ardupilot/libraries/AP_Radio/AP_Radio_cypress.cpp
Andrew Tridgell 1cee9bea28 AP_Radio: use take_blocking instead of HAL_SEMAPHORE_BLOCK_FOREVER
this makes for cleaner and smaller code as the failure case is not
needed
2020-01-19 20:19:30 +11:00

1686 lines
50 KiB
C++

#include <AP_HAL/AP_HAL.h>
#if HAL_RCINPUT_WITH_AP_RADIO
#include <AP_Math/AP_Math.h>
#include "AP_Radio_cypress.h"
#include <utility>
#include <stdio.h>
#include <StorageManager/StorageManager.h>
#include <AP_HAL/utility/dsm.h>
#include <AP_Math/crc.h>
#include "telem_structure.h"
#include <AP_Notify/AP_Notify.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
/*
driver for CYRF6936 radio
Many thanks to the SuperBitRF project from Paparrazi for their DSM
configuration code and register defines
https://github.com/esden/superbitrf-firmware
*/
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
#define TIMEOUT_PRIORITY 181
#define EVT_TIMEOUT EVENT_MASK(0)
#define EVT_IRQ EVENT_MASK(1)
#endif
#ifndef CYRF_SPI_DEVICE
# define CYRF_SPI_DEVICE "cypress"
#endif
#ifndef CYRF_IRQ_INPUT
# define CYRF_IRQ_INPUT (GPIO_INPUT|GPIO_FLOAT|GPIO_EXTI|GPIO_PORTD|GPIO_PIN15)
#endif
#ifndef CYRF_RESET_PIN
# define CYRF_RESET_PIN (GPIO_OUTPUT|GPIO_PUSHPULL|GPIO_EXTI|GPIO_PORTB|GPIO_PIN0)
#endif
extern const AP_HAL::HAL& hal;
#define Debug(level, fmt, args...) do { if ((level) <= get_debug_level()) { gcs().send_text(MAV_SEVERITY_INFO, fmt, ##args); }} while (0)
#define LP_FIFO_SIZE 16 // Physical data FIFO lengths in Radio
/* The SPI interface defines */
enum {
CYRF_CHANNEL = 0x00,
CYRF_TX_LENGTH = 0x01,
CYRF_TX_CTRL = 0x02,
CYRF_TX_CFG = 0x03,
CYRF_TX_IRQ_STATUS = 0x04,
CYRF_RX_CTRL = 0x05,
CYRF_RX_CFG = 0x06,
CYRF_RX_IRQ_STATUS = 0x07,
CYRF_RX_STATUS = 0x08,
CYRF_RX_COUNT = 0x09,
CYRF_RX_LENGTH = 0x0A,
CYRF_PWR_CTRL = 0x0B,
CYRF_XTAL_CTRL = 0x0C,
CYRF_IO_CFG = 0x0D,
CYRF_GPIO_CTRL = 0x0E,
CYRF_XACT_CFG = 0x0F,
CYRF_FRAMING_CFG = 0x10,
CYRF_DATA32_THOLD = 0x11,
CYRF_DATA64_THOLD = 0x12,
CYRF_RSSI = 0x13,
CYRF_EOP_CTRL = 0x14,
CYRF_CRC_SEED_LSB = 0x15,
CYRF_CRC_SEED_MSB = 0x16,
CYRF_TX_CRC_LSB = 0x17,
CYRF_TX_CRC_MSB = 0x18,
CYRF_RX_CRC_LSB = 0x19,
CYRF_RX_CRC_MSB = 0x1A,
CYRF_TX_OFFSET_LSB = 0x1B,
CYRF_TX_OFFSET_MSB = 0x1C,
CYRF_MODE_OVERRIDE = 0x1D,
CYRF_RX_OVERRIDE = 0x1E,
CYRF_TX_OVERRIDE = 0x1F,
CYRF_TX_BUFFER = 0x20,
CYRF_RX_BUFFER = 0x21,
CYRF_SOP_CODE = 0x22,
CYRF_DATA_CODE = 0x23,
CYRF_PREAMBLE = 0x24,
CYRF_MFG_ID = 0x25,
CYRF_XTAL_CFG = 0x26,
CYRF_CLK_OFFSET = 0x27,
CYRF_CLK_EN = 0x28,
CYRF_RX_ABORT = 0x29,
CYRF_AUTO_CAL_TIME = 0x32,
CYRF_AUTO_CAL_OFFSET = 0x35,
CYRF_ANALOG_CTRL = 0x39,
};
#define CYRF_DIR (1<<7) /**< Bit for enabling writing */
// CYRF_MODE_OVERRIDE
#define CYRF_RST (1<<0)
// CYRF_CLK_EN
#define CYRF_RXF (1<<1)
// CYRF_XACT_CFG
enum {
CYRF_MODE_SLEEP = (0x0<<2),
CYRF_MODE_IDLE = (0x1<<2),
CYRF_MODE_SYNTH_TX = (0x2<<2),
CYRF_MODE_SYNTH_RX = (0x3<<2),
CYRF_MODE_RX = (0x4<<2),
};
#define CYRF_FRC_END (1<<5)
#define CYRF_ACK_EN (1<<7)
// CYRF_IO_CFG
#define CYRF_IRQ_GPIO (1<<0)
#define CYRF_SPI_3PIN (1<<1)
#define CYRF_PACTL_GPIO (1<<2)
#define CYRF_PACTL_OD (1<<3)
#define CYRF_XOUT_OD (1<<4)
#define CYRF_MISO_OD (1<<5)
#define CYRF_IRQ_POL (1<<6)
#define CYRF_IRQ_OD (1<<7)
// CYRF_FRAMING_CFG
#define CYRF_LEN_EN (1<<5)
#define CYRF_SOP_LEN (1<<6)
#define CYRF_SOP_EN (1<<7)
// CYRF_RX_STATUS
enum {
CYRF_RX_DATA_MODE_GFSK = 0x00,
CYRF_RX_DATA_MODE_8DR = 0x01,
CYRF_RX_DATA_MODE_DDR = 0x10,
CYRF_RX_DATA_MODE_NV = 0x11,
};
#define CYRF_RX_CODE (1<<2)
#define CYRF_BAD_CRC (1<<3)
#define CYRF_CRC0 (1<<4)
#define CYRF_EOP_ERR (1<<5)
#define CYRF_PKT_ERR (1<<6)
#define CYRF_RX_ACK (1<<7)
// CYRF_TX_IRQ_STATUS
#define CYRF_TXE_IRQ (1<<0)
#define CYRF_TXC_IRQ (1<<1)
#define CYRF_TXBERR_IRQ (1<<2)
#define CYRF_TXB0_IRQ (1<<3)
#define CYRF_TXB8_IRQ (1<<4)
#define CYRF_TXB15_IRQ (1<<5)
#define CYRF_LV_IRQ (1<<6)
#define CYRF_OS_IRQ (1<<7)
// CYRF_RX_IRQ_STATUS
#define CYRF_RXE_IRQ (1<<0)
#define CYRF_RXC_IRQ (1<<1)
#define CYRF_RXBERR_IRQ (1<<2)
#define CYRF_RXB1_IRQ (1<<3)
#define CYRF_RXB8_IRQ (1<<4)
#define CYRF_RXB16_IRQ (1<<5)
#define CYRF_SOPDET_IRQ (1<<6)
#define CYRF_RXOW_IRQ (1<<7)
// CYRF_TX_CTRL
#define CYRF_TXE_IRQEN (1<<0)
#define CYRF_TXC_IRQEN (1<<1)
#define CYRF_TXBERR_IRQEN (1<<2)
#define CYRF_TXB0_IRQEN (1<<3)
#define CYRF_TXB8_IRQEN (1<<4)
#define CYRF_TXB15_IRQEN (1<<5)
#define CYRF_TX_CLR (1<<6)
#define CYRF_TX_GO (1<<7)
// CYRF_RX_CTRL
#define CYRF_RXE_IRQEN (1<<0)
#define CYRF_RXC_IRQEN (1<<1)
#define CYRF_RXBERR_IRQEN (1<<2)
#define CYRF_RXB1_IRQEN (1<<3)
#define CYRF_RXB8_IRQEN (1<<4)
#define CYRF_RXB16_IRQEN (1<<5)
#define CYRF_RSVD (1<<6)
#define CYRF_RX_GO (1<<7)
// CYRF_RX_OVERRIDE
