != nullptr) {
chHeapFree(ptr);
}
return nullptr;
}
if (ptr == nullptr) {
return chHeapAlloc((memory_heap_t *)heap, new_size);
}
void *new_mem = chHeapAlloc((memory_heap_t *)heap, new_size);
if (new_mem != nullptr) {
memcpy(new_mem, ptr, chHeapGetSize(ptr) > new_size ? new_size : chHeapGetSize(ptr));
chHeapFree(ptr);
}
return new_mem;
}
#endif // ENABLE_HEAP
#endif // CH_CFG_USE_HEAP
/*
get safety switch state
*/
Util::safety_state Util::safety_switch_state(void)
{
#if HAL_USE_PWM == TRUE
return ((RCOutput *)hal.rcout)->_safety_switch_state();
#else
return SAFETY_NONE;
#endif
}
#ifdef HAL_PWM_ALARM
struct Util::ToneAlarmPwmGroup Util::_toneAlarm_pwm_group = HAL_PWM_ALARM;
#endif
uint8_t Util::_toneAlarm_types = 0;
bool Util::toneAlarm_init(uint8_t types)
{
#ifdef HAL_PWM_ALARM
_toneAlarm_pwm_group.pwm_cfg.period = 1000;
pwmStart(_toneAlarm_pwm_group.pwm_drv, &_toneAlarm_pwm_group.pwm_cfg);
#endif
_toneAlarm_types = types;
#if !defined(HAL_PWM_ALARM) && !HAL_DSHOT_ALARM && !HAL_ENABLE_LIBUAVCAN_DRIVERS
// Nothing to do
return false;
#else
return true;
#endif
}
void Util::toneAlarm_set_buzzer_tone(float frequency, float volume, uint32_t duration_ms)
{
#ifdef HAL_PWM_ALARM
if (is_zero(frequency) || is_zero(volume)) {
pwmDisableChannel(_toneAlarm_pwm_group.pwm_drv, _toneAlarm_pwm_group.chan);
} else {
pwmChangePeriod(_toneAlarm_pwm_group.pwm_drv,
roundf(_toneAlarm_pwm_group.pwm_cfg.frequency/frequency));
pwmEnableChannel(_toneAlarm_pwm_group.pwm_drv, _toneAlarm_pwm_group.chan, roundf(volume*_toneAlarm_pwm_group.pwm_cfg.frequency/frequency)/2);
}
#endif // HAL_PWM_ALARM
#if HAL_DSHOT_ALARM
// don't play the motors while flying
if (!(_toneAlarm_types & AP_Notify::Notify_Buzz_DShot) || get_soft_armed() || hal.rcout->get_dshot_esc_type() != RCOutput::DSHOT_ESC_BLHELI) {
return;
}
if (is_zero(frequency)) { // silence
hal.rcout->send_dshot_command(RCOutput::DSHOT_RESET, RCOutput::ALL_CHANNELS, duration_ms);
} else if (frequency < 1047) { // C
hal.rcout->send_dshot_command(RCOutput::DSHOT_BEEP1, RCOutput::ALL_CHANNELS, duration_ms);
} else if (frequency < 1175) { // D
hal.rcout->send_dshot_command(RCOutput::DSHOT_BEEP2, RCOutput::ALL_CHANNELS, duration_ms);
} else if (frequency < 1319) { // E
hal.rcout->send_dshot_command(RCOutput::DSHOT_BEEP3, RCOutput::ALL_CHANNELS, duration_ms);
} else if (frequency < 1397) { // F
hal.rcout->send_dshot_command(RCOutput::DSHOT_BEEP4, RCOutput::ALL_CHANNELS, duration_ms);
} else { // G+
hal.rcout->send_dshot_command(RCOutput::DSHOT_BEEP5, RCOutput::ALL_CHANNELS, duration_ms);
}
#endif // HAL_DSHOT_ALARM
}
/*
set HW RTC in UTC microseconds
*/
void Util::set_hw_rtc(uint64_t time_utc_usec)
{
stm32_set_utc_usec(time_utc_usec);
}
/*
get system clock in UTC microseconds
*/
uint64_t Util::get_hw_rtc() const
{
return stm32_get_utc_usec();
}
#if !defined(HAL_NO_FLASH_SUPPORT) && !defined(HAL_NO_ROMFS_SUPPORT)
#if defined(HAL_NO_GCS) || defined(HAL_BOOTLOADER_BUILD)
#define Debug(fmt, args ...) do { hal.console->printf(fmt, ## args); } while (0)
#else
#include <GCS_MAVLink/GCS.h>
#define Debug(fmt, args ...) do { gcs().send_text(MAV_SEVERITY_INFO, fmt, ## args); } while (0)
#endif
Util::FlashBootloader Util::flash_bootloader()
{
uint32_t fw_size;
const char *fw_name = "bootloader.bin";
EXPECT_DELAY_MS(11000);
const uint8_t *fw = AP_ROMFS::find_decompress(fw_name, fw_size);
if (!fw) {
Debug("failed to find %s\n", fw_name);
return FlashBootloader::NOT_AVAILABLE;
}
// make sure size is multiple of 32
