ardupilot/libraries/AP_SmartRTL/AP_SmartRTL.cpp
Randy Mackay 193799346c AP_SmartRTL: peek_point method peeks at next point
includes peek point takes semaphore
2021-04-03 12:07:59 +09:00

905 lines
32 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_SmartRTL.h"
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Logger/AP_Logger.h>
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_SmartRTL::var_info[] = {
// @Param: ACCURACY
// @DisplayName: SmartRTL accuracy
// @Description: SmartRTL accuracy. The minimum distance between points.
// @Units: m
// @Range: 0 10
// @User: Advanced
AP_GROUPINFO("ACCURACY", 0, AP_SmartRTL, _accuracy, SMARTRTL_ACCURACY_DEFAULT),
// @Param: POINTS
// @DisplayName: SmartRTL maximum number of points on path
// @Description: SmartRTL maximum number of points on path. Set to 0 to disable SmartRTL. 100 points consumes about 3k of memory.
// @Range: 0 500
// @User: Advanced
// @RebootRequired: True
AP_GROUPINFO("POINTS", 1, AP_SmartRTL, _points_max, SMARTRTL_POINTS_DEFAULT),
// @Param: OPTIONS
// @DisplayName: SmartRTL options
// @Description: Bitmask of SmartRTL options.
// @Bitmask: 2:Ignore pilot yaw
// @User: Standard
AP_GROUPINFO("OPTIONS", 2, AP_SmartRTL, _options, 0),
AP_GROUPEND
};
/*
* This library is used for the Safe Return-to-Launch feature. The vehicle's
* position (aka "bread crumbs") are stored into an array in memory at
* regular intervals. After a certain number of bread crumbs have been
* stored and space within the array is low, clean-up algorithms are run to
* reduce the total number of points. When Safe-RTL is initiated by the
* vehicle code, a more thorough cleanup runs and the resulting path is fed
* into navigation controller to return the vehicle to home.
*
* The cleanup consists of two parts, pruning and simplification:
*
* 1. Pruning calculates the closest distance between two line segments formed
* by two pairs of sequential points, and then cuts out anything between two
* points when their line segments get close. This algorithm will never
* compare two consecutive line segments. Obviously the segments (p1,p2) and
* (p2,p3) will get very close (they touch), but there would be nothing to
* trim between them.
*
* 2. Simplification uses the Ramer-Douglas-Peucker algorithm. See Wikipedia
* for a more complete description.
*
* The simplification and pruning algorithms run in the background and do not
* alter the path in memory. Two definitions, SMARTRTL_SIMPLIFY_TIME_US and
* SMARTRTL_PRUNING_LOOP_TIME_US are used to limit how long each algorithm will
* be run before they save their state and return.
*
* Both algorithms are "anytime algorithms" meaning they can be interrupted
* before they complete which is helpful when memory is filling up and we just
* need to quickly identify a handful of points which can be deleted.
*
* Once the algorithms have completed the simplify.complete and
* prune.complete flags are set to true. The "thorough cleanup" procedure,
* which is run as the vehicle initiates the SmartRTL flight mode, waits for
* these flags to become true. This can force the vehicle to pause for a few
* seconds before initiating the return journey.
*/
AP_SmartRTL::AP_SmartRTL(bool example_mode) :
_example_mode(example_mode)
{
AP_Param::setup_object_defaults(this, var_info);
_simplify.bitmask.setall();
}
// initialise safe rtl including setting up background processes
void AP_SmartRTL::init()
{
// protect against repeated call to init
if (_path != nullptr) {
return;
}
// constrain the path length, in case the user decided to make the path unreasonably long.
_points_max = constrain_int16(_points_max, 0, SMARTRTL_POINTS_MAX);
// check if user has disabled SmartRTL
if (_points_max == 0 || !is_positive(_accuracy)) {
return;
}
// allocate arrays
_path = (Vector3f*)calloc(_points_max, sizeof(Vector3f));
_prune.loops_max = _points_max * SMARTRTL_PRUNING_LOOP_BUFFER_LEN_MULT;
_prune.loops = (prune_loop_t*)calloc(_prune.loops_max, sizeof(prune_loop_t));
_simplify.stack_max = _points_max * SMARTRTL_SIMPLIFY_STACK_LEN_MULT;
_simplify.stack = (simplify_start_finish_t*)calloc(_simplify.stack_max, sizeof(simplify_start_finish_t));
// check if memory allocation failed
if (_path == nullptr || _prune.loops == nullptr || _simplify.stack == nullptr) {
log_action(SRTL_DEACTIVATED_INIT_FAILED);
gcs().send_text(MAV_SEVERITY_WARNING, "SmartRTL deactivated: init failed");
free(_path);
free(_prune.loops);
free(_simplify.stack);
return;
}
_path_points_max = _points_max;
// when running the example sketch, we want the cleanup tasks to run when we tell them to, not in the background (so that they can be timed.)
