ardupilot/libraries/AP_HAL_ChibiOS/Storage.cpp
Andrew Tridgell ee50eaf3c9 HAL_ChibiOS: go via AP_Filesystem for mount/unmount operations
this fixes a deadlock where a mount/unmount could access FATFS without
holding the AP_Filesystem semaphore
2020-10-27 10:45:03 +11:00

472 lines
13 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Andrew Tridgell and Siddharth Bharat Purohit
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include "Storage.h"
#include "HAL_ChibiOS_Class.h"
#include "Scheduler.h"
#include "hwdef/common/flash.h"
#include <AP_Filesystem/AP_Filesystem.h>
#include <stdio.h>
using namespace ChibiOS;
#ifndef HAL_USE_EMPTY_STORAGE
extern const AP_HAL::HAL& hal;
#ifndef HAL_STORAGE_FILE
// using SKETCHNAME allows the one microSD to be used
// for multiple vehicle types
#define HAL_STORAGE_FILE "/APM/" SKETCHNAME ".stg"
#endif
#ifndef HAL_STORAGE_BACKUP_FOLDER
// location of backup file
#define HAL_STORAGE_BACKUP_FOLDER "/APM/STRG_BAK"
#endif
#ifndef HAL_STORAGE_BACKUP_COUNT
#define HAL_STORAGE_BACKUP_COUNT 100
#endif
#define STORAGE_FLASH_RETRIES 5
// by default don't allow fallback to sdcard for storage
#ifndef HAL_RAMTRON_ALLOW_FALLBACK
#define HAL_RAMTRON_ALLOW_FALLBACK 0
#endif
void Storage::_storage_open(void)
{
if (_initialisedType != StorageBackend::None) {
return;
}
_dirty_mask.clearall();
#if HAL_WITH_RAMTRON
if (fram.init() && fram.read(0, _buffer, CH_STORAGE_SIZE)) {
_save_backup();
_initialisedType = StorageBackend::FRAM;
::printf("Initialised Storage type=%d\n", _initialisedType);
return;
}
#if !HAL_RAMTRON_ALLOW_FALLBACK
AP_HAL::panic("Unable to init RAMTRON storage");
#endif
#endif // HAL_WITH_RAMTRON
// allow for devices with no FRAM chip to fall through to other storage
#ifdef STORAGE_FLASH_PAGE
// load from storage backend
_flash_load();
_save_backup();
_initialisedType = StorageBackend::Flash;
#elif defined(USE_POSIX)
// if we have failed filesystem init don't try again
if (log_fd == -1) {
return;
}
// use microSD based storage
if (AP::FS().retry_mount()) {
log_fd = AP::FS().open(HAL_STORAGE_FILE, O_RDWR|O_CREAT);
if (log_fd == -1) {
::printf("open failed of " HAL_STORAGE_FILE "\n");
return;
}
int ret = AP::FS().read(log_fd, _buffer, CH_STORAGE_SIZE);
if (ret < 0) {
::printf("read failed for " HAL_STORAGE_FILE "\n");
AP::FS().close(log_fd);
log_fd = -1;
return;
}
// pre-fill to full size
if (AP::FS().lseek(log_fd, ret, SEEK_SET) != ret ||
(CH_STORAGE_SIZE-ret > 0 && AP::FS().write(log_fd, &_buffer[ret], CH_STORAGE_SIZE-ret) != CH_STORAGE_SIZE-ret)) {
::printf("setup failed for " HAL_STORAGE_FILE "\n");
AP::FS().close(log_fd);
log_fd = -1;
return;
}
_save_backup();
_initialisedType = StorageBackend::SDCard;
}
#endif
if (_initialisedType != StorageBackend::None) {
::printf("Initialised Storage type=%d\n", _initialisedType);
} else {
AP_HAL::panic("Unable to init Storage backend");
}
}
/*
save a backup of storage file if we have microSD available. This is
very handy for diagnostics, and for moving a copy of storage into
SITL for testing
*/
void Storage::_save_backup(void)
{
#ifdef USE_POSIX
// allow for fallback to microSD based storage
// create the backup directory if need be
int ret;
const char* _storage_bak_directory = HAL_STORAGE_BACKUP_FOLDER;
if (hal.util->was_watchdog_armed()) {
// we are under watchdog reset
// ain't got no time...