fw_size = (fw_size + 31U) & ~31U;
bool uptodate = true;
const uint32_t addr = hal.flash->getpageaddr(0);
if (memcmp(fw, (const void*)addr, fw_size) != 0) {
uptodate = false;
}
#if HAL_ENABLE_SAVE_PERSISTENT_PARAMS
// see if we should store persistent parameters along with the
// bootloader. We only do this on boards using a single sector for
// the bootloader. The persistent parameters are stored as text at
// the end of the sector
const int32_t space_available = hal.flash->getpagesize(0) - int32_t(fw_size);
ExpandingString persistent_params {}, old_persistent_params {};
if (get_persistent_params(persistent_params) &&
space_available >= persistent_params.get_length() &&
(!load_persistent_params(old_persistent_params) ||
strcmp(persistent_params.get_string(),
old_persistent_params.get_string()) != 0)) {
// persistent parameters have changed, we will update
// bootloader to allow storage of the params
uptodate = false;
}
#endif
if (uptodate) {
Debug("Bootloader up-to-date\n");
AP_ROMFS::free(fw);
return FlashBootloader::NO_CHANGE;
}
Debug("Erasing\n");
uint32_t erased_size = 0;
uint8_t erase_page = 0;
while (erased_size < fw_size) {
uint32_t page_size = hal.flash->getpagesize(erase_page);
if (page_size == 0) {
AP_ROMFS::free(fw);
return FlashBootloader::FAIL;
}
hal.scheduler->expect_delay_ms(1000);
if (!hal.flash->erasepage(erase_page)) {
Debug("Erase %u failed\n", erase_page);
AP_ROMFS::free(fw);
return FlashBootloader::FAIL;
}
erased_size += page_size;
erase_page++;
}
Debug("Flashing %s @%08x\n", fw_name, (unsigned int)addr);
const uint8_t max_attempts = 10;
hal.flash->keep_unlocked(true);
for (uint8_t i=0; i<max_attempts; i++) {
hal.scheduler->expect_delay_ms(1000);
bool ok = hal.flash->write(addr, fw, fw_size);
if (!ok) {
Debug("Flash failed! (attempt=%u/%u)\n",
i+1,
max_attempts);
hal.scheduler->delay(100);
continue;
}
Debug("Flash OK\n");
#if HAL_ENABLE_SAVE_PERSISTENT_PARAMS
if (persistent_params.get_length()) {
const uint32_t ofs = hal.flash->getpagesize(0) - persistent_params.get_length();
hal.flash->write(addr+ofs, persistent_params.get_string(), persistent_params.get_length());
}
#endif
hal.flash->keep_unlocked(false);
AP_ROMFS::free(fw);
return FlashBootloader::OK;
}
hal.flash->keep_unlocked(false);
Debug("Flash failed after %u attempts\n", max_attempts);
AP_ROMFS::free(fw);
return FlashBootloader::FAIL;
}
#endif // !HAL_NO_FLASH_SUPPORT && !HAL_NO_ROMFS_SUPPORT
/*
display system identifer - board type and serial number
*/
bool Util::get_system_id(char buf[40])
{
uint8_t serialid[12];
char board_name[14];
memcpy(serialid, (const void *)UDID_START, 12);
strncpy(board_name, CHIBIOS_SHORT_BOARD_NAME, 13);
board_name[13] = 0;
// this format is chosen to match the format used by HAL_PX4
snprintf(buf, 40, "%s %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
board_name,
(unsigned)serialid[3], (unsigned)serialid[2], (unsigned)serialid[1], (unsigned)serialid[0],
(unsigned)serialid[7], (unsigned)serialid[6], (unsigned)serialid[5], (unsigned)serialid[4],
(unsigned)serialid[11], (unsigned)serialid[10], (unsigned)serialid[9],(unsigned)serialid[8]);
buf[39] = 0;
return true;
}
bool Util::get_system_id_unformatted(uint8_t buf[], uint8_t &len)
{
len = MIN(12, len);
memcpy(buf, (const void *)UDID_START, len);
return true;
}
// return true if the reason for the reboot was a watchdog reset
bool Util::was_watchdog_reset() const
{
return stm32_was_watchdog_reset();
}
#if CH_DBG_ENABLE_STACK_CHECK == TRUE
/*