if (!_example_mode){
// register background cleanup to run in IO thread
hal.scheduler->register_io_process(FUNCTOR_BIND_MEMBER(&AP_SmartRTL::run_background_cleanup, void));
}
}
// returns number of points on the path
uint16_t AP_SmartRTL::get_num_points() const
{
return _path_points_count;
}
// get next point on the path to home, returns true on success
bool AP_SmartRTL::pop_point(Vector3f& point)
{
// check we are active
if (!_active) {
return false;
}
// get semaphore
if (!_path_sem.take_nonblocking()) {
log_action(SRTL_POP_FAILED_NO_SEMAPHORE);
return false;
}
// check we have another point
if (_path_points_count == 0) {
_path_sem.give();
return false;
}
// return last point and remove from path
point = _path[--_path_points_count];
// record count of last point popped
_path_points_completed_limit = _path_points_count;
_path_sem.give();
return true;
}
// peek at next point on the path without removing it form the path. Returns true on success
bool AP_SmartRTL::peek_point(Vector3f& point)
{
// check we are active
if (!_active) {
return false;
}
// get semaphore
if (!_path_sem.take_nonblocking()) {
log_action(SRTL_PEEK_FAILED_NO_SEMAPHORE);
return false;
}
// check we have another point
if (_path_points_count == 0) {
_path_sem.give();
return false;
}
// return last point
point = _path[_path_points_count-1];
_path_sem.give();
return true;
}
// clear return path and set home location. This should be called as part of the arming procedure
void AP_SmartRTL::set_home(bool position_ok)
{
Vector3f current_pos;
position_ok &= AP::ahrs().get_relative_position_NED_origin(current_pos);
set_home(position_ok, current_pos);
}
void AP_SmartRTL::set_home(bool position_ok, const Vector3f& current_pos)
{
if (_path == nullptr) {
return;
}
// clear path
_path_points_count = 0;
// reset simplification and pruning. These functions access members that should normally only
// be touched by the background thread but it will not be running because active should be false
reset_simplification();
reset_pruning();
// don't continue if no position at take-off
if (!position_ok) {
return;
}
// save current position as first point in path
if (!add_point(current_pos)) {
return;
}
// successfully added point and reset path
_last_good_position_ms = AP_HAL::millis();
_active = true;
_home_saved = true;
}
// call this at 3hz (or higher) regardless of what mode the vehicle is in
void AP_SmartRTL::update(bool position_ok, bool save_position)
{
// try to save home if not already saved
if (position_ok && !_home_saved) {
set_home(true);
}
if (!_active || !save_position) {
return;
}
Vector3f current_pos;
position_ok &= AP::ahrs().get_relative_position_NED_origin(current_pos);
update(position_ok, current_pos);
}
void AP_SmartRTL::update(bool position_ok, const Vector3f& current_pos)
{
if (!_active) {
return;
}
if (position_ok) {
const uint32_t now = AP_HAL::millis();
_last_good_position_ms = now;
// add the point
if (add_point(current_pos)) {
_last_position_save_ms = now;
} else if (AP_HAL::millis() - _last_position_save_ms > SMARTRTL_TIMEOUT) {
// deactivate after timeout due to failure to save points to path (most likely due to buffer filling up)
deactivate(SRTL_DEACTIVATED_PATH_FULL_TIMEOUT, "buffer full");
}
} else {
// check for timeout due to bad position
if (AP_HAL::millis() - _last_good_position_ms > SMARTRTL_TIMEOUT) {
deactivate(SRTL_DEACTIVATED_BAD_POSITION_TIMEOUT, "bad position");
return;
}
}
}
// request thorough cleanup including simplification, pruning and removal of all unnecessary points
// returns true if the thorough cleanup was completed, false if it has not yet completed
// this method should be called repeatedly until it returns true before initiating the return journey
bool AP_SmartRTL::request_thorough_cleanup(ThoroughCleanupType clean_type)
{
// this should never happen but just in case
if (!_active) {
return false;
}
// request thorough cleanup
if (_thorough_clean_request_ms == 0) {
_thorough_clean_request_ms = AP_HAL::millis();
if (clean_type != THOROUGH_CLEAN_DEFAULT) {
_thorough_clean_type = clean_type;
}
return false;
}
// check if background thread has completed request
if (_thorough_clean_complete_ms == _thorough_clean_request_ms) {
_thorough_clean_request_ms = 0;
return true;
}
return false;
}
// cancel request for thorough cleanup
void AP_SmartRTL::cancel_request_for_thorough_cleanup()
{
_thorough_clean_request_ms = 0;
}
//
// Private methods
