ardupilot/libraries/AP_HAL_ChibiOS/shared_dma.cpp
2021-06-01 11:36:07 +09:00

271 lines
8.3 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Andrew Tridgell and Siddharth Bharat Purohit
*/
#include "shared_dma.h"
/*
code to handle sharing of DMA channels between peripherals
*/
#if CH_CFG_USE_MUTEXES == TRUE && !defined(HAL_NO_SHARED_DMA)
#include <AP_Common/ExpandingString.h>
using namespace ChibiOS;
extern const AP_HAL::HAL& hal;
Shared_DMA::dma_lock Shared_DMA::locks[SHARED_DMA_MAX_STREAM_ID+1];
volatile Shared_DMA::dma_stats* Shared_DMA::_contention_stats;
void Shared_DMA::init(void)
{
for (uint8_t i=0; i<SHARED_DMA_MAX_STREAM_ID; i++) {
chMtxObjectInit(&locks[i].mutex);
}
}
// constructor
Shared_DMA::Shared_DMA(uint8_t _stream_id1,
uint8_t _stream_id2,
dma_allocate_fn_t _allocate,
dma_deallocate_fn_t _deallocate)
{
stream_id1 = _stream_id1;
stream_id2 = _stream_id2;
if (stream_id2 < stream_id1) {
stream_id1 = _stream_id2;
stream_id2 = _stream_id1;
}
allocate = _allocate;
deallocate = _deallocate;
}
//remove any assigned deallocator or allocator
void Shared_DMA::unregister()
{
if (stream_id1 < SHARED_DMA_MAX_STREAM_ID &&
locks[stream_id1].obj == this) {
locks[stream_id1].deallocate(this);
locks[stream_id1].obj = nullptr;
}
if (stream_id2 < SHARED_DMA_MAX_STREAM_ID &&
locks[stream_id2].obj == this) {
locks[stream_id2].deallocate(this);
locks[stream_id2].obj = nullptr;
}
}
// lock one stream
bool Shared_DMA::lock_stream(uint8_t stream_id)
{
bool cont = false;
if (stream_id < SHARED_DMA_MAX_STREAM_ID) {
const thread_t* curr_owner = locks[stream_id].mutex.owner;
chMtxLock(&locks[stream_id].mutex);
cont = curr_owner != nullptr && curr_owner != locks[stream_id].mutex.owner;
}
return cont;
}
// unlock one stream
void Shared_DMA::unlock_stream(uint8_t stream_id, bool success)
{
if (stream_id < SHARED_DMA_MAX_STREAM_ID) {
chMtxUnlock(&locks[stream_id].mutex);
if (success && _contention_stats != nullptr) {
_contention_stats[stream_id1].transactions++;
}
}
}
// lock one stream, non-blocking
bool Shared_DMA::lock_stream_nonblocking(uint8_t stream_id)
{
if (stream_id < SHARED_DMA_MAX_STREAM_ID) {
return chMtxTryLock(&locks[stream_id].mutex);
}
return true;
}
// lock the DMA channels
void Shared_DMA::lock_core(void)
{
// see if another driver has DMA allocated. If so, call their
// deallocation function
if (stream_id1 < SHARED_DMA_MAX_STREAM_ID &&
locks[stream_id1].obj && locks[stream_id1].obj != this) {
locks[stream_id1].deallocate(locks[stream_id1].obj);
locks[stream_id1].obj = nullptr;
}
if (stream_id2 < SHARED_DMA_MAX_STREAM_ID &&
locks[stream_id2].obj && locks[stream_id2].obj != this) {
locks[stream_id2].deallocate(locks[stream_id2].obj);
locks[stream_id2].obj = nullptr;
}
if ((stream_id1 < SHARED_DMA_MAX_STREAM_ID && locks[stream_id1].obj == nullptr) ||
(stream_id2 < SHARED_DMA_MAX_STREAM_ID && locks[stream_id2].obj == nullptr)) {
// allocate the DMA channels and put our deallocation function in place
allocate(this);
if (stream_id1 < SHARED_DMA_MAX_STREAM_ID) {
locks[stream_id1].deallocate = deallocate;
locks[stream_id1].obj = this;
}
if (stream_id2 < SHARED_DMA_MAX_STREAM_ID) {
locks[stream_id2].deallocate = deallocate;
locks[stream_id2].obj = this;
}
}
#ifdef STM32_DMA_STREAM_ID_ANY
else if (stream_id1 == STM32_DMA_STREAM_ID_ANY ||
stream_id2 == STM32_DMA_STREAM_ID_ANY) {
// call allocator without needing locking
allocate(this);
}
#endif