#define CYRF_ACE (1<<1)
#define CYRF_DIS_RXCRC (1<<2)
#define CYRF_DIS_CRC0 (1<<3)
#define CYRF_FRC_RXDR (1<<4)
#define CYRF_MAN_RXACK (1<<5)
#define CYRF_RXTX_DLY (1<<6)
#define CYRF_ACK_RX (1<<7)
// CYRF_TX_OVERRIDE
#define CYRF_TX_INV (1<<0)
#define CYRF_DIS_TXCRC (1<<2)
#define CYRF_OVRD_ACK (1<<3)
#define CYRF_MAN_TXACK (1<<4)
#define CYRF_FRC_PRE (1<<6)
#define CYRF_ACK_TX (1<<7)
// CYRF_RX_CFG
#define CYRF_VLD_EN (1<<0)
#define CYRF_RXOW_EN (1<<1)
#define CYRF_FAST_TURN_EN (1<<3)
#define CYRF_HILO (1<<4)
#define CYRF_ATT (1<<5)
#define CYRF_LNA (1<<6)
#define CYRF_AGC_EN (1<<7)
// CYRF_TX_CFG
enum {
CYRF_PA_M35 = 0x0,
CYRF_PA_M30 = 0x1,
CYRF_PA_M24 = 0x2,
CYRF_PA_M18 = 0x3,
CYRF_PA_M13 = 0x4,
CYRF_PA_M5 = 0x5,
CYRF_PA_0 = 0x6,
CYRF_PA_4 = 0x7,
};
enum {
CYRF_DATA_MODE_GFSK = (0x0 <<3),
CYRF_DATA_MODE_8DR = (0x1 <<3),
CYRF_DATA_MODE_DDR = (0x2 <<3),
CYRF_DATA_MODE_SDR = (0x3 <<3),
};
#define CYRF_DATA_CODE_LENGTH (1<<5)
#define FLAG_WRITE 0x80
#define FLAG_AUTO_INC 0x40
#define DSM_MAX_CHANNEL 0x4F
#define DSM_SCAN_MIN_CH 8
#define DSM_SCAN_MID_CH 40
#define DSM_SCAN_MAX_CH 70
#define FCC_SUPPORT_CW_MODE 0
#define AUTOBIND_CHANNEL 12
// object instance for trampoline
AP_Radio_cypress *AP_Radio_cypress::radio_singleton;
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
thread_t *AP_Radio_cypress::_irq_handler_ctx;
#endif
/*
constructor
*/
AP_Radio_cypress::AP_Radio_cypress(AP_Radio &_radio) :
AP_Radio_backend(_radio)
{
// link to instance for irq_trampoline
radio_singleton = this;
}
/*
initialise radio
*/
bool AP_Radio_cypress::init(void)
{
dev = hal.spi->get_device(CYRF_SPI_DEVICE);
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
if (_irq_handler_ctx != nullptr) {
AP_HAL::panic("AP_Radio_cypress: double instantiation of irq_handler\n");
}
chVTObjectInit(&timeout_vt);
_irq_handler_ctx = chThdCreateFromHeap(NULL,
THD_WORKING_AREA_SIZE(2048),
"radio_cypress",
TIMEOUT_PRIORITY,
irq_handler_thd,
NULL);
#endif
load_bind_info();
return reset();
}
/*
reset radio
*/
bool AP_Radio_cypress::reset(void)
{
dev->get_semaphore()->take_blocking();
/*
to reset radio hold reset high for 0.5s, then low for 0.5s
*/
#if defined(HAL_GPIO_RADIO_RESET)
hal.scheduler->expect_delay_ms(2000); // avoid main-loop-delay internal error
hal.gpio->write(HAL_GPIO_RADIO_RESET, 1);
hal.scheduler->delay(500);
hal.gpio->write(HAL_GPIO_RADIO_RESET, 0);
hal.scheduler->delay(500);
#endif
radio_init();
dev->get_semaphore()->give();
if (dsm.protocol == DSM_NONE &&
get_autobind_time() == 0) {
start_recv_bind();
}
return true;
}
/*
return statistics structure from radio
*/
const AP_Radio::stats &AP_Radio_cypress::get_stats(void)
{
return stats;
}
/*
read one pwm channel from radio
*/
uint16_t AP_Radio_cypress::read(uint8_t chan)
{
if (dsm.need_bind_save) {
save_bind_info();
}
if (chan >= max_channels) {
return 0;
}
return dsm.pwm_channels[chan];
}
/*
update status - called from main thread
*/
void AP_Radio_cypress::update(void)
{
check_fw_ack();
}
/*
print one second debug info
*/
void AP_Radio_cypress::print_debug_info(void)
{
Debug(2, "recv:%3u bad:%3u to:%3u re:%u N:%2u TXI:%u TX:%u 1:%4u 2:%4u 3:%4u 4:%4u 5:%4u 6:%4u 7:%4u 8:%4u 14:%u\n",
unsigned(stats.recv_packets - last_stats.recv_packets),
unsigned(stats.bad_packets - last_stats.bad_packets),
unsigned(stats.timeouts - last_stats.timeouts),
unsigned(stats.recv_errors - last_stats.recv_errors),
num_channels(),
unsigned(dsm.send_irq_count),
unsigned(dsm.send_count),
dsm.pwm_channels[0], dsm.pwm_channels[1], dsm.pwm_channels[2], dsm.pwm_channels[3],
dsm.pwm_channels[4], dsm.pwm_channels[5], dsm.pwm_channels[6], dsm.pwm_channels[7],
dsm.pwm_channels[13]);
}
/*
return number of active channels
*/
uint8_t AP_Radio_cypress::num_channels(void)
{
uint32_t now = AP_HAL::millis();
uint8_t chan = get_rssi_chan();
if (chan > 0) {
dsm.pwm_channels[chan-1] = dsm.rssi;
dsm.num_channels = MAX(dsm.num_channels, chan);
}
chan = get_pps_chan();
if (chan > 0) {
dsm.pwm_channels[chan-1] = t_status.pps;
dsm.num_channels = MAX(dsm.num_channels, chan);
}
chan = get_tx_rssi_chan();
if (chan > 0) {
dsm.pwm_channels[chan-1] = dsm.tx_rssi;
dsm.num_channels = MAX(dsm.num_channels, chan);
}
chan = get_tx_pps_chan();
if (chan > 0) {
dsm.pwm_channels[chan-1] = dsm.tx_pps;
dsm.num_channels = MAX(dsm.num_channels, chan);
}
if (now - last_debug_print_ms > 1000) {
last_debug_print_ms = now;
if (get_debug_level() > 1) {
print_debug_info();
}
t_status.pps = stats.recv_packets - last_stats.recv_packets;
t_status.rssi = (uint8_t)dsm.rssi;
last_stats = stats;
}
return dsm.num_channels;
}
/*
send a fwupload ack if needed
*/
void AP_Radio_cypress::check_fw_ack(void)
{
Debug(4,"check need_ack\n");