//
// add point to end of path (if necessary), returns true on success
bool AP_SmartRTL::add_point(const Vector3f& point)
{
// get semaphore
if (!_path_sem.take_nonblocking()) {
log_action(SRTL_ADD_FAILED_NO_SEMAPHORE, point);
return false;
}
// check if we have traveled far enough
if (_path_points_count > 0) {
const Vector3f& last_pos = _path[_path_points_count-1];
if (last_pos.distance_squared(point) < sq(_accuracy.get())) {
_path_sem.give();
return true;
}
}
// check we have space in the path
if (_path_points_count >= _path_points_max) {
_path_sem.give();
log_action(SRTL_ADD_FAILED_PATH_FULL, point);
return false;
}
// add point to path
_path[_path_points_count++] = point;
log_action(SRTL_POINT_ADD, point);
_path_sem.give();
return true;
}
// run background cleanup - should be run regularly from the IO thread
void AP_SmartRTL::run_background_cleanup()
{
if (!_active) {
return;
}
// get semaphore
if (!_path_sem.take_nonblocking()) {
return;
}
// local copy of _path_points_count and _path_points_completed_limit
const uint16_t path_points_count = _path_points_count;
const uint16_t path_points_completed_limit = _path_points_completed_limit;
_path_points_completed_limit = SMARTRTL_POINTS_MAX;
_path_sem.give();
// check if thorough cleanup is required
if (_thorough_clean_request_ms > 0) {
// check if we have already completed the request
if (_thorough_clean_complete_ms != _thorough_clean_request_ms) {
if (thorough_cleanup(path_points_count, _thorough_clean_type)) {
// record completion
_thorough_clean_complete_ms = _thorough_clean_request_ms;
}
}
// we do not perform any further detection or cleanup until the requester acknowledges
// they have what they need by setting _thorough_clean_request_ms back to zero
return;
}
// ensure clean complete time is zero
_thorough_clean_complete_ms = 0;
// perform routine cleanup which removes 10 to 50 points if possible
routine_cleanup(path_points_count, path_points_completed_limit);
// warn if buffer is about to be filled
uint32_t now_ms = AP_HAL::millis();
if ((path_points_count >0) && (path_points_count >= _path_points_max - 9) && (now_ms - _last_low_space_notify_ms > 10000)) {
gcs().send_text(MAV_SEVERITY_INFO, "SmartRTL Low on space!");
_last_low_space_notify_ms = now_ms;
}
}
// routine cleanup is called regularly from run_background_cleanup
// simplifies the path after SMARTRTL_CLEANUP_POINT_TRIGGER points (50 points) have been added OR
// SMARTRTL_CLEANUP_POINT_MIN (10 points) have been added and the path has less than SMARTRTL_CLEANUP_START_MARGIN spaces (10 spaces) remaining
// prunes the path if the path has less than SMARTRTL_CLEANUP_START_MARGIN spaces (10 spaces) remaining
void AP_SmartRTL::routine_cleanup(uint16_t path_points_count, uint16_t path_points_completed_limit)
{
// if simplify is running, let it run to completion
if (!_simplify.complete) {
detect_simplifications();
return;
}
// remove simplified from path if required
if (_simplify.removal_required) {
remove_points_by_simplify_bitmask();
return;
}
// if necessary restart detect_pruning up to last point simplified
if (_prune.complete) {
restart_pruning_if_new_points();
}
// if pruning is running, let it run to completion
if (!_prune.complete) {
detect_loops();
return;
}
// detect path shrinkage and reduce simplify and prune path_points_completed count
if (_simplify.path_points_completed > path_points_completed_limit) {
_simplify.path_points_completed = path_points_completed_limit;
}
if (_prune.path_points_completed > path_points_completed_limit) {
_prune.path_points_completed = path_points_completed_limit;
}
// calculate the number of points we could simplify
const uint16_t points_to_simplify = (path_points_count > _simplify.path_points_completed) ? (path_points_count - _simplify.path_points_completed) : 0 ;
const bool low_on_space = (_path_points_max - path_points_count) <= SMARTRTL_CLEANUP_START_MARGIN;
// if 50 points can be simplified or we are low on space and at least 10 points can be simplified
if ((points_to_simplify >= SMARTRTL_CLEANUP_POINT_TRIGGER) || (low_on_space && (points_to_simplify >= SMARTRTL_CLEANUP_POINT_MIN))) {
restart_simplification(path_points_count);
return;
}
// we are low on space, prune
if (low_on_space) {
// remove at least 10 points
remove_points_by_loops(SMARTRTL_CLEANUP_POINT_MIN);
}
}
// thorough cleanup simplifies and prunes all loops. returns true if the cleanup was completed.