return;
}
EXPECT_DELAY_MS(3000);
// We want to do this desperately,
// So we keep trying this for a second
uint32_t start_millis = AP_HAL::millis();
while(!AP::FS().retry_mount() && (AP_HAL::millis() - start_millis) < 1000) {
hal.scheduler->delay(1);
}
ret = AP::FS().mkdir(_storage_bak_directory);
if (ret == -1 && errno != EEXIST) {
return;
}
char* fname = nullptr;
unsigned curr_bak = 0;
ret = asprintf(&fname, "%s/last_storage_bak", _storage_bak_directory);
if (fname == nullptr && (ret <= 0)) {
return;
}
int fd = AP::FS().open(fname, O_RDONLY);
if (fd != -1) {
char buf[10];
memset(buf, 0, sizeof(buf));
if (AP::FS().read(fd, buf, sizeof(buf)-1) > 0) {
//only record last HAL_STORAGE_BACKUP_COUNT backups
curr_bak = (strtol(buf, NULL, 10) + 1)%HAL_STORAGE_BACKUP_COUNT;
}
AP::FS().close(fd);
}
fd = AP::FS().open(fname, O_WRONLY|O_CREAT|O_TRUNC);
free(fname);
fname = nullptr;
if (fd != -1) {
char buf[10];
snprintf(buf, sizeof(buf), "%u\r\n", (unsigned)curr_bak);
const ssize_t to_write = strlen(buf);
const ssize_t written = AP::FS().write(fd, buf, to_write);
AP::FS().close(fd);
if (written < to_write) {
return;
}
} else {
return;
}
// create and write fram data to file
ret = asprintf(&fname, "%s/STRG%d.bak", _storage_bak_directory, curr_bak);
if (fname == nullptr || (ret <= 0)) {
return;
}
fd = AP::FS().open(fname, O_WRONLY|O_CREAT|O_TRUNC);
free(fname);
fname = nullptr;
if (fd != -1) {
//finally dump the fram data
AP::FS().write(fd, _buffer, CH_STORAGE_SIZE);
AP::FS().close(fd);
}
#endif
}
/*
mark some lines as dirty. Note that there is no attempt to avoid
the race condition between this code and the _timer_tick() code
below, which both update _dirty_mask. If we lose the race then the
result is that a line is written more than once, but it won't result
in a line not being written.
*/
void Storage::_mark_dirty(uint16_t loc, uint16_t length)
{
if (length == 0) {
return;
}
uint16_t end = loc + length - 1;
for (uint16_t line=loc>>CH_STORAGE_LINE_SHIFT;
line <= end>>CH_STORAGE_LINE_SHIFT;
line++) {
_dirty_mask.set(line);
}
}
void Storage::read_block(void *dst, uint16_t loc, size_t n)
{
if ((n > sizeof(_buffer)) || (loc > (sizeof(_buffer) - n))) {
return;
}
_storage_open();
memcpy(dst, &_buffer[loc], n);
}
void Storage::write_block(uint16_t loc, const void *src, size_t n)
{
if ((n > sizeof(_buffer)) || (loc > (sizeof(_buffer) - n))) {
return;
}
if (memcmp(src, &_buffer[loc], n) != 0) {
_storage_open();
WITH_SEMAPHORE(sem);
memcpy(&_buffer[loc], src, n);
_mark_dirty(loc, n);
}
}
void Storage::_timer_tick(void)
{
if (_initialisedType == StorageBackend::None) {
return;
}
if (_dirty_mask.empty()) {
_last_empty_ms = AP_HAL::millis();
return;
}
// write out the first dirty line. We don't write more
// than one to keep the latency of this call to a minimum
uint16_t i;
for (i=0; i<CH_STORAGE_NUM_LINES; i++) {
if (_dirty_mask.get(i)) {
break;
}
}
if (i == CH_STORAGE_NUM_LINES) {
// this shouldn't be possible
return;
}
{
// take a copy of the line we are writing with a semaphore held
WITH_SEMAPHORE(sem);
memcpy(tmpline, &_buffer[CH_STORAGE_LINE_SIZE*i], CH_STORAGE_LINE_SIZE);
}
bool write_ok = false;
#if HAL_WITH_RAMTRON
if (_initialisedType == StorageBackend::FRAM) {
if (fram.write(CH_STORAGE_LINE_SIZE*i, tmpline, CH_STORAGE_LINE_SIZE)) {
write_ok = true;
}
}
#endif
#ifdef USE_POSIX
if ((_initialisedType == StorageBackend::SDCard) && log_fd != -1) {
uint32_t offset = CH_STORAGE_LINE_SIZE*i;
if (AP::FS().lseek(log_fd, offset, SEEK_SET) != offset) {
return;
}
if (AP::FS().write(log_fd, &_buffer[offset], CH_STORAGE_LINE_SIZE) != CH_STORAGE_LINE_SIZE) {
return;
}
if (AP::FS().fsync(log_fd) != 0) {
return;
}
write_ok = true;
}
#endif
#ifdef STORAGE_FLASH_PAGE
if (_initialisedType == StorageBackend::Flash) {
// save to storage backend
if (_flash_write(i)) {
write_ok = true;
}
}
#endif
if (write_ok) {
WITH_SEMAPHORE(sem);
// while holding the semaphore we check if the copy of the
// line is different from the original line. If it is
// different then someone has re-dirtied the line while we
// were writing it, in which case we should not mark it
// clean. If it matches then we know we can mark the line as
// clean
if (memcmp(tmpline, &_buffer[CH_STORAGE_LINE_SIZE*i], CH_STORAGE_LINE_SIZE) == 0) {
_dirty_mask.clear(i);
}
}
}
/*
load all data from flash
*/
void Storage::_flash_load(void)
{
#ifdef STORAGE_FLASH_PAGE
_flash_page = STORAGE_FLASH_PAGE;
::printf("Storage: Using flash pages %u and %u\n", _flash_page, _flash_page+1);
if (!_flash.init()) {
AP_HAL::panic("Unable to init flash storage");
}
#else
AP_HAL::panic("Unable to init storage");
#endif
}
/*
write one storage line. This also updates _dirty_mask.
