ardupilot/ArduPlane/commands_logic.pde
Andrew Tridgell a00e4a1e83 Plane: send GCS message on relay change
makes it easier to debug
2013-08-30 15:05:16 +10:00

670 lines
21 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/********************************************************************************/
// Command Event Handlers
/********************************************************************************/
static void
handle_process_nav_cmd()
{
// set land_complete to false to stop us zeroing the throttle
land_complete = false;
// set takeoff_complete to true so we don't add extra evevator
// except in a takeoff
takeoff_complete = true;
gcs_send_text_fmt(PSTR("Executing nav command ID #%i"),next_nav_command.id);
switch(next_nav_command.id) {
case MAV_CMD_NAV_TAKEOFF:
do_takeoff();
break;
case MAV_CMD_NAV_WAYPOINT: // Navigate to Waypoint
do_nav_wp();
break;
case MAV_CMD_NAV_LAND: // LAND to Waypoint
do_land();
break;
case MAV_CMD_NAV_LOITER_UNLIM: // Loiter indefinitely
do_loiter_unlimited();
break;
case MAV_CMD_NAV_LOITER_TURNS: // Loiter N Times
do_loiter_turns();
break;
case MAV_CMD_NAV_LOITER_TIME:
do_loiter_time();
break;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
do_RTL();
break;
default:
break;
}
}
static void
handle_process_condition_command()
{
gcs_send_text_fmt(PSTR("Executing command ID #%i"),next_nonnav_command.id);
switch(next_nonnav_command.id) {
case MAV_CMD_CONDITION_DELAY:
do_wait_delay();
break;
case MAV_CMD_CONDITION_DISTANCE:
do_within_distance();
break;
case MAV_CMD_CONDITION_CHANGE_ALT:
do_change_alt();
break;
default:
break;
}
}
static void handle_process_do_command()
{
gcs_send_text_fmt(PSTR("Executing command ID #%i"),next_nonnav_command.id);
switch(next_nonnav_command.id) {
case MAV_CMD_DO_JUMP:
do_jump();
break;
case MAV_CMD_DO_CHANGE_SPEED:
do_change_speed();
break;
case MAV_CMD_DO_SET_HOME:
do_set_home();
break;
case MAV_CMD_DO_SET_SERVO:
do_set_servo();
break;
case MAV_CMD_DO_SET_RELAY:
do_set_relay();
break;
case MAV_CMD_DO_REPEAT_SERVO:
do_repeat_servo(next_nonnav_command.p1, next_nonnav_command.alt,
next_nonnav_command.lat, next_nonnav_command.lng);
break;
case MAV_CMD_DO_REPEAT_RELAY:
do_repeat_relay();
break;
#if CAMERA == ENABLED
case MAV_CMD_DO_CONTROL_VIDEO: // Control on-board camera capturing. |Camera ID (-1 for all)| Transmission: 0: disabled, 1: enabled compressed, 2: enabled raw| Transmission mode: 0: video stream, >0: single images every n seconds (decimal)| Recording: 0: disabled, 1: enabled compressed, 2: enabled raw| Empty| Empty| Empty|
break;
case MAV_CMD_DO_DIGICAM_CONFIGURE: // Mission command to configure an on-board camera controller system. |Modes: P, TV, AV, M, Etc| Shutter speed: Divisor number for one second| Aperture: F stop number| ISO number e.g. 80, 100, 200, Etc| Exposure type enumerator| Command Identity| Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off)|
break;
case MAV_CMD_DO_DIGICAM_CONTROL: // Mission command to control an on-board camera controller system. |Session control e.g. show/hide lens| Zoom's absolute position| Zooming step value to offset zoom from the current position| Focus Locking, Unlocking or Re-locking| Shooting Command| Command Identity| Empty|
do_take_picture();
break;
#endif
#if MOUNT == ENABLED
// Sets the region of interest (ROI) for a sensor set or the
// vehicle itself. This can then be used by the vehicles control
// system to control the vehicle attitude and the attitude of various
// devices such as cameras.
