mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-18 14:48:28 -04:00
202 lines
8.5 KiB
C++
202 lines
8.5 KiB
C++
#include "AP_Mount_Servo.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// init - performs any required initialisation for this instance
|
|
void AP_Mount_Servo::init(const AP_SerialManager& serial_manager)
|
|
{
|
|
if (_instance == 0) {
|
|
_roll_idx = SRV_Channel::k_mount_roll;
|
|
_tilt_idx = SRV_Channel::k_mount_tilt;
|
|
_pan_idx = SRV_Channel::k_mount_pan;
|
|
_open_idx = SRV_Channel::k_mount_open;
|
|
} else {
|
|
// this must be the 2nd mount
|
|
_roll_idx = SRV_Channel::k_mount2_roll;
|
|
_tilt_idx = SRV_Channel::k_mount2_tilt;
|
|
_pan_idx = SRV_Channel::k_mount2_pan;
|
|
_open_idx = SRV_Channel::k_mount2_open;
|
|
}
|
|
|
|
// check which servos have been assigned
|
|
check_servo_map();
|
|
}
|
|
|
|
// update mount position - should be called periodically
|
|
void AP_Mount_Servo::update()
|
|
{
|
|
static bool mount_open = 0; // 0 is closed
|
|
|
|
// check servo map every three seconds to allow users to modify parameters
|
|
uint32_t now = AP_HAL::millis();
|
|
if (now - _last_check_servo_map_ms > 3000) {
|
|
check_servo_map();
|
|
_last_check_servo_map_ms = now;
|
|
}
|
|
|
|
switch(get_mode()) {
|
|
// move mount to a "retracted position" or to a position where a fourth servo can retract the entire mount into the fuselage
|
|
case MAV_MOUNT_MODE_RETRACT:
|
|
{
|
|
_angle_bf_output_deg = _state._retract_angles.get();
|
|
break;
|
|
}
|
|
|
|
// move mount to a neutral position, typically pointing forward
|
|
case MAV_MOUNT_MODE_NEUTRAL:
|
|
{
|
|
_angle_bf_output_deg = _state._neutral_angles.get();
|
|
break;
|
|
}
|
|
|
|
// point to the angles given by a mavlink message
|
|
case MAV_MOUNT_MODE_MAVLINK_TARGETING:
|
|
{
|
|
// earth-frame angle targets (i.e. _angle_ef_target_rad) should have already been set by a MOUNT_CONTROL message from GCS
|
|
stabilize();
|
|
break;
|
|
}
|
|
|
|
// RC radio manual angle control, but with stabilization from the AHRS
|
|
case MAV_MOUNT_MODE_RC_TARGETING:
|
|
{
|
|
// update targets using pilot's rc inputs
|
|
update_targets_from_rc();
|
|
stabilize();
|
|
break;
|
|
}
|
|
|
|
// point mount to a GPS point given by the mission planner
|
|
case MAV_MOUNT_MODE_GPS_POINT:
|
|
{
|
|
if(AP::gps().status() >= AP_GPS::GPS_OK_FIX_2D) {
|
|
calc_angle_to_location(_state._roi_target, _angle_ef_target_rad, _flags.tilt_control, _flags.pan_control, false);
|
|
stabilize();
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
//do nothing
|
|
break;
|
|
}
|
|
|
|
// move mount to a "retracted position" into the fuselage with a fourth servo
|
|
bool mount_open_new = (get_mode() == MAV_MOUNT_MODE_RETRACT) ? 0 : 1;
|
|
if (mount_open != mount_open_new) {
|
|
mount_open = mount_open_new;
|
|
move_servo(_open_idx, mount_open_new, 0, 1);
|
|
}
|
|
|
|
// write the results to the servos
|
|
move_servo(_roll_idx, _angle_bf_output_deg.x*10, _state._roll_angle_min*0.1f, _state._roll_angle_max*0.1f);
|
|
move_servo(_tilt_idx, _angle_bf_output_deg.y*10, _state._tilt_angle_min*0.1f, _state._tilt_angle_max*0.1f);
|
|
move_servo(_pan_idx, _angle_bf_output_deg.z*10, _state._pan_angle_min*0.1f, _state._pan_angle_max*0.1f);
|
|
}
|
|
|
|
// set_mode - sets mount's mode
|
|
void AP_Mount_Servo::set_mode(enum MAV_MOUNT_MODE mode)
|
|
{
|
|
// record the mode change and return success
|
|
_state._mode = mode;
|
|
}
|
|
|
|
// private methods
|
|
|
|
// check_servo_map - detects which axis we control using the functions assigned to the servos in the RC_Channel_aux
|
|
// should be called periodically (i.e. 1hz or less)
|
|
void AP_Mount_Servo::check_servo_map()
|
|
{
|
|
_flags.roll_control = SRV_Channels::function_assigned(_roll_idx);
|
|
_flags.tilt_control = SRV_Channels::function_assigned(_tilt_idx);
|
|
_flags.pan_control = SRV_Channels::function_assigned(_pan_idx);
|
|
}
|
|
|
|
// status_msg - called to allow mounts to send their status to GCS using the MOUNT_STATUS message
|
|
void AP_Mount_Servo::status_msg(mavlink_channel_t chan)
|
|
{
|
|
mavlink_msg_mount_status_send(chan, 0, 0, _angle_bf_output_deg.y*100, _angle_bf_output_deg.x*100, _angle_bf_output_deg.z*100);
|
|
}
|
|
|
|
// stabilize - stabilizes the mount relative to the Earth's frame
|
|
// input: _angle_ef_target_rad (earth frame targets in radians)
|
|
// output: _angle_bf_output_deg (body frame angles in degrees)
|
|
void AP_Mount_Servo::stabilize()
|
|
{
|
|
// only do the full 3D frame transform if we are doing pan control
|
|
if (_state._stab_pan) {
|
|
Matrix3f m; ///< holds 3 x 3 matrix, var is used as temp in calcs
|
|
Matrix3f cam; ///< Rotation matrix earth to camera. Desired camera from input.