*/
bool Storage::_flash_write(uint16_t line)
{
#ifdef STORAGE_FLASH_PAGE
return _flash.write(line*CH_STORAGE_LINE_SIZE, CH_STORAGE_LINE_SIZE);
#else
return false;
#endif
}
/*
callback to write data to flash
*/
bool Storage::_flash_write_data(uint8_t sector, uint32_t offset, const uint8_t *data, uint16_t length)
{
#ifdef STORAGE_FLASH_PAGE
size_t base_address = hal.flash->getpageaddr(_flash_page+sector);
for (uint8_t i=0; i<STORAGE_FLASH_RETRIES; i++) {
if (hal.flash->write(base_address+offset, data, length)) {
return true;
}
hal.scheduler->delay(1);
}
if (_flash_erase_ok()) {
// we are getting flash write errors while disarmed. Try
// re-writing all of flash
uint32_t now = AP_HAL::millis();
if (now - _last_re_init_ms > 5000) {
_last_re_init_ms = now;
bool ok = _flash.re_initialise();
::printf("Storage: failed at %u:%u for %u - re-init %u\n",
(unsigned)sector, (unsigned)offset, (unsigned)length, (unsigned)ok);
}
}
return false;
#else
return false;
#endif
}
/*
callback to read data from flash
*/
bool Storage::_flash_read_data(uint8_t sector, uint32_t offset, uint8_t *data, uint16_t length)
{
#ifdef STORAGE_FLASH_PAGE
size_t base_address = hal.flash->getpageaddr(_flash_page+sector);
const uint8_t *b = ((const uint8_t *)base_address)+offset;
memcpy(data, b, length);
return true;
#else
return false;
#endif
}
/*
callback to erase flash sector
*/
bool Storage::_flash_erase_sector(uint8_t sector)
{
#ifdef STORAGE_FLASH_PAGE
// erasing a page can take long enough that USB may not initialise properly if it happens
// while the host is connecting. Only do a flash erase if we have been up for more than 4s
for (uint8_t i=0; i<STORAGE_FLASH_RETRIES; i++) {
/*
a sector erase stops the whole MCU. We need to setup a long
expected delay, and not only when running in the main
thread. We can't use EXPECT_DELAY_MS() as it checks we are
in the main thread
*/
ChibiOS::Scheduler *sched = (ChibiOS::Scheduler *)hal.scheduler;
sched->_expect_delay_ms(1000);
if (hal.flash->erasepage(_flash_page+sector)) {
sched->_expect_delay_ms(0);
return true;
}
sched->_expect_delay_ms(0);
hal.scheduler->delay(1);
}
return false;
#else
return false;
#endif
}
/*
callback to check if erase is allowed
*/
bool Storage::_flash_erase_ok(void)
{
// only allow erase while disarmed
return !hal.util->get_soft_armed();
}
/*
consider storage healthy if we have nothing to write sometime in the
last 2 seconds
*/
bool Storage::healthy(void)
{
return ((_initialisedType != StorageBackend::None) &&
(AP_HAL::millis() - _last_empty_ms < 2000u));
}
/*
erase all storage
*/
bool Storage::erase(void)
{
#if HAL_WITH_RAMTRON
if (_initialisedType == StorageBackend::FRAM) {
return AP_HAL::Storage::erase();
}
#endif
#ifdef USE_POSIX
if (_initialisedType == StorageBackend::SDCard) {
return AP_HAL::Storage::erase();
}
#endif
#ifdef STORAGE_FLASH_PAGE
return _flash.erase();
#else
return false;
#endif
}
#endif // HAL_USE_EMPTY_STORAGE