if (fwupload.need_ack && sem.take_nonblocking()) {
// ack the send of a DATA96 fw packet to TX
fwupload.need_ack = false;
uint8_t data16[16] {};
uint32_t ack_to = fwupload.offset + fwupload.acked;
memcpy(&data16[0], &ack_to, 4);
mavlink_msg_data16_send(fwupload.chan, 42, 4, data16);
Debug(4,"sent ack DATA16\n");
sem.give();
}
}
/*
return time of last receive in microseconds
*/
uint32_t AP_Radio_cypress::last_recv_us(void)
{
// we use the parse time, so it matches when channel values are filled in
return dsm.last_parse_us;
}
/*
send len bytes as a single packet
*/
bool AP_Radio_cypress::send(const uint8_t *pkt, uint16_t len)
{
// disabled for now
return false;
}
/* The PN codes */
const uint8_t AP_Radio_cypress::pn_codes[5][9][8] = {
{ /* Row 0 */
/* Col 0 */ {0x03, 0xBC, 0x6E, 0x8A, 0xEF, 0xBD, 0xFE, 0xF8},
/* Col 1 */ {0x88, 0x17, 0x13, 0x3B, 0x2D, 0xBF, 0x06, 0xD6},
/* Col 2 */ {0xF1, 0x94, 0x30, 0x21, 0xA1, 0x1C, 0x88, 0xA9},
/* Col 3 */ {0xD0, 0xD2, 0x8E, 0xBC, 0x82, 0x2F, 0xE3, 0xB4},
/* Col 4 */ {0x8C, 0xFA, 0x47, 0x9B, 0x83, 0xA5, 0x66, 0xD0},
/* Col 5 */ {0x07, 0xBD, 0x9F, 0x26, 0xC8, 0x31, 0x0F, 0xB8},
/* Col 6 */ {0xEF, 0x03, 0x95, 0x89, 0xB4, 0x71, 0x61, 0x9D},
/* Col 7 */ {0x40, 0xBA, 0x97, 0xD5, 0x86, 0x4F, 0xCC, 0xD1},
/* Col 8 */ {0xD7, 0xA1, 0x54, 0xB1, 0x5E, 0x89, 0xAE, 0x86}
},
{ /* Row 1 */
/* Col 0 */ {0x83, 0xF7, 0xA8, 0x2D, 0x7A, 0x44, 0x64, 0xD3},
/* Col 1 */ {0x3F, 0x2C, 0x4E, 0xAA, 0x71, 0x48, 0x7A, 0xC9},
/* Col 2 */ {0x17, 0xFF, 0x9E, 0x21, 0x36, 0x90, 0xC7, 0x82},
/* Col 3 */ {0xBC, 0x5D, 0x9A, 0x5B, 0xEE, 0x7F, 0x42, 0xEB},
/* Col 4 */ {0x24, 0xF5, 0xDD, 0xF8, 0x7A, 0x77, 0x74, 0xE7},
/* Col 5 */ {0x3D, 0x70, 0x7C, 0x94, 0xDC, 0x84, 0xAD, 0x95},
/* Col 6 */ {0x1E, 0x6A, 0xF0, 0x37, 0x52, 0x7B, 0x11, 0xD4},
/* Col 7 */ {0x62, 0xF5, 0x2B, 0xAA, 0xFC, 0x33, 0xBF, 0xAF},
/* Col 8 */ {0x40, 0x56, 0x32, 0xD9, 0x0F, 0xD9, 0x5D, 0x97}
},
{ /* Row 2 */
/* Col 0 */ {0x40, 0x56, 0x32, 0xD9, 0x0F, 0xD9, 0x5D, 0x97},
/* Col 1 */ {0x8E, 0x4A, 0xD0, 0xA9, 0xA7, 0xFF, 0x20, 0xCA},
/* Col 2 */ {0x4C, 0x97, 0x9D, 0xBF, 0xB8, 0x3D, 0xB5, 0xBE},
/* Col 3 */ {0x0C, 0x5D, 0x24, 0x30, 0x9F, 0xCA, 0x6D, 0xBD},
/* Col 4 */ {0x50, 0x14, 0x33, 0xDE, 0xF1, 0x78, 0x95, 0xAD},
/* Col 5 */ {0x0C, 0x3C, 0xFA, 0xF9, 0xF0, 0xF2, 0x10, 0xC9},
/* Col 6 */ {0xF4, 0xDA, 0x06, 0xDB, 0xBF, 0x4E, 0x6F, 0xB3},
/* Col 7 */ {0x9E, 0x08, 0xD1, 0xAE, 0x59, 0x5E, 0xE8, 0xF0},
/* Col 8 */ {0xC0, 0x90, 0x8F, 0xBB, 0x7C, 0x8E, 0x2B, 0x8E}
},
{ /* Row 3 */
/* Col 0 */ {0xC0, 0x90, 0x8F, 0xBB, 0x7C, 0x8E, 0x2B, 0x8E},
/* Col 1 */ {0x80, 0x69, 0x26, 0x80, 0x08, 0xF8, 0x49, 0xE7},
/* Col 2 */ {0x7D, 0x2D, 0x49, 0x54, 0xD0, 0x80, 0x40, 0xC1},
/* Col 3 */ {0xB6, 0xF2, 0xE6, 0x1B, 0x80, 0x5A, 0x36, 0xB4},
/* Col 4 */ {0x42, 0xAE, 0x9C, 0x1C, 0xDA, 0x67, 0x05, 0xF6},
/* Col 5 */ {0x9B, 0x75, 0xF7, 0xE0, 0x14, 0x8D, 0xB5, 0x80},
/* Col 6 */ {0xBF, 0x54, 0x98, 0xB9, 0xB7, 0x30, 0x5A, 0x88},
/* Col 7 */ {0x35, 0xD1, 0xFC, 0x97, 0x23, 0xD4, 0xC9, 0x88},
/* Col 8 */ {0x88, 0xE1, 0xD6, 0x31, 0x26, 0x5F, 0xBD, 0x40}
},
{ /* Row 4 */
/* Col 0 */ {0xE1, 0xD6, 0x31, 0x26, 0x5F, 0xBD, 0x40, 0x93},
/* Col 1 */ {0xDC, 0x68, 0x08, 0x99, 0x97, 0xAE, 0xAF, 0x8C},
/* Col 2 */ {0xC3, 0x0E, 0x01, 0x16, 0x0E, 0x32, 0x06, 0xBA},
/* Col 3 */ {0xE0, 0x83, 0x01, 0xFA, 0xAB, 0x3E, 0x8F, 0xAC},
/* Col 4 */ {0x5C, 0xD5, 0x9C, 0xB8, 0x46, 0x9C, 0x7D, 0x84},
/* Col 5 */ {0xF1, 0xC6, 0xFE, 0x5C, 0x9D, 0xA5, 0x4F, 0xB7},
/* Col 6 */ {0x58, 0xB5, 0xB3, 0xDD, 0x0E, 0x28, 0xF1, 0xB0},
/* Col 7 */ {0x5F, 0x30, 0x3B, 0x56, 0x96, 0x45, 0xF4, 0xA1},
/* Col 8 */ {0x03, 0xBC, 0x6E, 0x8A, 0xEF, 0xBD, 0xFE, 0xF8}
},
};
const uint8_t AP_Radio_cypress::pn_bind[] = { 0x98, 0x88, 0x1B, 0xE4, 0x30, 0x79, 0x03, 0x84 };
/*The CYRF initial config, binding config and transfer config */
const AP_Radio_cypress::config AP_Radio_cypress::cyrf_config[] = {
{CYRF_MODE_OVERRIDE, CYRF_RST}, // Reset the device
{CYRF_CLK_EN, CYRF_RXF}, // Enable the clock
{CYRF_AUTO_CAL_TIME, 0x3C}, // From manual, needed for initialization
{CYRF_AUTO_CAL_OFFSET, 0x14}, // From manual, needed for initialization
{CYRF_RX_CFG, CYRF_LNA | CYRF_FAST_TURN_EN}, // Enable low noise amplifier and fast turning
{CYRF_TX_OFFSET_LSB, 0x55}, // From manual, typical configuration
{CYRF_TX_OFFSET_MSB, 0x05}, // From manual, typical configuration
{CYRF_XACT_CFG, CYRF_MODE_SYNTH_RX | CYRF_FRC_END}, // Force in Synth RX mode
{CYRF_TX_CFG, CYRF_DATA_CODE_LENGTH | CYRF_DATA_MODE_SDR | CYRF_PA_4}, // Enable 64 chip codes, SDR mode and amplifier +4dBm
{CYRF_DATA64_THOLD, 0x0E}, // From manual, typical configuration
{CYRF_XACT_CFG, CYRF_MODE_SYNTH_RX}, // Set in Synth RX mode (again, really needed?)