// |Region of interest mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple cameras etc.)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z|
case MAV_CMD_NAV_ROI:
#if 0
// send the command to the camera mount
camera_mount.set_roi_cmd(&command_nav_queue);
#else
gcs_send_text_P(SEVERITY_LOW, PSTR("DO_SET_ROI not supported"));
#endif
break;
case MAV_CMD_DO_MOUNT_CONFIGURE: // Mission command to configure a camera mount |Mount operation mode (see MAV_CONFIGURE_MOUNT_MODE enum)| stabilize roll? (1 = yes, 0 = no)| stabilize pitch? (1 = yes, 0 = no)| stabilize yaw? (1 = yes, 0 = no)| Empty| Empty| Empty|
camera_mount.configure_cmd();
break;
case MAV_CMD_DO_MOUNT_CONTROL: // Mission command to control a camera mount |pitch(deg*100) or lat, depending on mount mode.| roll(deg*100) or lon depending on mount mode| yaw(deg*100) or alt (in cm) depending on mount mode| Empty| Empty| Empty| Empty|
camera_mount.control_cmd();
break;
#endif
}
}
static void handle_no_commands()
{
gcs_send_text_fmt(PSTR("Returning to Home"));
next_nav_command = home;
next_nav_command.alt = read_alt_to_hold();
next_nav_command.id = MAV_CMD_NAV_LOITER_UNLIM;
nav_command_ID = MAV_CMD_NAV_LOITER_UNLIM;
non_nav_command_ID = WAIT_COMMAND;
handle_process_nav_cmd();
}
/*******************************************************************************
Verify command Handlers
Each type of mission element has a "verify" operation. The verify
operation returns true when the mission element has completed and we
should move onto the next mission element.
*******************************************************************************/
static bool verify_nav_command() // Returns true if command complete
{
switch(nav_command_ID) {
case MAV_CMD_NAV_TAKEOFF:
return verify_takeoff();
case MAV_CMD_NAV_LAND:
return verify_land();
case MAV_CMD_NAV_WAYPOINT:
return verify_nav_wp();
case MAV_CMD_NAV_LOITER_UNLIM:
return verify_loiter_unlim();
case MAV_CMD_NAV_LOITER_TURNS:
return verify_loiter_turns();
case MAV_CMD_NAV_LOITER_TIME:
return verify_loiter_time();
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
return verify_RTL();
default:
gcs_send_text_P(SEVERITY_HIGH,PSTR("verify_nav: Invalid or no current Nav cmd"));
}
return false;
}
static bool verify_condition_command() // Returns true if command complete
{
switch(non_nav_command_ID) {
case NO_COMMAND:
break;
case MAV_CMD_CONDITION_DELAY:
return verify_wait_delay();
break;
case MAV_CMD_CONDITION_DISTANCE:
return verify_within_distance();
break;
case MAV_CMD_CONDITION_CHANGE_ALT:
return verify_change_alt();
break;
case WAIT_COMMAND:
return 0;
break;
default:
gcs_send_text_P(SEVERITY_HIGH,PSTR("verify_conditon: Invalid or no current Condition cmd"));
break;
}
return false;
}
/********************************************************************************/
// Nav (Must) commands
/********************************************************************************/
static void do_RTL(void)
{
control_mode = RTL;
prev_WP = current_loc;
next_WP = home;
if (g.loiter_radius < 0) {
loiter.direction = -1;
} else {
loiter.direction = 1;
}
// Altitude to hold over home
// Set by configuration tool
// -------------------------
next_WP.alt = read_alt_to_hold();
setup_glide_slope();
if (g.log_bitmask & MASK_LOG_MODE)
Log_Write_Mode(control_mode);
}
static void do_takeoff()
{
set_next_WP(&next_nav_command);
// pitch in deg, airspeed m/s, throttle %, track WP 1 or 0
takeoff_pitch_cd = (int)next_nav_command.p1 * 100;
takeoff_altitude_cm = next_nav_command.alt;
next_WP.lat = home.lat + 1000; // so we don't have bad calcs
next_WP.lng = home.lng + 1000; // so we don't have bad calcs
takeoff_complete = false; // set flag to use gps ground course during TO. IMU will be doing yaw drift correction