|
|
Matrix3f gimbal_target; ///< Rotation matrix from plane to camera. Then Euler angles to the servos.
|
|
m = _frontend._ahrs.get_rotation_body_to_ned();
|
|
m.transpose();
|
|
cam.from_euler(_angle_ef_target_rad.x, _angle_ef_target_rad.y, _angle_ef_target_rad.z);
|
|
gimbal_target = m * cam;
|
|
gimbal_target.to_euler(&_angle_bf_output_deg.x, &_angle_bf_output_deg.y, &_angle_bf_output_deg.z);
|
|
_angle_bf_output_deg.x = _state._stab_roll ? degrees(_angle_bf_output_deg.x) : degrees(_angle_ef_target_rad.x);
|
|
_angle_bf_output_deg.y = _state._stab_tilt ? degrees(_angle_bf_output_deg.y) : degrees(_angle_ef_target_rad.y);
|
|
_angle_bf_output_deg.z = degrees(_angle_bf_output_deg.z);
|
|
} else {
|
|
// otherwise base mount roll and tilt on the ahrs
|
|
// roll/tilt attitude, plus any requested angle
|
|
_angle_bf_output_deg.x = degrees(_angle_ef_target_rad.x);
|
|
_angle_bf_output_deg.y = degrees(_angle_ef_target_rad.y);
|
|
_angle_bf_output_deg.z = degrees(_angle_ef_target_rad.z);
|
|
if (_state._stab_roll) {
|
|
_angle_bf_output_deg.x -= degrees(_frontend._ahrs.roll);
|
|
}
|
|
if (_state._stab_tilt) {
|
|
_angle_bf_output_deg.y -= degrees(_frontend._ahrs.pitch);
|
|
}
|
|
|
|
// lead filter
|
|
const Vector3f &gyro = _frontend._ahrs.get_gyro();
|
|
|
|
if (_state._stab_roll && !is_zero(_state._roll_stb_lead) && fabsf(_frontend._ahrs.pitch) < M_PI/3.0f) {
|
|
// Compute rate of change of euler roll angle
|
|
float roll_rate = gyro.x + (_frontend._ahrs.sin_pitch() / _frontend._ahrs.cos_pitch()) * (gyro.y * _frontend._ahrs.sin_roll() + gyro.z * _frontend._ahrs.cos_roll());
|
|
_angle_bf_output_deg.x -= degrees(roll_rate) * _state._roll_stb_lead;
|
|
}
|
|
|
|
if (_state._stab_tilt && !is_zero(_state._pitch_stb_lead)) {
|
|
// Compute rate of change of euler pitch angle
|
|
float pitch_rate = _frontend._ahrs.cos_pitch() * gyro.y - _frontend._ahrs.sin_roll() * gyro.z;
|
|
_angle_bf_output_deg.y -= degrees(pitch_rate) * _state._pitch_stb_lead;
|
|
}
|
|
}
|
|
}
|
|
|
|
// closest_limit - returns closest angle to 'angle' taking into account limits. all angles are in degrees * 10
|
|
int16_t AP_Mount_Servo::closest_limit(int16_t angle, int16_t angle_min, int16_t angle_max)
|
|
{
|
|
// Make sure the angle lies in the interval [-180 .. 180[ degrees
|
|
while (angle < -1800) angle += 3600;
|
|
while (angle >= 1800) angle -= 3600;
|
|
|
|
// Make sure the angle limits lie in the interval [-180 .. 180[ degrees
|
|
while (angle_min < -1800) angle_min += 3600;
|
|
while (angle_min >= 1800) angle_min -= 3600;
|
|
while (angle_max < -1800) angle_max += 3600;
|
|
while (angle_max >= 1800) angle_max -= 3600;
|
|
|
|
// If the angle is outside servo limits, saturate the angle to the closest limit
|
|
// On a circle the closest angular position must be carefully calculated to account for wrap-around
|
|
if ((angle < angle_min) && (angle > angle_max)) {
|
|
// angle error if min limit is used
|
|
int16_t err_min = angle_min - angle + (angle<angle_min ? 0 : 3600); // add 360 degrees if on the "wrong side"
|
|
// angle error if max limit is used
|
|
int16_t err_max = angle - angle_max + (angle>angle_max ? 0 : 3600); // add 360 degrees if on the "wrong side"
|
|
angle = err_min<err_max ? angle_min : angle_max;
|
|
}
|
|
|
|
return angle;
|
|
}
|
|
|
|
// move_servo - moves servo with the given id to the specified angle. all angles are in degrees * 10
|
|
void AP_Mount_Servo::move_servo(uint8_t function_idx, int16_t angle, int16_t angle_min, int16_t angle_max)
|
|
{
|
|
// saturate to the closest angle limit if outside of [min max] angle interval
|
|
int16_t servo_out = closest_limit(angle, angle_min, angle_max);
|
|
SRV_Channels::move_servo((SRV_Channel::Aux_servo_function_t)function_idx, servo_out, angle_min, angle_max);
|
|
}
|