// path_points_count is _path_points_count but passed in to avoid having to take the semaphore
bool AP_SmartRTL::thorough_cleanup(uint16_t path_points_count, ThoroughCleanupType clean_type)
{
if (clean_type != THOROUGH_CLEAN_PRUNE_ONLY) {
// restart simplify if new points have appeared on path
if (_simplify.complete) {
restart_simplify_if_new_points(path_points_count);
}
// if simplification is not complete, run it
if (!_simplify.complete) {
detect_simplifications();
return false;
}
// remove simplified points from path if required
if (_simplify.removal_required) {
remove_points_by_simplify_bitmask();
return false;
}
}
if (clean_type != THOROUGH_CLEAN_SIMPLIFY_ONLY) {
// if necessary restart detect_pruning up to last point simplified
if (_prune.complete) {
restart_pruning_if_new_points();
}
// if pruning is not complete, run it
if (!_prune.complete) {
detect_loops();
return false;
}
// remove pruning points
if (!remove_points_by_loops(SMARTRTL_POINTS_MAX)) {
return false;
}
}
return true;
}
// Simplifies a 3D path, according to the Ramer-Douglas-Peucker algorithm.
// _simplify.complete is set to true when all simplifications on the path have been identified
void AP_SmartRTL::detect_simplifications()
{
// complete immediately if only one segment
if (_simplify.path_points_count < 3) {
_simplify.complete = true;
return;
}
// if not complete but also nothing to do, we must be restarting
if (_simplify.stack_count == 0) {
// reset to beginning state. add a single element in the array with:
// start = first path point OR the index of the last already-simplified point
// finish = final path point
_simplify.stack[0].start = (_simplify.path_points_completed > 0) ? _simplify.path_points_completed - 1 : 0;
_simplify.stack[0].finish = _simplify.path_points_count-1;
_simplify.stack_count++;
}
const uint32_t start_time_us = AP_HAL::micros();
while (_simplify.stack_count > 0) { // while there is something to do
// if this method has run for long enough, exit
if (AP_HAL::micros() - start_time_us > SMARTRTL_SIMPLIFY_TIME_US) {
return;
}
// pop last item off the simplify stack
const simplify_start_finish_t tmp = _simplify.stack[--_simplify.stack_count];
const uint16_t start_index = tmp.start;
const uint16_t end_index = tmp.finish;
// find the point between start and end points that is farthest from the start-end line segment
float max_dist = 0.0f;
uint16_t farthest_point_index = start_index;
for (uint16_t i = start_index + 1; i < end_index; i++) {
// only check points that have not already been flagged for simplification
if (_simplify.bitmask.get(i)) {
const float dist = _path[i].distance_to_segment(_path[start_index], _path[end_index]);
if (dist > max_dist) {
farthest_point_index = i;
max_dist = dist;
}
}
}
// if the farthest point is more than ACCURACY * 0.5 add two new elements to the _simplification_stack
// so that on the next iteration we will check between start-to-farthestpoint and farthestpoint-to-end
if (max_dist > SMARTRTL_SIMPLIFY_EPSILON) {
// if the to-do list is full, give up on simplifying. This should never happen.
