ardupilot/libraries/AP_BLHeli/AP_BLHeli.cpp
2021-06-09 21:42:51 +10:00

1581 lines
51 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
implementation of MSP and BLHeli-4way protocols for pass-through ESC
calibration and firmware update
With thanks to betaflight for a great reference
implementation. Several of the functions below are based on
betaflight equivalent functions
*/
#include "AP_BLHeli.h"
#ifdef HAVE_AP_BLHELI_SUPPORT
#include <AP_Math/crc.h>
#include <AP_Vehicle/AP_Vehicle.h>
#if APM_BUILD_TYPE(APM_BUILD_Rover)
#include <AP_Motors/AP_MotorsUGV.h>
#else
#include <AP_Motors/AP_Motors_Class.h>
#endif
#include <GCS_MAVLink/GCS_MAVLink.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_SerialManager/AP_SerialManager.h>
#include <AP_Logger/AP_Logger.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_ESC_Telem/AP_ESC_Telem.h>
extern const AP_HAL::HAL& hal;
#define debug(fmt, args ...) do { if (debug_level) { gcs().send_text(MAV_SEVERITY_INFO, "ESC: " fmt, ## args); } } while (0)
// key for locking UART for exclusive use. This prevents any other writes from corrupting
// the MSP protocol on hal.console
#define BLHELI_UART_LOCK_KEY 0x20180402
// if no packets are received for this time and motor control is active BLH will disconect (stoping motors)
#define MOTOR_ACTIVE_TIMEOUT 1000
const AP_Param::GroupInfo AP_BLHeli::var_info[] = {
// @Param: MASK
// @DisplayName: BLHeli Channel Bitmask
// @Description: Enable of BLHeli pass-thru servo protocol support to specific channels. This mask is in addition to motors enabled using SERVO_BLH_AUTO (if any)
// @Bitmask: 0:Channel1,1:Channel2,2:Channel3,3:Channel4,4:Channel5,5:Channel6,6:Channel7,7:Channel8,8:Channel9,9:Channel10,10:Channel11,11:Channel12,12:Channel13,13:Channel14,14:Channel15,15:Channel16
// @User: Advanced
AP_GROUPINFO("MASK", 1, AP_BLHeli, channel_mask, 0),
#if APM_BUILD_TYPE(APM_BUILD_ArduCopter) || APM_BUILD_TYPE(APM_BUILD_ArduPlane) || APM_BUILD_TYPE(APM_BUILD_Rover)
// @Param: AUTO
// @DisplayName: BLHeli pass-thru auto-enable for multicopter motors
// @Description: If set to 1 this auto-enables BLHeli pass-thru support for all multicopter motors
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("AUTO", 2, AP_BLHeli, channel_auto, 0),
#endif
// @Param: TEST
// @DisplayName: BLHeli internal interface test
// @Description: Setting SERVO_BLH_TEST to a motor number enables an internal test of the BLHeli ESC protocol to the corresponding ESC. The debug output is displayed on the USB console.
// @Values: 0:Disabled,1:TestMotor1,2:TestMotor2,3:TestMotor3,4:TestMotor4,5:TestMotor5,6:TestMotor6,7:TestMotor7,8:TestMotor8
// @User: Advanced
AP_GROUPINFO("TEST", 3, AP_BLHeli, run_test, 0),
// @Param: TMOUT
// @DisplayName: BLHeli protocol timeout
// @Description: This sets the inactivity timeout for the BLHeli protocol in seconds. If no packets are received in this time normal MAVLink operations are resumed. A value of 0 means no timeout
// @Units: s
// @Range: 0 300
// @User: Standard
AP_GROUPINFO("TMOUT", 4, AP_BLHeli, timeout_sec, 0),
// @Param: TRATE
// @DisplayName: BLHeli telemetry rate
// @Description: This sets the rate in Hz for requesting telemetry from ESCs. It is the rate per ESC. Setting to zero disables telemetry requests
// @Units: Hz
// @Range: 0 500
// @User: Standard
AP_GROUPINFO("TRATE", 5, AP_BLHeli, telem_rate, 10),
// @Param: DEBUG
// @DisplayName: BLHeli debug level
// @Description: When set to 1 this enabled verbose debugging output over MAVLink when the blheli protocol is active. This can be used to diagnose failures.
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("DEBUG", 6, AP_BLHeli, debug_level, 0),
// @Param: OTYPE
// @DisplayName: BLHeli output type override
// @Description: When set to a non-zero value this overrides the output type for the output channels given by SERVO_BLH_MASK. This can be used to enable DShot on outputs that are not part of the multicopter motors group.