{CYRF_IO_CFG, CYRF_IRQ_POL}, // IRQ active high
};
const AP_Radio_cypress::config AP_Radio_cypress::cyrf_bind_config[] = {
{CYRF_TX_CFG, CYRF_DATA_CODE_LENGTH | CYRF_DATA_MODE_SDR | CYRF_PA_4}, // Enable 64 chip codes, SDR mode and amplifier +4dBm
{CYRF_FRAMING_CFG, CYRF_SOP_LEN | 0xE}, // Set SOP CODE to 64 chips and SOP Correlator Threshold to 0xE
{CYRF_RX_OVERRIDE, CYRF_FRC_RXDR | CYRF_DIS_RXCRC}, // Force receive data rate and disable receive CRC checker
{CYRF_EOP_CTRL, 0x02}, // Only enable EOP symbol count of 2
{CYRF_TX_OVERRIDE, CYRF_DIS_TXCRC}, // Disable transmit CRC generate
};
const AP_Radio_cypress::config AP_Radio_cypress::cyrf_transfer_config[] = {
{CYRF_TX_CFG, CYRF_DATA_CODE_LENGTH | CYRF_DATA_MODE_8DR | CYRF_PA_4}, // Enable 64 chip codes, 8DR mode and amplifier +4dBm
{CYRF_FRAMING_CFG, CYRF_SOP_EN | CYRF_SOP_LEN | CYRF_LEN_EN | 0xE}, // Set SOP CODE enable, SOP CODE to 64 chips, Packet length enable, and SOP Correlator Threshold to 0xE
{CYRF_TX_OVERRIDE, 0x00}, // Reset TX overrides
{CYRF_RX_OVERRIDE, 0x00}, // Reset RX overrides
};
/*
read radio status, handling the race condition between completion and error
*/
uint8_t AP_Radio_cypress::read_status_debounced(uint8_t adr)
{
uint8_t ret;
dev->set_chip_select(true);
ret = read_register(adr);
// If COMPLETE and ERROR bits mismatch, then re-read register
if ((ret & (CYRF_RXC_IRQ | CYRF_RXE_IRQ)) != 0
&& (ret & (CYRF_RXC_IRQ | CYRF_RXE_IRQ)) != (CYRF_RXC_IRQ | CYRF_RXE_IRQ)) {
uint8_t v2;
dev->read(&v2, 1);
ret |= v2; // re-read and make bits sticky
}
dev->set_chip_select(false);
return ret;
}
/*
force the initial state of the radio
*/
void AP_Radio_cypress::force_initial_state(void)
{
while (true) {
write_register(CYRF_XACT_CFG, CYRF_FRC_END);
uint32_t start_ms = AP_HAL::millis();
do {
if ((read_register(CYRF_XACT_CFG) & CYRF_FRC_END) == 0) {
return; // FORCE_END done (osc running)
}
} while (AP_HAL::millis() - start_ms < 5);
// FORCE_END failed to complete, implying going SLEEP to IDLE and
// oscillator failed to start. Recover by returning to SLEEP and
// trying to start oscillator again.
write_register(CYRF_XACT_CFG, CYRF_MODE_SLEEP);
}
}
/*
set desired channel
*/
void AP_Radio_cypress::set_channel(uint8_t channel)
{
if (dsm.forced_channel != -1) {
channel = dsm.forced_channel;
}
write_register(CYRF_CHANNEL, channel);
}
void AP_Radio_cypress::radio_set_config(const struct config *conf, uint8_t size)
{
// setup required radio config
for (uint8_t i=0; i<size; i++) {
write_register(conf[i].reg, conf[i].value);
}
}
/*
initialise the radio
*/
void AP_Radio_cypress::radio_init(void)
{
Debug(1, "Cypress: radio_init starting\n");
// wait for radio to settle
uint16_t i;
for (i=0; i<1000; i++) {
uint8_t chan = read_register(CYRF_CHANNEL);
if (chan == 1) {
break;
}
write_register(CYRF_CHANNEL, 1);
hal.scheduler->delay(10);
}
if (i == 1000) {
Debug(1, "Cypress: radio_init failed\n");
return;
}
// base config
radio_set_config(cyrf_config, ARRAY_SIZE(cyrf_config));
// start with receive config
radio_set_config(cyrf_transfer_config, ARRAY_SIZE(cyrf_transfer_config));
if (get_disable_crc()) {
write_register(CYRF_RX_OVERRIDE, CYRF_DIS_RXCRC);
}
dsm_setup_transfer_dsmx();
write_register(CYRF_XTAL_CTRL,0x80); // XOUT=BitSerial
force_initial_state();
write_register(CYRF_PWR_CTRL,0x20); // Disable PMU
// start in RECV state
state = STATE_RECV;
Debug(1, "Cypress: radio_init done\n");
start_receive();
// setup handler for rising edge of IRQ pin
hal.gpio->attach_interrupt(HAL_GPIO_RADIO_IRQ, trigger_irq_radio_event, AP_HAL::GPIO::INTERRUPT_RISING);
}
void AP_Radio_cypress::dump_registers(uint8_t n)
{
for (uint8_t i=0; i<n; i++) {
uint8_t v = read_register(i);
printf("%02x:%02x ", i, v);
if ((i+1) % 16 == 0) {
printf("\n");
}
}
if (n % 16 != 0) {
printf("\n");
}
}
/*
read one register value
*/
uint8_t AP_Radio_cypress::read_register(uint8_t reg)
{
uint8_t v = 0;
(void)dev->read_registers(reg, &v, 1);
return v;
}
/*
write multiple bytes
*/
void AP_Radio_cypress::write_multiple(uint8_t reg, uint8_t n, const uint8_t *data)
{
uint8_t pkt[n+1];
pkt[0] = reg | FLAG_WRITE;
memcpy(&pkt[1], data, n);
dev->transfer(pkt, n+1, nullptr, 0);
}
/*
write one register value
*/
void AP_Radio_cypress::write_register(uint8_t reg, uint8_t value)
{
dev->write_register(reg | FLAG_WRITE, value);
}
/*
support all 4 rc input modes by swapping channels.