display stack usage as text buffer for @SYS/threads.txt
*/
void Util::thread_info(ExpandingString &str)
{
#if HAL_ENABLE_THREAD_STATISTICS
uint64_t cumulative_cycles = ch.kernel_stats.m_crit_isr.cumulative;
for (thread_t *tp = chRegFirstThread(); tp; tp = chRegNextThread(tp)) {
if (tp->stats.best > 0) { // not run
cumulative_cycles += (uint64_t)tp->stats.cumulative;
}
}
#endif
// a header to allow for machine parsers to determine format
const uint32_t isr_stack_size = uint32_t((const uint8_t *)&__main_stack_end__ - (const uint8_t *)&__main_stack_base__);
#if HAL_ENABLE_THREAD_STATISTICS
str.printf("ThreadsV2\nISR PRI=255 sp=%p STACK=%u/%u LOAD=%4.1f%%\n",
&__main_stack_base__,
unsigned(stack_free(&__main_stack_base__)),
unsigned(isr_stack_size), 100.0f * float(ch.kernel_stats.m_crit_isr.cumulative) / float(cumulative_cycles));
ch.kernel_stats.m_crit_isr.cumulative = 0U;
#else
str.printf("ThreadsV2\nISR PRI=255 sp=%p STACK=%u/%u\n",
&__main_stack_base__,
unsigned(stack_free(&__main_stack_base__)),
unsigned(isr_stack_size));
#endif
for (thread_t *tp = chRegFirstThread(); tp; tp = chRegNextThread(tp)) {
uint32_t total_stack;
if (tp->wabase == (void*)&__main_thread_stack_base__) {
// main thread has its stack separated from the thread context
total_stack = uint32_t((const uint8_t *)&__main_thread_stack_end__ - (const uint8_t *)&__main_thread_stack_base__);
} else {
// all other threads have their thread context pointer
// above the stack top
total_stack = uint32_t(tp) - uint32_t(tp->wabase);
}
#if HAL_ENABLE_THREAD_STATISTICS
time_measurement_t stats = tp->stats;
if (tp->stats.best > 0) { // not run
str.printf("%-13.13s PRI=%3u sp=%p STACK=%4u/%4u LOAD=%4.1f%%%s\n",
tp->name, unsigned(tp->realprio), tp->wabase,
unsigned(stack_free(tp->wabase)), unsigned(total_stack),
100.0f * float(stats.cumulative) / float(cumulative_cycles),
// more than a loop slice is bad for everyone else, warn on
// more than a 200Hz slice so that only the worst offenders are identified
// also don't do this for the main or idle threads
tp != chThdGetSelfX() && unsigned(RTC2US(STM32_HSECLK, stats.worst)) > 5000
&& tp != get_main_thread() && tp->realprio != 1 ? "*" : "");
} else {
str.printf("%-13.13s PRI=%3u sp=%p STACK=%4u/%4u\n",
tp->name, unsigned(tp->realprio), tp->wabase, unsigned(stack_free(tp->wabase)), unsigned(total_stack));
}
// Giovanni thinks this is dangerous, but we can't get useable data without it
if (tp != chThdGetSelfX()) {
chTMObjectInit(&tp->stats); // reset counters to zero
} else {
tp->stats.cumulative = 0U;
}
#else
str.printf("%-13.13s PRI=%3u sp=%p STACK=%u/%u\n",
tp->name, unsigned(tp->realprio), tp->wabase,
unsigned(stack_free(tp->wabase)), unsigned(total_stack));
#endif
}
}
#endif // CH_DBG_ENABLE_STACK_CHECK == TRUE
#if CH_CFG_USE_SEMAPHORES
// request information on dma contention
void Util::dma_info(ExpandingString &str)
{
#ifndef HAL_NO_SHARED_DMA
ChibiOS::Shared_DMA::dma_info(str);
#endif
}
#endif
#if CH_CFG_USE_HEAP == TRUE
/*
return information on heap usage
*/
void Util::mem_info(ExpandingString &str)
{
memory_heap_t *heaps;
const struct memory_region *regions;
uint8_t num_heaps = malloc_get_heaps(&heaps, &regions);
str.printf("MemInfoV1\n");
for (uint8_t i=0; i<num_heaps; i++) {
size_t totalp=0, largest=0;
// get memory available on main heap
chHeapStatus(i == 0 ? nullptr : &heaps[i], &totalp, &largest);
str.printf("START=0x%08x LEN=%3uk FREE=%6u LRG=%6u TYPE=%1u\n",
unsigned(regions[i].address), unsigned(regions[i].size/1024),