if (_simplify.stack_count >= _simplify.stack_max) {
_simplify.complete = true;
return;
}
_simplify.stack[_simplify.stack_count++] = simplify_start_finish_t {start_index, farthest_point_index};
_simplify.stack[_simplify.stack_count++] = simplify_start_finish_t {farthest_point_index, end_index};
} else {
// if the farthest point was closer than ACCURACY * 0.5 we can simplify all points between start and end
for (uint16_t i = start_index + 1; i < end_index; i++) {
_simplify.bitmask.clear(i);
_simplify.removal_required = true;
}
}
}
_simplify.path_points_completed = _simplify.path_points_count;
_simplify.complete = true;
}
/**
* This method runs for the allotted time, and detects loops in a path. Any detected loops are added to _prune.loops,
* this function does not alter the path in memory. It works by comparing the line segment between any two sequential points
* to the line segment between any other two sequential points. If they get close enough, anything between them could be pruned.
*
* reset_pruning should have been called at least once before this function is called to setup the indexes (_prune.i, etc)
*/
void AP_SmartRTL::detect_loops()
{
// if there are less than 4 points (3 segments), mark complete
if (_prune.path_points_count < 4) {
_prune.complete = true;
return;
}
// capture start time
const uint32_t start_time_us = AP_HAL::micros();
// run for defined amount of time
while (AP_HAL::micros() - start_time_us < SMARTRTL_PRUNING_LOOP_TIME_US) {
// advance inner loop
_prune.j++;
if (_prune.j > _prune.i - 2) {
// set inner loop back to first point
_prune.j = 1;
// reduce outer loop
_prune.i--;
// complete when outer loop has run out of new points to check
if (_prune.i < 4 || _prune.i < _prune.path_points_completed) {
_prune.complete = true;
_prune.path_points_completed = _prune.path_points_count;
return;
}
}
// find the closest distance between two line segments and the mid-point
dist_point dp = segment_segment_dist(_path[_prune.i], _path[_prune.i-1], _path[_prune.j-1], _path[_prune.j]);
if (dp.distance < SMARTRTL_PRUNING_DELTA) {
// if there is a loop here, add to loop array
if (!add_loop(_prune.j, _prune.i-1, dp.midpoint)) {
// if the buffer is full, stop trying to prune
_prune.complete = true;
}
// set inner loop forward to trigger outer loop move to next segment
_prune.j = _prune.i;
}
}
}
// restart simplify if new points have been added to path
// path_points_count is _path_points_count but passed in to avoid having to take the semaphore
void AP_SmartRTL::restart_simplify_if_new_points(uint16_t path_points_count)
{
// any difference in the number of points is because of new points being added to path
if (_simplify.path_points_count != path_points_count) {
restart_simplification(path_points_count);
}
}
// reset pruning if new points have been simplified
void AP_SmartRTL::restart_pruning_if_new_points()
{
// any difference in the number of points is because of new points being added to path
if (_prune.path_points_count != _simplify.path_points_completed) {
restart_pruning(_simplify.path_points_completed);
}
}
// restart simplification algorithm so that it will check new points in the path
void AP_SmartRTL::restart_simplification(uint16_t path_points_count)
{
_simplify.complete = false;
_simplify.removal_required = false;
_simplify.bitmask.setall();
_simplify.stack_count = 0;
_simplify.path_points_count = path_points_count;
}
// reset simplification algorithm so that it will re-check all points in the path
void AP_SmartRTL::reset_simplification()
{
restart_simplification(0);
_simplify.path_points_completed = 0;
}
// restart pruning algorithm to check new points that have arrived
void AP_SmartRTL::restart_pruning(uint16_t path_points_count)
{
_prune.complete = false;
_prune.i = (path_points_count > 0) ? path_points_count - 1 : 0;
_prune.j = 0;
_prune.path_points_count = path_points_count;
}
// reset pruning algorithm so that it will re-check all points in the path
void AP_SmartRTL::reset_pruning()
{
restart_pruning(0);
_prune.loops_count = 0; // clear the loops that we've recorded
_prune.path_points_completed = 0;
}
// remove all simplify-able points from the path
void AP_SmartRTL::remove_points_by_simplify_bitmask()
{
// get semaphore before modifying path
if (!_path_sem.take_nonblocking()) {
return;
}
uint16_t dest = 1;
uint16_t removed = 0;
for (uint16_t src = 1; src < _path_points_count; src++) {
if (!_simplify.bitmask.get(src)) {
log_action(SRTL_POINT_SIMPLIFY, _path[src]);
removed++;
} else {