// Flag also used to override "on the ground" throttle disable
}
static void do_nav_wp()
{
set_next_WP(&next_nav_command);
}
static void do_land()
{
set_next_WP(&next_nav_command);
}
static void loiter_set_direction_wp(const struct Location *nav_command)
{
if (nav_command->options & MASK_OPTIONS_LOITER_DIRECTION) {
loiter.direction = -1;
} else {
loiter.direction = 1;
}
}
static void do_loiter_unlimited()
{
set_next_WP(&next_nav_command);
loiter_set_direction_wp(&next_nav_command);
}
static void do_loiter_turns()
{
set_next_WP(&next_nav_command);
loiter.total_cd = next_nav_command.p1 * 36000UL;
loiter_set_direction_wp(&next_nav_command);
}
static void do_loiter_time()
{
set_next_WP(&next_nav_command);
// we set start_time_ms when we reach the waypoint
loiter.start_time_ms = 0;
loiter.time_max_ms = next_nav_command.p1 * (uint32_t)1000; // units are seconds
loiter_set_direction_wp(&next_nav_command);
}
/********************************************************************************/
// Verify Nav (Must) commands
/********************************************************************************/
static bool verify_takeoff()
{
if (ahrs.yaw_initialised()) {
if (hold_course_cd == -1) {
// save our current course to take off
hold_course_cd = ahrs.yaw_sensor;
gcs_send_text_fmt(PSTR("Holding course %ld"), hold_course_cd);
}
}
if (hold_course_cd != -1) {
// call navigation controller for heading hold
nav_controller->update_heading_hold(hold_course_cd);
} else {
nav_controller->update_level_flight();
}
// see if we have reached takeoff altitude
if (adjusted_altitude_cm() > takeoff_altitude_cm) {
hold_course_cd = -1;
takeoff_complete = true;
next_WP = prev_WP = current_loc;
return true;
} else {
return false;
}
}
// we are executing a landing
static bool verify_land()
{
// we don't 'verify' landing in the sense that it never completes,
// so we don't verify command completion. Instead we use this to
// adjust final landing parameters
// Set land_complete if we are within 2 seconds distance or within
// 3 meters altitude of the landing point
if ((wp_distance <= (g.land_flare_sec*g_gps->ground_speed_cm*0.01f))
|| (adjusted_altitude_cm() <= next_WP.alt + g.land_flare_alt*100)) {
land_complete = true;
if (hold_course_cd == -1) {
// we have just reached the threshold of to flare for landing.
// We now don't want to do any radical
// turns, as rolling could put the wings into the runway.
// To prevent further turns we set hold_course_cd to the
// current heading. Previously we set this to
// crosstrack_bearing, but the xtrack bearing can easily
// be quite large at this point, and that could induce a
// sudden large roll correction which is very nasty at
// this point in the landing.
hold_course_cd = ahrs.yaw_sensor;
gcs_send_text_fmt(PSTR("Land Complete - Hold course %ld"), hold_course_cd);
}
if (g_gps->ground_speed_cm*0.01f < 3.0) {
// reload any airspeed or groundspeed parameters that may have
// been set for landing. We don't do this till ground
// speed drops below 3.0 m/s as otherwise we will change
// target speeds too early.
g.airspeed_cruise_cm.load();
g.min_gndspeed_cm.load();
aparm.throttle_cruise.load();
}
}
if (hold_course_cd != -1) {
// recalc bearing error with hold_course;
nav_controller->update_heading_hold(hold_course_cd);
} else {
nav_controller->update_waypoint(prev_WP, next_WP);
}
return false;
}
static bool verify_nav_wp()
{
hold_course_cd = -1;
nav_controller->update_waypoint(prev_WP, next_WP);
if (wp_distance <= nav_controller->turn_distance(g.waypoint_radius)) {
gcs_send_text_fmt(PSTR("Reached Waypoint #%i dist %um"),
(unsigned)nav_command_index,
(unsigned)get_distance(current_loc, next_WP));
return true;
}
// have we flown past the waypoint?