// update contention stats
if (_contention_stats != nullptr) {
if (stream_id1 < SHARED_DMA_MAX_STREAM_ID) {
if (contention) {
_contention_stats[stream_id1].contended_locks++;
} else {
_contention_stats[stream_id1].uncontended_locks++;
}
}
if (stream_id2 < SHARED_DMA_MAX_STREAM_ID) {
if (contention) {
_contention_stats[stream_id2].contended_locks++;
} else {
_contention_stats[stream_id2].uncontended_locks++;
}
}
}
have_lock = true;
}
// lock the DMA channels, blocking method
void Shared_DMA::lock(void)
{
bool c1 = lock_stream(stream_id1);
bool c2 = lock_stream(stream_id2);
contention = c1 || c2;
lock_core();
}
// lock the DMA channels, non-blocking
bool Shared_DMA::lock_nonblock(void)
{
if (!lock_stream_nonblocking(stream_id1)) {
chSysDisable();
if (locks[stream_id1].obj != nullptr && locks[stream_id1].obj != this) {
locks[stream_id1].obj->contention = true;
if (_contention_stats != nullptr) {
_contention_stats[stream_id1].contended_locks++;
}
}
chSysEnable();
contention = true;
return false;
}
if (_contention_stats != nullptr && stream_id1 < SHARED_DMA_MAX_STREAM_ID) {
_contention_stats[stream_id1].uncontended_locks++;
}
if (!lock_stream_nonblocking(stream_id2)) {
unlock_stream(stream_id1, false);
chSysDisable();
if (locks[stream_id2].obj != nullptr && locks[stream_id2].obj != this) {
locks[stream_id2].obj->contention = true;
if (_contention_stats != nullptr) {
_contention_stats[stream_id2].contended_locks++;
}
}
chSysEnable();
contention = true;
return false;
}
lock_core();
if (_contention_stats != nullptr && stream_id2 < SHARED_DMA_MAX_STREAM_ID) {
_contention_stats[stream_id2].uncontended_locks++;
}
return true;
}
// unlock the DMA channels
#pragma GCC diagnostic push
#pragma GCC diagnostic error "-Wframe-larger-than=128"
void Shared_DMA::unlock(bool success)
{
osalDbgAssert(have_lock, "must have lock");
have_lock = false;
unlock_stream(stream_id2, success);
unlock_stream(stream_id1, success);
}
#pragma GCC diagnostic pop
/*
lock all channels - used on reboot to ensure no sensor DMA is in
progress
*/
void Shared_DMA::lock_all(void)
{
for (uint8_t i=0; i<SHARED_DMA_MAX_STREAM_ID; i++) {
lock_stream(i);
}
}
// display dma contention statistics as text buffer for @SYS/dma.txt
void Shared_DMA::dma_info(ExpandingString &str)
{
// no buffer allocated, start counting
if (_contention_stats == nullptr) {
_contention_stats = new dma_stats[SHARED_DMA_MAX_STREAM_ID+1];
// return zeros on first fetch
}
// a header to allow for machine parsers to determine format
str.printf("DMAV1\n");
for (uint8_t i = 0; i < SHARED_DMA_MAX_STREAM_ID; i++) {
// ignore locks not in use
if (_contention_stats[i].contended_locks == 0
&& _contention_stats[i].uncontended_locks == 0
&& _contention_stats[i].transactions == 0) {
continue;
}
#if STM32_DMA_ADVANCED
#define STREAM_MUX 8
#define STREAM_OFFSET 0
#else
#define STREAM_MUX 7
#define STREAM_OFFSET 1
#endif
const char* fmt = "DMA=%1u:%1u TX=%8u ULCK=%8u CLCK=%8u CONT=%4.1f%%\n";
float cond_per = 100.0f * float(_contention_stats[i].contended_locks)
/ (1 + _contention_stats[i].contended_locks + _contention_stats[i].uncontended_locks);
str.printf(fmt, i / STREAM_MUX + 1, i % STREAM_MUX + STREAM_OFFSET, _contention_stats[i].transactions,
_contention_stats[i].uncontended_locks, _contention_stats[i].contended_locks, cond_per);
_contention_stats[i].contended_locks = 0;
_contention_stats[i].uncontended_locks = 0;
}
}
#endif // CH_CFG_USE_SEMAPHORES