*/
void AP_Radio_cypress::map_stick_mode(uint16_t *channels)
{
switch (get_stick_mode()) {
case 1: {
// mode1
uint16_t tmp = channels[1];
channels[1] = 3000 - channels[2];
channels[2] = 3000 - tmp;
break;
}
case 3: {
// mode3
uint16_t tmp = channels[1];
channels[1] = 3000 - channels[2];
channels[2] = 3000 - tmp;
tmp = channels[0];
channels[0] = channels[3];
channels[3] = tmp;
break;
}
case 4: {
// mode4
uint16_t tmp = channels[0];
channels[0] = channels[3];
channels[3] = tmp;
break;
}
case 2:
default:
// nothing to do, transmitter is natively mode2
break;
}
}
/*
check if we are the 2nd RX bound to this TX
*/
void AP_Radio_cypress::check_double_bind(void)
{
if (dsm.tx_pps <= dsm.telem_send_count ||
get_autobind_time() == 0) {
return;
}
// the TX has received more telemetry packets in the last second
// than we have ever sent. There must be another RX sending
// telemetry packets. We will reset our mfg_id and go back waiting
// for a new bind packet, hopefully with the right TX
Debug(1,"Double-bind detected\n");
memset(dsm.mfg_id, 1, sizeof(dsm.mfg_id));
dsm.last_recv_us = 0;
dsm_setup_transfer_dsmx();
}
/*
parse channels from a packet
*/
bool AP_Radio_cypress::parse_dsm_channels(const uint8_t *data)
{
uint16_t num_values = 0;
uint16_t pwm_channels[max_channels] {};
// default value for channels above 4 is previous value
memcpy(&pwm_channels[4], &dsm.pwm_channels[4], (max_channels-4)*sizeof(uint16_t));
if (!dsm_decode(AP_HAL::micros64(),
data,
pwm_channels,
&num_values,
ARRAY_SIZE(pwm_channels))) {
// invalid packet
Debug(2, "DSM: bad decode\n");
return false;
}
if (num_values < 5) {
Debug(2, "DSM: num_values=%u\n", num_values);
return false;
}
// cope with mode1/mode2
map_stick_mode(pwm_channels);
memcpy(dsm.pwm_channels, pwm_channels, num_values*sizeof(uint16_t));
dsm.last_parse_us = AP_HAL::micros();
// suppress channel 8 ack values
dsm.num_channels = num_values==8?7:num_values;
if (num_values == 8) {
// decode telemetry ack value and version
uint16_t d=0;
if (is_DSM2()) {
d = data[14] << 8 | data[15];
} else {
// see chan_order[] for DSMX
d = data[10] << 8 | data[11];
}
// extra data is sent on channel 8, with 3 bit key and 8 bit data
uint8_t chan = d>>11;
uint8_t key = (d >> 8) & 0x7;
uint8_t v = d & 0xFF;
if (chan == 7 && key == 0) {
// got an ack from key 0
Debug(4, "ack %u seq=%u acked=%u length=%u len=%u\n",
v, fwupload.sequence, unsigned(fwupload.acked), unsigned(fwupload.length), fwupload.len);
if (fwupload.sequence == v && sem.take_nonblocking()) {
fwupload.sequence++;
fwupload.acked += fwupload.len;
if (fwupload.acked == fwupload.length) {
// trigger send of DATA16 ack to client
fwupload.need_ack = true;
}
sem.give();
}
}
if (chan == 7) {
// extract telemetry extra data
switch (key) {
case 1:
dsm.tx_firmware_year = v;
break;
case 2:
dsm.tx_firmware_month = v;
break;
case 3:
dsm.tx_firmware_day = v;
break;
case 4:
dsm.tx_rssi = v;
break;
case 5:
dsm.tx_pps = v;
dsm.have_tx_pps = true;
check_double_bind();
break;
case 6:
if (v != dsm.tx_bl_version) {
if (v == 2) {
// TX with new filter gets a default power of 6
set_tx_max_power_default(6);
}
}
dsm.tx_bl_version = v;
break;
}
}
}
return true;
}
/*
process an incoming bind packet
*/
void AP_Radio_cypress::process_bind(const uint8_t *pkt, uint8_t len)
{
if (len != 16) {
return;
}
bool ok = (len==16 && pkt[0] == pkt[4] && pkt[1] == pkt[5] && pkt[2] == pkt[6] && pkt[3] == pkt[7]);
// Calculate the first sum
uint16_t bind_sum = 384 - 0x10;
for (uint8_t i = 0; i < 8; i++) {
bind_sum += pkt[i];
}
// Check the first sum
if (pkt[8] != bind_sum >> 8 || pkt[9] != (bind_sum & 0xFF)) {
ok = false;
}
// Calculate second sum
for (uint8_t i = 8; i < 14; i++) {
bind_sum += pkt[i];
}
// Check the second sum
if (pkt[14] != bind_sum >> 8 || pkt[15] != (bind_sum & 0xFF)) {
ok = false;
}
if (state == STATE_AUTOBIND) {
uint8_t rssi = read_register(CYRF_RSSI) & 0x1F;
Debug(3,"bind RSSI %u\n", rssi);
if (rssi < get_autobind_rssi()) {
ok = false;
}
}
if (ok) {
uint8_t mfg_id[4] = {uint8_t(~pkt[0]), uint8_t(~pkt[1]), uint8_t(~pkt[2]), uint8_t(~pkt[3])};
uint8_t num_chan = pkt[11];
uint8_t protocol = pkt[12];
(void)num_chan;
// change to normal receive
memcpy(dsm.mfg_id, mfg_id, 4);
state = STATE_RECV;
radio_set_config(cyrf_transfer_config, ARRAY_SIZE(cyrf_transfer_config));
if (get_disable_crc()) {
write_register(CYRF_RX_OVERRIDE, CYRF_DIS_RXCRC);
}
dsm.protocol = (enum dsm_protocol)protocol;
dsm_setup_transfer_dsmx();
Debug(1, "BIND OK: mfg_id={0x%02x, 0x%02x, 0x%02x, 0x%02x} N=%u P=0x%02x DSM2=%u\n",
mfg_id[0], mfg_id[1], mfg_id[2], mfg_id[3],
num_chan,
protocol,
is_DSM2());
dsm.last_recv_us = AP_HAL::micros();
if (is_DSM2()) {
dsm2_start_sync();
}
dsm.need_bind_save = true;
}
}
/*
start DSM2 sync
*/
void AP_Radio_cypress::dsm2_start_sync(void)
{
uint8_t factory_test = get_factory_test();
if (factory_test != 0) {
dsm.channels[0] = (factory_test*7) % DSM_MAX_CHANNEL;
dsm.channels[1] = (dsm.channels[0] + 5) % DSM_MAX_CHANNEL;
dsm.sync = DSM2_OK;
} else {
Debug(2, "DSM2 start sync\n");
dsm.sync = DSM2_SYNC_A;
}
}
/*
setup a timeout in timeout_ms milliseconds
*/
void AP_Radio_cypress::setup_timeout(uint32_t timeout_ms)
{
chVTSet(&timeout_vt, chTimeMS2I(timeout_ms), trigger_timeout_event, nullptr);
}
/*
process an incoming packet
*/
void AP_Radio_cypress::process_packet(const uint8_t *pkt, uint8_t len)
{
if (len == 16) {
bool ok;
const uint8_t *id = dsm.mfg_id;
uint32_t now = AP_HAL::micros();
if (is_DSM2()) {
ok = (pkt[0] == ((~id[2])&0xFF) && pkt[1] == (~id[3]&0xFF));
} else {
ok = (pkt[0] == id[2] && pkt[1] == id[3]);
}
if (ok && is_DSM2() && dsm.sync < DSM2_OK) {
if (dsm.sync == DSM2_SYNC_A) {
dsm.channels[0] = dsm.current_rf_channel;
dsm.sync = DSM2_SYNC_B;
Debug(2, "DSM2 SYNCA chan=%u\n", dsm.channels[0]);
dsm.last_recv_us = now;