unsigned(totalp), unsigned(largest), unsigned(regions[i].flags));
}
}
#endif
#if HAL_ENABLE_SAVE_PERSISTENT_PARAMS
static const char *persistent_header = "{{PERSISTENT_START_V1}}\n";
/*
create a set of persistent parameters in string form
*/
bool Util::get_persistent_params(ExpandingString &str) const
{
str.printf("%s", persistent_header);
#if HAL_INS_TEMPERATURE_CAL_ENABLE
const auto *ins = AP_InertialSensor::get_singleton();
if (ins) {
ins->get_persistent_params(str);
}
#endif
if (str.has_failed_allocation() || str.get_length() <= strlen(persistent_header)) {
// no data
return false;
}
// ensure that the length is a multiple of 32 to meet flash alignment requirements
while (!str.has_failed_allocation() && str.get_length() % 32 != 0) {
str.append(" ", 1);
}
return !str.has_failed_allocation();
}
/*
load a set of persistent parameters in string form from the bootloader sector
*/
bool Util::load_persistent_params(ExpandingString &str) const
{
const uint32_t addr = hal.flash->getpageaddr(0);
const uint32_t size = hal.flash->getpagesize(0);
const char *s = (const char *)memmem((void*)addr, size,
persistent_header,
strlen(persistent_header));
if (s) {
str.append(s, (addr+size) - uint32_t(s));
return !str.has_failed_allocation();
}
return false;
}
/*
apply persistent parameters from the bootloader sector to AP_Param
*/
void Util::apply_persistent_params(void) const
{
ExpandingString str {};
if (!load_persistent_params(str)) {
return;
}
char *s = str.get_writeable_string();
char *saveptr;
s += strlen(persistent_header);
uint32_t count = 0;
uint32_t errors = 0;
for (char *p = strtok_r(s, "\n", &saveptr);
p; p = strtok_r(nullptr, "\n", &saveptr)) {
char *eq = strchr(p, int('='));
if (eq) {
*eq = 0;
const char *pname = p;
const float value = atof(eq+1);
if (AP_Param::set_default_by_name(pname, value)) {
count++;
/*
we now have a special case for INS_ACC*_ID. To
support factory accelerometer calibration we need to
do a save() on the ID parameters if they are not
already in storage. This is needed as
AP_InertialSensor determines if a calibration has
been done by whether the IDs are configured in
storage
*/
if (strncmp(pname, "INS_ACC", 7) == 0 &&
strcmp(pname+strlen(pname)-3, "_ID") == 0) {
enum ap_var_type ptype;
AP_Int32 *ap = (AP_Int32 *)AP_Param::find(pname, &ptype);
if (ap && ptype == AP_PARAM_INT32) {
if (ap->get() != int32_t(value)) {
// the accelerometer ID has changed since
// this persistent data was saved. Stop
// loading persistent parameters as it is
// no longer valid for this board. This
// can happen if the user has set
// parameters to prevent loading of
// specific IMU drivers, or if they have
// setup an external IMU
errors++;
break;
}
if (!ap->configured_in_storage()) {
ap->save();
}
}
}
}
}
}
if (count) {
AP_Param::invalidate_count();
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Loaded %u persistent parameters (%u errors)",
unsigned(count), unsigned(errors));
}
}
#endif // HAL_ENABLE_SAVE_PERSISTENT_PARAMS
#if HAL_WITH_IO_MCU
extern ChibiOS::UARTDriver uart_io;
#endif
// request information on uart I/O
void Util::uart_info(ExpandingString &str)
{
#if !defined(HAL_NO_UARTDRIVER)
// a header to allow for machine parsers to determine format
str.printf("UARTV1\n");
for (uint8_t i = 0; i < HAL_UART_NUM_SERIAL_PORTS; i++) {
auto *uart = hal.serial(i);
if (uart) {
str.printf("SERIAL%u ", i);
uart->uart_info(str);
}
}
#if HAL_WITH_IO_MCU
str.printf("IOMCU ");
uart_io.uart_info(str);
#endif
#endif // HAL_NO_UARTDRIVER
}