ardupilot/ArduCopter/motors_hexa.pde
Pat Hickey 0ad15e4fff ArduCopter Hexa output_motor_test: individually select all 6 motors
* each of the 6 hexacopter motors can be selected individually
  by moving the joystick to extremes.

* previously, this was built from the quadcopter output_motor_test
  and some motors (left/right motors on +, front/back motors on X)
  were only selectable as pairs.
2012-02-11 16:05:51 -08:00

230 lines
6.2 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if FRAME_CONFIG == HEXA_FRAME
static void init_motors_out()
{
#if INSTANT_PWM == 0
APM_RC.SetFastOutputChannels( _BV(MOT_1) | _BV(MOT_2) | _BV(MOT_3) | _BV(MOT_4)
| _BV(MOT_5) | _BV(MOT_6) );
#endif
}
static void motors_output_enable()
{
APM_RC.enable_out(MOT_1);
APM_RC.enable_out(MOT_2);
APM_RC.enable_out(MOT_3);
APM_RC.enable_out(MOT_4);
APM_RC.enable_out(MOT_5);
APM_RC.enable_out(MOT_6);
}
static void output_motors_armed()
{
int roll_out, pitch_out;
int out_min = g.rc_3.radio_min;
int out_max = g.rc_3.radio_max;
// Throttle is 0 to 1000 only
g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, MAXIMUM_THROTTLE);
if(g.rc_3.servo_out > 0)
out_min = g.rc_3.radio_min + MINIMUM_THROTTLE;
g.rc_1.calc_pwm();
g.rc_2.calc_pwm();
g.rc_3.calc_pwm();
g.rc_4.calc_pwm();
if(g.frame_orientation == X_FRAME){
roll_out = g.rc_1.pwm_out / 2;
pitch_out = (float)g.rc_2.pwm_out * .866;
//left side
motor_out[MOT_2] = g.rc_3.radio_out + g.rc_1.pwm_out; // CCW Middle
motor_out[MOT_3] = g.rc_3.radio_out + roll_out + pitch_out; // CW Front
motor_out[MOT_6] = g.rc_3.radio_out + roll_out - pitch_out; // CW Back
//right side
motor_out[MOT_1] = g.rc_3.radio_out - g.rc_1.pwm_out; // CW Middle
motor_out[MOT_5] = g.rc_3.radio_out - roll_out + pitch_out; // CCW Front
motor_out[MOT_4] = g.rc_3.radio_out - roll_out - pitch_out; // CCW Back
}else{
roll_out = (float)g.rc_1.pwm_out * .866;
pitch_out = g.rc_2.pwm_out / 2;
//Front side
motor_out[MOT_1] = g.rc_3.radio_out + g.rc_2.pwm_out; // CW FRONT
motor_out[MOT_5] = g.rc_3.radio_out + roll_out + pitch_out; // CCW FRONT LEFT
motor_out[MOT_4] = g.rc_3.radio_out - roll_out + pitch_out; // CCW FRONT RIGHT
//Back side
motor_out[MOT_2] = g.rc_3.radio_out - g.rc_2.pwm_out; // CCW BACK
motor_out[MOT_3] = g.rc_3.radio_out + roll_out - pitch_out; // CW, BACK LEFT
motor_out[MOT_6] = g.rc_3.radio_out - roll_out - pitch_out; // CW BACK RIGHT
}
// Yaw
motor_out[MOT_2] += g.rc_4.pwm_out; // CCW
motor_out[MOT_5] += g.rc_4.pwm_out; // CCW
motor_out[MOT_4] += g.rc_4.pwm_out; // CCW
motor_out[MOT_3] -= g.rc_4.pwm_out; // CW
motor_out[MOT_1] -= g.rc_4.pwm_out; // CW
motor_out[MOT_6] -= g.rc_4.pwm_out; // CW
// Tridge's stability patch
for (int m = 0; m <= 6; m++) {
int c = ch_of_mot(m);
int c_opp = ch_of_mot(m^1); // m^1 is the opposite motor. c_opp is channel of opposite motor.