} else {
if (dsm.current_rf_channel != dsm.channels[0]) {
dsm.channels[1] = dsm.current_rf_channel;
dsm.sync = DSM2_OK;
Debug(2, "DSM2 SYNCB chan=%u\n", dsm.channels[1]);
dsm.last_recv_us = now;
}
}
return;
}
if (ok && (!is_DSM2() || dsm.sync >= DSM2_SYNC_B)) {
ok = parse_dsm_channels(pkt);
}
if (ok) {
uint32_t packet_dt_us = now - dsm.last_recv_us;
dsm.last_recv_chan = dsm.current_channel;
dsm.last_recv_us = now;
if (dsm.crc_errors > 2) {
dsm.crc_errors -= 2;
}
stats.recv_packets++;
// sample the RSSI
uint8_t rssi = read_register(CYRF_RSSI) & 0x1F;
dsm.rssi = 0.95 * dsm.rssi + 0.05 * rssi;
if (packet_dt_us < 5000) {
dsm.pkt_time1 = packet_dt_us;
} else if (packet_dt_us < 8000) {
dsm.pkt_time2 = packet_dt_us;
}
if (get_telem_enable()) {
if (packet_dt_us < 5000 &&
(get_autobind_time() == 0 || dsm.have_tx_pps)) {
/*
we have just received two packets rapidly, which
means we have about 7ms before the next
one. That gives time for a telemetry packet. We
send it 1ms after we receive the incoming packet
If auto-bind is enabled we don't send telemetry
till we've received a tx_pps value from the
TX. This allows us to detect double binding (two
RX bound to the same TX)
*/
state = STATE_SEND_TELEM;
setup_timeout(1);
}
}
} else {
stats.bad_packets++;
}
} else {
stats.bad_packets++;
}
}
/*
start packet receive
*/
void AP_Radio_cypress::start_receive(void)
{
dsm_choose_channel();
write_register(CYRF_RX_IRQ_STATUS, CYRF_RXOW_IRQ);
write_register(CYRF_RX_CTRL, CYRF_RX_GO | CYRF_RXC_IRQEN | CYRF_RXE_IRQEN);
dsm.receive_start_us = AP_HAL::micros();
if (state == STATE_AUTOBIND) {
dsm.receive_timeout_msec = 90;
} else if (state == STATE_BIND) {
dsm.receive_timeout_msec = 15;
} else {
dsm.receive_timeout_msec = 12;
}
setup_timeout(dsm.receive_timeout_msec);
}
/*
handle a receive IRQ
*/
void AP_Radio_cypress::irq_handler_recv(uint8_t rx_status)
{
if ((rx_status & (CYRF_RXC_IRQ | CYRF_RXE_IRQ)) == 0) {
// nothing interesting yet
return;
}
uint8_t pkt[16];
uint8_t rlen = read_register(CYRF_RX_COUNT);
if (rlen > 16) {
rlen = 16;
}
if (rlen > 0) {
dev->read_registers(CYRF_RX_BUFFER, pkt, rlen);
}
if (rx_status & CYRF_RXE_IRQ) {
uint8_t reason = read_register(CYRF_RX_STATUS);
if (reason & CYRF_BAD_CRC) {
dsm.crc_errors++;
if (dsm.crc_errors > 20) {
Debug(2, "Flip CRC\n");
// flip crc seed, this allows us to resync with transmitter
dsm.crc_seed = ~dsm.crc_seed;
dsm.crc_errors = 0;
}
}
write_register(CYRF_XACT_CFG, CYRF_MODE_SYNTH_RX | CYRF_FRC_END);
write_register(CYRF_RX_ABORT, 0);
stats.recv_errors++;
} else if (rx_status & CYRF_RXC_IRQ) {
if (state == STATE_RECV) {
process_packet(pkt, rlen);
} else {
process_bind(pkt, rlen);
}
}
if (state == STATE_AUTOBIND) {
state = STATE_RECV;
}
if (state != STATE_SEND_TELEM) {
start_receive();
}
}
/*
handle a send IRQ
*/
void AP_Radio_cypress::irq_handler_send(uint8_t tx_status)
{
if ((tx_status & (CYRF_TXC_IRQ | CYRF_TXE_IRQ)) == 0) {
// nothing interesting yet
return;
}
state = STATE_RECV;
start_receive();
}
/*
IRQ handler
*/
void AP_Radio_cypress::irq_handler(void)
{
//hal.console->printf("IRQ\n");
if (!dev->get_semaphore()->take_nonblocking()) {
// we have to wait for timeout instead
return;
}
// always read both rx and tx status. This ensure IRQ is cleared
uint8_t rx_status = read_status_debounced(CYRF_RX_IRQ_STATUS);
uint8_t tx_status = read_status_debounced(CYRF_TX_IRQ_STATUS);
switch (state) {
case STATE_AUTOBIND:
// fallthrough
case STATE_RECV:
case STATE_BIND:
irq_handler_recv(rx_status);
break;
case STATE_SEND_TELEM:
case STATE_SEND_TELEM_WAIT:
irq_handler_send(tx_status);
break;
case STATE_SEND_FCC:
// stop transmit oscillator
write_register(CYRF_RX_IRQ_STATUS, CYRF_RXOW_IRQ);
write_register(CYRF_RX_CTRL, CYRF_RX_GO | CYRF_RXC_IRQEN | CYRF_RXE_IRQEN);
break;
default:
break;
}
dev->get_semaphore()->give();
}
/*
called on radio timeout
*/
void AP_Radio_cypress::irq_timeout(void)
{
stats.timeouts++;
if (!dev->get_semaphore()->take_nonblocking()) {
// schedule a new timeout
setup_timeout(dsm.receive_timeout_msec);
return;
}
if (get_fcc_test() != 0 && state != STATE_SEND_FCC) {
Debug(3,"Starting FCC test\n");
state = STATE_SEND_FCC;
} else if (get_fcc_test() == 0 && state == STATE_SEND_FCC) {
Debug(3,"Ending FCC test\n");
state = STATE_RECV;
}
switch (state) {
case STATE_SEND_TELEM:
send_telem_packet();
break;
case STATE_SEND_FCC:
send_FCC_test_packet();
break;
case STATE_AUTOBIND:
case STATE_SEND_TELEM_WAIT:
state = STATE_RECV;
// fall through
default:
write_register(CYRF_XACT_CFG, CYRF_MODE_SYNTH_RX | CYRF_FRC_END);
write_register(CYRF_RX_ABORT, 0);
start_receive();
break;
}
dev->get_semaphore()->give();
}
/*
called on HRT timeout
*/
void AP_Radio_cypress::irq_handler_thd(void *arg)
{
_irq_handler_ctx = chThdGetSelfX();
(void)arg;
while (true) {
eventmask_t evt = chEvtWaitAny(ALL_EVENTS);
if (evt & EVT_IRQ) {
radio_singleton->irq_handler();
}
if (evt & EVT_TIMEOUT) {
radio_singleton->irq_timeout();
}
}
}
void AP_Radio_cypress::trigger_timeout_event(void *arg)
{
(void)arg;
//we are called from ISR context
chSysLockFromISR();
if (_irq_handler_ctx) {
chEvtSignalI(_irq_handler_ctx, EVT_TIMEOUT);
}
chSysUnlockFromISR();
}
void AP_Radio_cypress::trigger_irq_radio_event()
{
//we are called from ISR context
chSysLockFromISR();
if (_irq_handler_ctx) {
chEvtSignalI(_irq_handler_ctx, EVT_IRQ);
}
chSysUnlockFromISR();
}
/*
Set the current DSM channel with SOP, CRC and data code
*/
void AP_Radio_cypress::dsm_set_channel(uint8_t channel, bool is_dsm2, uint8_t sop_col, uint8_t data_col, uint16_t crc_seed)
{
//printf("dsm_set_channel: %u\n", channel);
uint8_t pn_row;
pn_row = is_dsm2? channel % 5 : (channel-2) % 5;
// set CRC seed
write_register(CYRF_CRC_SEED_LSB, crc_seed & 0xff);
write_register(CYRF_CRC_SEED_MSB, crc_seed >> 8);
// set start of packet code