if (location_passed_point(current_loc, prev_WP, next_WP)) {
gcs_send_text_fmt(PSTR("Passed Waypoint #%i dist %um"),
(unsigned)nav_command_index,
(unsigned)get_distance(current_loc, next_WP));
return true;
}
return false;
}
static bool verify_loiter_unlim()
{
update_loiter();
return false;
}
static bool verify_loiter_time()
{
update_loiter();
if (loiter.start_time_ms == 0) {
if (nav_controller->reached_loiter_target()) {
// we've reached the target, start the timer
loiter.start_time_ms = millis();
}
} else if ((millis() - loiter.start_time_ms) > loiter.time_max_ms) {
gcs_send_text_P(SEVERITY_LOW,PSTR("verify_nav: LOITER time complete"));
return true;
}
return false;
}
static bool verify_loiter_turns()
{
update_loiter();
if (loiter.sum_cd > loiter.total_cd) {
loiter.total_cd = 0;
gcs_send_text_P(SEVERITY_LOW,PSTR("verify_nav: LOITER orbits complete"));
// clear the command queue;
return true;
}
return false;
}
static bool verify_RTL()
{
update_loiter();
if (wp_distance <= (uint32_t)max(g.waypoint_radius,0) ||
nav_controller->reached_loiter_target()) {
gcs_send_text_P(SEVERITY_LOW,PSTR("Reached home"));
return true;
} else {
return false;
}
}
/********************************************************************************/
// Condition (May) commands
/********************************************************************************/
static void do_wait_delay()
{
condition_start = millis();
condition_value = next_nonnav_command.lat * 1000; // convert to milliseconds
}
static void do_change_alt()
{
condition_rate = labs((int)next_nonnav_command.lat);
condition_value = next_nonnav_command.alt;
if (condition_value < adjusted_altitude_cm()) {
condition_rate = -condition_rate;
}
target_altitude_cm = adjusted_altitude_cm() + (condition_rate / 10); // Divide by ten for 10Hz update
next_WP.alt = condition_value; // For future nav calculations
offset_altitude_cm = 0; // For future nav calculations
}
static void do_within_distance()
{
condition_value = next_nonnav_command.lat;
}
/********************************************************************************/
// Verify Condition (May) commands
/********************************************************************************/
static bool verify_wait_delay()
{
if ((unsigned)(millis() - condition_start) > (unsigned)condition_value) {
condition_value = 0;
return true;
}
return false;
}
static bool verify_change_alt()
{
if( (condition_rate>=0 && adjusted_altitude_cm() >= condition_value) ||
(condition_rate<=0 && adjusted_altitude_cm() <= condition_value)) {
condition_value = 0;
return true;
}
target_altitude_cm += condition_rate / 10;
return false;
}
static bool verify_within_distance()
{
if (wp_distance < max(condition_value,0)) {
condition_value = 0;
return true;
}
return false;
}
/********************************************************************************/
// Do (Now) commands
/********************************************************************************/
static void do_loiter_at_location()
{
if (g.loiter_radius < 0) {
loiter.direction = -1;
} else {
loiter.direction = 1;
}
next_WP = current_loc;
}
static void do_jump()
{
if (next_nonnav_command.lat == 0) {
// the jump counter has reached zero - ignore
gcs_send_text_fmt(PSTR("Jumps left: 0 - skipping"));
return;
}
if (next_nonnav_command.p1 >= g.command_total) {