_path[dest] = _path[src];
dest++;
}
}
// reduce count of the number of points simplified
if (_path_points_count > removed && _simplify.path_points_count > removed) {
_path_points_count -= removed;
_simplify.path_points_count -= removed;
_simplify.path_points_completed = _simplify.path_points_count;
} else {
// this is an error that should never happen so deactivate
deactivate(SRTL_DEACTIVATED_PROGRAM_ERROR, "program error");
}
_path_sem.give();
// flag point removal is complete
_simplify.bitmask.setall();
_simplify.removal_required = false;
}
// remove loops until at least num_point_to_delete have been removed from path
// does not necessarily prune all loops
// returns false if it failed to remove points (because it could not take semaphore)
bool AP_SmartRTL::remove_points_by_loops(uint16_t num_points_to_remove)
{
// exit immediately if no loops to prune
if (_prune.loops_count == 0) {
return true;
}
// get semaphore before modifying path
if (!_path_sem.take_nonblocking()) {
return false;
}
uint16_t removed_points = 0;
uint16_t i = _prune.loops_count;
while ((i > 0) && (removed_points < num_points_to_remove)) {
i--;
prune_loop_t loop = _prune.loops[i];
// midpoint goes into start_index (this is the end point of the first segment)
_path[loop.start_index] = loop.midpoint;
// shift points after the end of the loop down by the number of points in the loop
uint16_t loop_num_points_to_remove = loop.end_index - loop.start_index;
for (uint16_t dest = loop.start_index + 1; dest < _path_points_count - loop_num_points_to_remove; dest++) {
log_action(SRTL_POINT_PRUNE, _path[dest]);
_path[dest] = _path[dest + loop_num_points_to_remove];
}
if (_path_points_count > loop_num_points_to_remove) {
_path_points_count -= loop_num_points_to_remove;
removed_points += loop_num_points_to_remove;
} else {
// this is an error that should never happen so deactivate
deactivate(SRTL_DEACTIVATED_PROGRAM_ERROR, "program error");
_path_sem.give();
// we return true so thorough_cleanup does not get stuck
return true;
}
// fix the indices of any existing prune loops
// we do not check for overlapping loops because add_loops should have caught them
for (uint16_t loop_cnt = 0; loop_cnt < i; loop_cnt++) {
if (_prune.loops[loop_cnt].start_index >= loop.end_index) {
_prune.loops[loop_cnt].start_index -= loop_num_points_to_remove;
}
if (_prune.loops[loop_cnt].end_index >= loop.end_index) {
_prune.loops[loop_cnt].end_index -= loop_num_points_to_remove;
}
}
// remove last prune loop from array
_prune.loops_count--;
}
_path_sem.give();
return true;
}
// add loop to loops array
// returns true if loop added successfully, false if loop array is full
// checks if loop overlaps with an existing loop, keeps only the longer loop
bool AP_SmartRTL::add_loop(uint16_t start_index, uint16_t end_index, const Vector3f& midpoint)
{
// if the buffer is full, return failure
if (_prune.loops_count >= _prune.loops_max) {
return false;
}
// sanity check indices
if (end_index <= start_index) {
return false;
}
// create new loop structure and calculate length squared of loop
prune_loop_t new_loop = {start_index, end_index, midpoint, 0.0f};
new_loop.length_squared = midpoint.distance_squared(_path[start_index]) + midpoint.distance_squared(_path[end_index]);
for (uint16_t i = start_index; i < end_index; i++) {
new_loop.length_squared += _path[i].distance_squared(_path[i+1]);
}
// look for overlapping loops and find their combined length
bool overlapping_loops = false;
float overlapping_loop_length = 0.0f;
for (uint16_t loop_idx = 0; loop_idx < _prune.loops_count; loop_idx++) {
if (loops_overlap(_prune.loops[loop_idx], new_loop)) {
overlapping_loops = true;
overlapping_loop_length += _prune.loops[loop_idx].length_squared;
}
}
// handle overlapping loops
if (overlapping_loops) {
// if adding this loop would lengthen the path, discard the new loop but return success
if (overlapping_loop_length > new_loop.length_squared) {
return true;
}
// remove overlapping loops
uint16_t dest_idx = 0;
uint16_t removed = 0;
for (uint16_t src_idx = 0; src_idx < _prune.loops_count; src_idx++) {
if (loops_overlap(_prune.loops[src_idx], new_loop)) {
removed++;
} else {
_prune.loops[dest_idx] = _prune.loops[src_idx];
dest_idx++;
}
}
_prune.loops_count -= removed;
}
// add new loop to _prune.loops array
_prune.loops[_prune.loops_count] = new_loop;
_prune.loops_count++;
return true;
}
/**
* Returns the closest distance in 3D space between any part of two input segments, defined from p1 to p2 and from p3 to p4.