if (memcmp(dsm.last_sop_code, pn_codes[pn_row][sop_col], 8) != 0) {
write_multiple(CYRF_SOP_CODE, 8, pn_codes[pn_row][sop_col]);
memcpy(dsm.last_sop_code, pn_codes[pn_row][sop_col], 8);
}
// set data code
if (memcmp(dsm.last_data_code, pn_codes[pn_row][data_col], 16) != 0) {
write_multiple(CYRF_DATA_CODE, 16, pn_codes[pn_row][data_col]);
memcpy(dsm.last_data_code, pn_codes[pn_row][data_col], 16);
}
if (get_disable_crc() != dsm.last_discrc) {
dsm.last_discrc = get_disable_crc();
Debug(3,"Cypress: DISCRC=%u\n", dsm.last_discrc);
write_register(CYRF_RX_OVERRIDE, dsm.last_discrc?CYRF_DIS_RXCRC:0);
}
if (get_transmit_power() != dsm.last_transmit_power+1) {
dsm.last_transmit_power = get_transmit_power()-1;
Debug(3,"Cypress: TXPOWER=%u\n", dsm.last_transmit_power);
write_register(CYRF_TX_CFG, CYRF_DATA_CODE_LENGTH | CYRF_DATA_MODE_8DR | dsm.last_transmit_power);
}
// Change channel
set_channel(channel);
}
/*
Generate the DSMX channels from the manufacturer ID
*/
void AP_Radio_cypress::dsm_generate_channels_dsmx(uint8_t mfg_id[4], uint8_t channels[23])
{
// Calculate the DSMX channels
int idx = 0;
uint32_t id = ~((mfg_id[0] << 24) | (mfg_id[1] << 16) |
(mfg_id[2] << 8) | (mfg_id[3] << 0));
uint32_t id_tmp = id;
// While not all channels are set
while (idx < 23) {
int i;
int count_3_27 = 0, count_28_51 = 0, count_52_76 = 0;
id_tmp = id_tmp * 0x0019660D + 0x3C6EF35F; // Randomization
uint8_t next_ch = ((id_tmp >> 8) % 0x49) + 3; // Use least-significant byte and must be larger than 3
if (((next_ch ^ id) & 0x01 ) == 0) {
continue;
}
// Go trough all already set channels
for (i = 0; i < idx; i++) {
// Channel is already used
if (channels[i] == next_ch) {
break;
}
// Count the channel groups
if (channels[i] <= 27) {
count_3_27++;
} else if (channels[i] <= 51) {
count_28_51++;
} else {
count_52_76++;
}
}
// When channel is already used continue
if (i != idx) {
continue;
}
// Set the channel when channel groups aren't full
if ((next_ch < 28 && count_3_27 < 8) // Channels 3-27: max 8
|| (next_ch >= 28 && next_ch < 52 && count_28_51 < 7) // Channels 28-52: max 7
|| (next_ch >= 52 && count_52_76 < 8)) { // Channels 52-76: max 8
channels[idx++] = next_ch;
}
}
Debug(2, "Generated DSMX channels\n");
}
/*
setup for DSMX transfers
*/
void AP_Radio_cypress::dsm_setup_transfer_dsmx(void)
{
dsm.current_channel = 0;
dsm.crc_seed = ~((dsm.mfg_id[0] << 8) + dsm.mfg_id[1]);
dsm.sop_col = (dsm.mfg_id[0] + dsm.mfg_id[1] + dsm.mfg_id[2] + 2) & 0x07;
dsm.data_col = 7 - dsm.sop_col;
dsm_generate_channels_dsmx(dsm.mfg_id, dsm.channels);
}
/*
choose channel to receive on
*/
void AP_Radio_cypress::dsm_choose_channel(void)
{
uint32_t now = AP_HAL::micros();
uint32_t dt = now - dsm.last_recv_us;
const uint32_t cycle_time = dsm.pkt_time1 + dsm.pkt_time2;
uint8_t next_channel;
if (state == STATE_BIND) {
if (now - dsm.last_chan_change_us > 15000) {
// always use odd channel numbers for bind
dsm.current_rf_channel |= 1;
dsm.current_rf_channel = (dsm.current_rf_channel+2) % DSM_MAX_CHANNEL;
dsm.last_chan_change_us = now;
}
set_channel(dsm.current_rf_channel);
return;
}
if (get_autobind_time() != 0 &&
dsm.last_recv_us == 0 &&
now - dsm.last_autobind_send > 300*1000UL &&
now > get_autobind_time() * 1000*1000UL &&
get_factory_test() == 0 &&
state == STATE_RECV) {
// try to receive an auto-bind packet
dsm_set_channel(AUTOBIND_CHANNEL, true, 0, 0, 0);
state = STATE_AUTOBIND;
Debug(3,"recv autobind %u\n", unsigned(now - dsm.last_autobind_send));
dsm.last_autobind_send = now;
return;
}
if (is_DSM2() && dsm.sync == DSM2_SYNC_A) {
if (now - dsm.last_chan_change_us > 15000) {
// only even channels for DSM2 scan
dsm.current_rf_channel &= ~1;
dsm.current_rf_channel = (dsm.current_rf_channel+2) % DSM_MAX_CHANNEL;
dsm.last_chan_change_us = now;
}
//hal.console->printf("%u chan=%u\n", AP_HAL::micros(), dsm.current_rf_channel);
dsm_set_channel(dsm.current_rf_channel, is_DSM2(),
dsm.sop_col, dsm.data_col,
dsm.sync==DSM2_SYNC_B?~dsm.crc_seed:dsm.crc_seed);
return;
}
if (dt < 1000) {
// normal channel advance
next_channel = dsm.last_recv_chan + 1;
} else if (dt > 20*cycle_time) {
// change channel slowly
next_channel = dsm.last_recv_chan + (dt / (cycle_time*2));
} else {
// predict next channel
next_channel = dsm.last_recv_chan + 1;
next_channel += (dt / cycle_time) * 2;
if (dt % cycle_time > (unsigned)(dsm.pkt_time1 + 1000U)) {
next_channel++;
}
}
uint8_t chan_count = is_DSM2()?2:23;
dsm.current_channel = next_channel;
if (dsm.current_channel >= chan_count) {
dsm.current_channel %= chan_count;
if (!is_DSM2()) {
dsm.crc_seed = ~dsm.crc_seed;
}
}
if (is_DSM2() && dsm.sync == DSM2_SYNC_B && dsm.current_channel == 1) {
// scan to next channelb
do {
dsm.channels[1] &= ~1;
dsm.channels[1] = (dsm.channels[1]+2) % DSM_MAX_CHANNEL;
} while (dsm.channels[1] == dsm.channels[0]);
}
dsm.current_rf_channel = dsm.channels[dsm.current_channel];
uint16_t seed = dsm.crc_seed;
if (dsm.current_channel & 1) {
seed = ~seed;
}
if (is_DSM2()) {
if (now - dsm.last_recv_us > 5000000) {
dsm2_start_sync();
}
}
dsm_set_channel(dsm.current_rf_channel, is_DSM2(),
dsm.sop_col, dsm.data_col, seed);
}
/*
setup radio for bind
*/
void AP_Radio_cypress::start_recv_bind(void)
{
dev->get_semaphore()->take_blocking();
Debug(1, "Cypress: start_recv_bind\n");
write_register(CYRF_XACT_CFG, CYRF_MODE_SYNTH_RX | CYRF_FRC_END);
write_register(CYRF_RX_ABORT, 0);
state = STATE_BIND;
radio_set_config(cyrf_bind_config, ARRAY_SIZE(cyrf_bind_config));
write_register(CYRF_CRC_SEED_LSB, 0);
write_register(CYRF_CRC_SEED_MSB, 0);
write_multiple(CYRF_SOP_CODE, 8, pn_codes[0][0]);
uint8_t data_code[16];
memcpy(data_code, pn_codes[0][8], 8);
memcpy(&data_code[8], pn_bind, 8);
write_multiple(CYRF_DATA_CODE, 16, data_code);
dsm.current_rf_channel = 1;
start_receive();