gcs_send_text_fmt(PSTR("Skipping invalid jump to %i"), next_nonnav_command.p1);
return;
}
struct Location temp;
temp = get_cmd_with_index(g.command_index);
gcs_send_text_fmt(PSTR("Jump to WP %u. Jumps left: %d"),
(unsigned)next_nonnav_command.p1,
(int)next_nonnav_command.lat);
if (next_nonnav_command.lat > 0) {
// Decrement repeat counter
temp.lat = next_nonnav_command.lat - 1;
set_cmd_with_index(temp, g.command_index);
}
nav_command_ID = NO_COMMAND;
next_nav_command.id = NO_COMMAND;
non_nav_command_ID = NO_COMMAND;
gcs_send_text_fmt(PSTR("setting command index: %i"), next_nonnav_command.p1);
g.command_index.set_and_save(next_nonnav_command.p1);
nav_command_index = next_nonnav_command.p1;
// Need to back "next_WP" up as it was set to the next waypoint following the jump
next_WP = prev_WP;
temp = get_cmd_with_index(g.command_index);
next_nav_command = temp;
nav_command_ID = next_nav_command.id;
non_nav_command_index = g.command_index;
non_nav_command_ID = WAIT_COMMAND;
if (g.log_bitmask & MASK_LOG_CMD) {
Log_Write_Cmd(g.command_index, &next_nav_command);
}
handle_process_nav_cmd();
}
static void do_change_speed()
{
switch (next_nonnav_command.p1)
{
case 0: // Airspeed
if (next_nonnav_command.alt > 0) {
g.airspeed_cruise_cm.set(next_nonnav_command.alt * 100);
gcs_send_text_fmt(PSTR("Set airspeed %u m/s"), (unsigned)next_nonnav_command.alt);
}
break;
case 1: // Ground speed
gcs_send_text_fmt(PSTR("Set groundspeed %u"), (unsigned)next_nonnav_command.alt);
g.min_gndspeed_cm.set(next_nonnav_command.alt * 100);
break;
}
if (next_nonnav_command.lat > 0) {
gcs_send_text_fmt(PSTR("Set throttle %u"), (unsigned)next_nonnav_command.lat);
aparm.throttle_cruise.set(next_nonnav_command.lat);
}
}
static void do_set_home()
{
if (next_nonnav_command.p1 == 1 && g_gps->status() == GPS::GPS_OK_FIX_3D) {
init_home();
} else {
home.id = MAV_CMD_NAV_WAYPOINT;
home.lng = next_nonnav_command.lng; // Lon * 10**7
home.lat = next_nonnav_command.lat; // Lat * 10**7
home.alt = max(next_nonnav_command.alt, 0);
home_is_set = true;
}
}
static void do_set_servo()
{
servo_write(next_nonnav_command.p1 - 1, next_nonnav_command.alt);
}
static void do_set_relay()
{
if (next_nonnav_command.p1 == 1) {
gcs_send_text_fmt(PSTR("Relay on"));
relay.on();
} else if (next_nonnav_command.p1 == 0) {
gcs_send_text_fmt(PSTR("Relay off"));
relay.off();
}else{
gcs_send_text_fmt(PSTR("Relay toggle"));
relay.toggle();
}
}
static void do_repeat_servo(uint8_t channel, uint16_t servo_value,
int16_t repeat, uint8_t delay_time)
{
channel = channel - 1;
if (channel < 5 || channel > 8) {
// not allowed
return;
}
event_state.rc_channel = channel;
event_state.type = EVENT_TYPE_SERVO;
event_state.start_time_ms = 0;
event_state.delay_ms = delay_time * 500UL;
event_state.repeat = repeat * 2;
event_state.servo_value = servo_value;
event_state.undo_value = RC_Channel::rc_channel(channel)->radio_trim;
update_events();
}
static void do_repeat_relay()
{
event_state.type = EVENT_TYPE_RELAY;
event_state.start_time_ms = 0;
// /2 (half cycle time) * 1000 (convert to milliseconds)
event_state.delay_ms = next_nonnav_command.lat * 500.0;
event_state.repeat = next_nonnav_command.alt * 2;
update_events();
}
// do_take_picture - take a picture with the camera library
static void do_take_picture()
{
#if CAMERA == ENABLED
camera.trigger_pic();
if (g.log_bitmask & MASK_LOG_CAMERA) {
Log_Write_Camera();
}
#endif
}