if (motor_out[c] > out_max) {
motor_out[c_opp] -= motor_out[c] - out_max;
motor_out[c] = out_max;
}
}
// limit output so motors don't stop
motor_out[MOT_1] = max(motor_out[MOT_1], out_min);
motor_out[MOT_2] = max(motor_out[MOT_2], out_min);
motor_out[MOT_3] = max(motor_out[MOT_3], out_min);
motor_out[MOT_4] = max(motor_out[MOT_4], out_min);
motor_out[MOT_5] = max(motor_out[MOT_5], out_min);
motor_out[MOT_6] = max(motor_out[MOT_6], out_min);
#if CUT_MOTORS == ENABLED
// if we are not sending a throttle output, we cut the motors
if(g.rc_3.servo_out == 0){
motor_out[MOT_1] = g.rc_3.radio_min;
motor_out[MOT_2] = g.rc_3.radio_min;
motor_out[MOT_3] = g.rc_3.radio_min;
motor_out[MOT_4] = g.rc_3.radio_min;
motor_out[MOT_5] = g.rc_3.radio_min;
motor_out[MOT_6] = g.rc_3.radio_min;
}
#endif
// this filter slows the acceleration of motors vs the deceleration
// Idea by Denny Rowland to help with his Yaw issue
for(int8_t m = 0; m <= 6; m++ ) {
int c = ch_of_mot(m);
if(motor_filtered[c] < motor_out[c]){
motor_filtered[c] = (motor_out[c] + motor_filtered[c]) / 2;
}else{
// don't filter
motor_filtered[c] = motor_out[c];
}
}
APM_RC.OutputCh(MOT_1, motor_filtered[MOT_1]);
APM_RC.OutputCh(MOT_2, motor_filtered[MOT_2]);
APM_RC.OutputCh(MOT_3, motor_filtered[MOT_3]);
APM_RC.OutputCh(MOT_4, motor_filtered[MOT_4]);
APM_RC.OutputCh(MOT_5, motor_filtered[MOT_5]);
APM_RC.OutputCh(MOT_6, motor_filtered[MOT_6]);
#if INSTANT_PWM == 1
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out2_Out3();
APM_RC.Force_Out6_Out7();
#endif
}
static void output_motors_disarmed()
{
if(g.rc_3.control_in > 0){
// we have pushed up the throttle
// remove safety
motor_auto_armed = true;
}
// fill the motor_out[] array for HIL use
for (unsigned char i = 0; i < 8; i++) {
motor_out[i] = g.rc_3.radio_min;
}
// Send commands to motors
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_6, g.rc_3.radio_min);
}
static void output_motor_test()
{
motors_output_enable();
motor_out[MOT_1] = g.rc_3.radio_min;
motor_out[MOT_2] = g.rc_3.radio_min;
motor_out[MOT_3] = g.rc_3.radio_min;
motor_out[MOT_4] = g.rc_3.radio_min;
motor_out[MOT_5] = g.rc_3.radio_min;
motor_out[MOT_6] = g.rc_3.radio_min;
bool right = (g.rc_1.control_in > 3000);
bool left = (g.rc_1.control_in < -3000);
bool front = (g.rc_2.control_in < -3000);
bool back = (g.rc_2.control_in > 3000);
if(g.frame_orientation == X_FRAME){
if ( right && !( front || back ) )
motor_out[MOT_1] += 150; // Right
if ( left && !(front || back ) )
motor_out[MOT_2] += 150; // Left
if ( back ) {
if ( left )
motor_out[MOT_6] += 150;
if ( right )
motor_out[MOT_4] += 150;
}
if ( front ) {
if ( left )
motor_out[MOT_3] += 150;
if ( right )
motor_out[MOT_5] += 150;
}
} else { /* PLUS_FRAME */
if ( front && !( left || right ) )
motor_out[MOT_1] += 150;
if ( back && !( left || right ) )
motor_out[MOT_2] += 150;
if ( left ) {
if ( front )
motor_out[MOT_5] += 150;
if ( back )
motor_out[MOT_3] += 150;
}
if ( right ) {
if ( front )
motor_out[MOT_4] += 150;
if ( back )
motor_out[MOT_6] += 150;
}
}
APM_RC.OutputCh(MOT_1, motor_out[MOT_1]);
APM_RC.OutputCh(MOT_2, motor_out[MOT_2]);
APM_RC.OutputCh(MOT_3, motor_out[MOT_3]);
APM_RC.OutputCh(MOT_4, motor_out[MOT_4]);
APM_RC.OutputCh(MOT_5, motor_out[MOT_5]);
APM_RC.OutputCh(MOT_6, motor_out[MOT_6]);
}
#endif