dev->get_semaphore()->give();
}
/*
save bind info
*/
void AP_Radio_cypress::save_bind_info(void)
{
// access to storage for bind information
StorageAccess bind_storage(StorageManager::StorageBindInfo);
struct bind_info info;
info.magic = bind_magic;
memcpy(info.mfg_id, dsm.mfg_id, sizeof(info.mfg_id));
info.protocol = dsm.protocol;
if (bind_storage.write_block(0, &info, sizeof(info))) {
dsm.need_bind_save = false;
}
}
/*
load bind info
*/
void AP_Radio_cypress::load_bind_info(void)
{
// access to storage for bind information
StorageAccess bind_storage(StorageManager::StorageBindInfo);
struct bind_info info;
uint8_t factory_test = get_factory_test();
if (factory_test != 0) {
Debug(1, "In factory test %u\n", factory_test);
memset(dsm.mfg_id, 0, sizeof(dsm.mfg_id));
dsm.mfg_id[0] = factory_test;
dsm.protocol = DSM_DSM2_2;
dsm2_start_sync();
} else if (bind_storage.read_block(&info, 0, sizeof(info)) && info.magic == bind_magic) {
Debug(1, "Loaded mfg_id %02x:%02x:%02x:%02x\n",
info.mfg_id[0], info.mfg_id[1], info.mfg_id[2], info.mfg_id[3]);
memcpy(dsm.mfg_id, info.mfg_id, sizeof(info.mfg_id));
dsm.protocol = info.protocol;
}
}
bool AP_Radio_cypress::is_DSM2(void)
{
if (get_protocol() != AP_Radio::PROTOCOL_AUTO) {
return get_protocol() == AP_Radio::PROTOCOL_DSM2;
}
return dsm.protocol == DSM_DSM2_1 || dsm.protocol == DSM_DSM2_2;
}
/*
transmit a 16 byte packet
this is a blind send, not waiting for ack or completion
*/
void AP_Radio_cypress::transmit16(const uint8_t data[16])
{
write_register(CYRF_TX_LENGTH, 16);
write_register(CYRF_TX_CTRL, CYRF_TX_CLR);
write_multiple(CYRF_TX_BUFFER, 16, data);
write_register(CYRF_TX_CTRL, CYRF_TX_GO | CYRF_TXC_IRQEN);
dsm.send_count++;
}
/*
send a telemetry structure packet
*/
void AP_Radio_cypress::send_telem_packet(void)
{
struct telem_packet_cypress pkt;
t_status.flags = 0;
t_status.flags |= AP_Notify::flags.gps_status >= 3?TELEM_FLAG_GPS_OK:0;
t_status.flags |= AP_Notify::flags.pre_arm_check?TELEM_FLAG_ARM_OK:0;
t_status.flags |= AP_Notify::flags.failsafe_battery?0:TELEM_FLAG_BATT_OK;
t_status.flags |= hal.util->get_soft_armed()?TELEM_FLAG_ARMED:0;
t_status.flags |= AP_Notify::flags.have_pos_abs?TELEM_FLAG_POS_OK:0;
t_status.flags |= AP_Notify::flags.video_recording?TELEM_FLAG_VIDEO:0;
t_status.flight_mode = AP_Notify::flags.flight_mode;
t_status.tx_max = get_tx_max_power();
t_status.note_adjust = get_tx_buzzer_adjust();
// send fw update packet for 7/8 of packets if any data pending
if (fwupload.length != 0 &&
fwupload.length > fwupload.acked &&
((fwupload.counter++ & 0x07) != 0) &&
sem.take_nonblocking()) {
pkt.type = fwupload.fw_type;
pkt.payload.fw.seq = fwupload.sequence;
uint32_t len = fwupload.length>fwupload.acked?fwupload.length - fwupload.acked:0;
pkt.payload.fw.len = len<=8?len:8;
pkt.payload.fw.offset = fwupload.offset+fwupload.acked;
memcpy(&pkt.payload.fw.data[0], &fwupload.pending_data[fwupload.acked], pkt.payload.fw.len);
fwupload.len = pkt.payload.fw.len;
Debug(4, "sent fw seq=%u offset=%u len=%u type=%u\n",
pkt.payload.fw.seq,
pkt.payload.fw.offset,
pkt.payload.fw.len,
pkt.type);
sem.give();
pkt.crc = crc_crc8((const uint8_t *)&pkt.type, 15);
} else {
pkt.type = TELEM_STATUS;
pkt.payload.status = t_status;
pkt.crc = crc_crc8((const uint8_t *)&pkt.type, 15);
dsm.telem_send_count++;
}
write_register(CYRF_XACT_CFG, CYRF_MODE_SYNTH_TX | CYRF_FRC_END);
write_register(CYRF_RX_ABORT, 0);
transmit16((uint8_t*)&pkt);
state = STATE_SEND_TELEM_WAIT;
setup_timeout(2);
}
/*
send a FCC test packet
*/
void AP_Radio_cypress::send_FCC_test_packet(void)
{
uint8_t pkt[16] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
state = STATE_SEND_FCC;
uint8_t channel=0;
switch (get_fcc_test()) {
case 0:
// switch back to normal operation
dsm.forced_channel = -1;
send_telem_packet();
return;
case 1:
case 4:
channel = DSM_SCAN_MIN_CH;
break;
case 2:
case 5:
channel = DSM_SCAN_MID_CH;
break;
case 3:
case 6:
default:
channel = DSM_SCAN_MAX_CH;
break;
}
Debug(5,"FCC send %u\n", channel);
if (channel != dsm.forced_channel) {
Debug(1,"FCC channel %u\n", channel);
dsm.forced_channel = channel;
radio_set_config(cyrf_config, ARRAY_SIZE(cyrf_config));
radio_set_config(cyrf_transfer_config, ARRAY_SIZE(cyrf_transfer_config));
set_channel(channel);
}
#if FCC_SUPPORT_CW_MODE
if (get_fcc_test() > 3) {
// continuous preamble transmit is closest approximation to CW
// that is possible with this chip
write_register(CYRF_PREAMBLE,0x01);
write_register(CYRF_PREAMBLE,0x00);
write_register(CYRF_PREAMBLE,0x00);
write_register(CYRF_TX_OVERRIDE, CYRF_FRC_PRE);
write_register(CYRF_TX_CTRL, CYRF_TX_GO);
setup_timeout(500);
} else {
write_register(CYRF_XACT_CFG, CYRF_MODE_SYNTH_TX | CYRF_FRC_END);
write_register(CYRF_RX_ABORT, 0);
transmit16(pkt);
setup_timeout(10);
}
#else
write_register(CYRF_XACT_CFG, CYRF_MODE_SYNTH_TX | CYRF_FRC_END);
write_register(CYRF_RX_ABORT, 0);
transmit16(pkt);
setup_timeout(10);
#endif
}
// handle a data96 mavlink packet for fw upload
void AP_Radio_cypress::handle_data_packet(mavlink_channel_t chan, const mavlink_data96_t &m)
{
uint32_t ofs=0;
memcpy(&ofs, &m.data[0], 4);
Debug(4, "got data96 of len %u from chan %u at offset %u\n", m.len, chan, unsigned(ofs));
if (sem.take_nonblocking()) {
fwupload.chan = chan;
fwupload.need_ack = false;
fwupload.offset = ofs;
fwupload.length = MIN(m.len-4, 92);
fwupload.acked = 0;
fwupload.sequence++;
if (m.type == 43) {
// sending a tune to play - for development testing
fwupload.fw_type = TELEM_PLAY;
fwupload.length = MIN(m.len, 90);
fwupload.offset = 0;
memcpy(&fwupload.pending_data[0], &m.data[0], fwupload.length);
} else {
// sending a chunk of firmware OTA upload
fwupload.fw_type = TELEM_FW;
memcpy(&fwupload.pending_data[0], &m.data[4], fwupload.length);
}
sem.give();
}
}
#endif // HAL_RCINPUT_WITH_AP_RADIO