* Also returns the point which is halfway between
*
* Limitation: This function does not work for parallel lines. In this case, dist_point.distance will be FLT_MAX.
* This does not matter for the path cleanup algorithm because the pruning will still occur fine between the first
* parallel segment and a segment which is directly before or after the second segment.
*/
AP_SmartRTL::dist_point AP_SmartRTL::segment_segment_dist(const Vector3f &p1, const Vector3f &p2, const Vector3f &p3, const Vector3f &p4)
{
const Vector3f line1 = p2-p1;
const Vector3f line2 = p4-p3;
const Vector3f line_start_diff = p1-p3; // from the beginning of the second line to the beginning of the first line
// these don't really have a physical representation. They're only here to break up the longer formulas below.
const float a = line1*line1;
const float b = line1*line2;
const float c = line2*line2;
const float d = line1*line_start_diff;
const float e = line2*line_start_diff;
// the parameter for the position on line1 and line2 which define the closest points.
float t1 = 0.0f;
float t2 = 0.0f;
// if lines are almost parallel, return a garbage answer. This is irrelevant, since the loop
// could always be pruned start/end of the previous/subsequent line segment
if (is_zero((a*c)-(b*b))) {
return {FLT_MAX, Vector3f(0.0f, 0.0f, 0.0f)};
}
t1 = (b*e-c*d)/(a*c-b*b);
t2 = (a*e-b*d)/(a*c-b*b);
// restrict both parameters between 0 and 1.
t1 = constrain_float(t1, 0.0f, 1.0f);
t2 = constrain_float(t2, 0.0f, 1.0f);
// difference between two closest points
const Vector3f dP = line_start_diff+line1*t1-line2*t2;
const Vector3f midpoint = (p1+line1*t1 + p3+line2*t2)/2.0f;
return {dP.length(), midpoint};
}
// de-activate SmartRTL, send warning to GCS and logger
void AP_SmartRTL::deactivate(SRTL_Actions action, const char *reason)
{
_active = false;
log_action(action);
gcs().send_text(MAV_SEVERITY_WARNING, "SmartRTL deactivated: %s", reason);
}
// logging
void AP_SmartRTL::log_action(SRTL_Actions action, const Vector3f &point) const
{
if (!_example_mode) {
AP::logger().Write_SRTL(_active, _path_points_count, _path_points_max, action, point);
}
}
// returns true if the two loops overlap (used within add_loop to determine which loops to keep or throw away)
bool AP_SmartRTL::loops_overlap(const prune_loop_t &loop1, const prune_loop_t &loop2) const
{
// check if loop1 within loop2
if (loop1.start_index >= loop2.start_index && loop1.end_index <= loop2.end_index) {
return true;
}
// check if loop2 within loop1
if (loop2.start_index >= loop1.start_index && loop2.end_index <= loop1.end_index) {
return true;
}
// check for partial overlap (loop1's start OR end point is within loop2)
const bool loop1_start_in_loop2 = (loop1.start_index >= loop2.start_index) && (loop1.start_index <= loop2.end_index);
const bool loop1_end_in_loop2 = (loop1.end_index >= loop2.start_index) && (loop1.end_index <= loop2.end_index);
if (loop1_start_in_loop2 != loop1_end_in_loop2) {
return true;
}
// if we got here, no overlap
return false;
}
// returns true if pilot's yaw input should be used to adjust vehicle's heading
bool AP_SmartRTL::use_pilot_yaw(void) const
{
return (_options.get() & uint32_t(Options::IgnorePilotYaw)) == 0;
}