// @Values: 0:None,1:OneShot,2:OneShot125,3:Brushed,4:DShot150,5:DShot300,6:DShot600,7:DShot1200
// @User: Advanced
AP_GROUPINFO("OTYPE", 7, AP_BLHeli, output_type, 0),
// @Param: PORT
// @DisplayName: Control port
// @Description: This sets the serial port to use for blheli pass-thru
// @Values: 0:Console,1:Serial1,2:Serial2,3:Serial3,4:Serial4,5:Serial5
// @User: Advanced
AP_GROUPINFO("PORT", 8, AP_BLHeli, control_port, 0),
// @Param: POLES
// @DisplayName: BLHeli Motor Poles
// @Description: This allows calculation of true RPM from ESC's eRPM. The default is 14.
// @Range: 1 127
// @User: Advanced
AP_GROUPINFO("POLES", 9, AP_BLHeli, motor_poles, 14),
// @Param: 3DMASK
// @DisplayName: BLHeli bitmask of 3D channels
// @Description: Mask of channels which are dynamically reversible. This is used to configure ESCs in '3D' mode, allowing for the motor to spin in either direction
// @Bitmask: 0:Channel1,1:Channel2,2:Channel3,3:Channel4,4:Channel5,5:Channel6,6:Channel7,7:Channel8,8:Channel9,9:Channel10,10:Channel11,11:Channel12,12:Channel13,13:Channel14,14:Channel15,15:Channel16
// @User: Advanced
AP_GROUPINFO("3DMASK", 10, AP_BLHeli, channel_reversible_mask, 0),
#ifdef HAL_WITH_BIDIR_DSHOT
// @Param: BDMASK
// @DisplayName: BLHeli bitmask of bi-directional dshot channels
// @Description: Mask of channels which support bi-directional dshot. This is used for ESCs which have firmware that supports bi-directional dshot allowing fast rpm telemetry values to be returned for the harmonic notch.
// @Bitmask: 0:Channel1,1:Channel2,2:Channel3,3:Channel4,4:Channel5,5:Channel6,6:Channel7,7:Channel8,8:Channel9,9:Channel10,10:Channel11,11:Channel12,12:Channel13,13:Channel14,14:Channel15,15:Channel16
// @User: Advanced
AP_GROUPINFO("BDMASK", 11, AP_BLHeli, channel_bidir_dshot_mask, 0),
#endif
// @Param: RVMASK
// @DisplayName: BLHeli bitmask of reversed channels
// @Description: Mask of channels which are reversed. This is used to configure ESCs in reversed mode
// @Bitmask: 0:Channel1,1:Channel2,2:Channel3,3:Channel4,4:Channel5,5:Channel6,6:Channel7,7:Channel8,8:Channel9,9:Channel10,10:Channel11,11:Channel12,12:Channel13,13:Channel14,14:Channel15,15:Channel16
// @User: Advanced
AP_GROUPINFO("RVMASK", 12, AP_BLHeli, channel_reversed_mask, 0),
AP_GROUPEND
};
#define RPM_SLEW_RATE 50
AP_BLHeli *AP_BLHeli::_singleton;
// constructor
AP_BLHeli::AP_BLHeli(void)
{
// set defaults from the parameter table
AP_Param::setup_object_defaults(this, var_info);
_singleton = this;
last_control_port = -1;
}
/*
process one byte of serial input for MSP protocol
*/
bool AP_BLHeli::msp_process_byte(uint8_t c)
{
if (msp.state == MSP_IDLE) {
msp.escMode = PROTOCOL_NONE;
if (c == '$') {
msp.state = MSP_HEADER_START;
} else {
return false;
}
} else if (msp.state == MSP_HEADER_START) {
msp.state = (c == 'M') ? MSP_HEADER_M : MSP_IDLE;
} else if (msp.state == MSP_HEADER_M) {
msp.state = MSP_IDLE;
switch (c) {
case '<': // COMMAND
msp.packetType = MSP_PACKET_COMMAND;
msp.state = MSP_HEADER_ARROW;
break;
case '>': // REPLY
msp.packetType = MSP_PACKET_REPLY;
msp.state = MSP_HEADER_ARROW;
break;
default:
break;
}
} else if (msp.state == MSP_HEADER_ARROW) {
if (c > sizeof(msp.buf)) {
msp.state = MSP_IDLE;
} else {
msp.dataSize = c;
msp.offset = 0;
msp.checksum = 0;
msp.checksum ^= c;
msp.state = MSP_HEADER_SIZE;
}
} else if (msp.state == MSP_HEADER_SIZE) {
msp.cmdMSP = c;
msp.checksum ^= c;
msp.state = MSP_HEADER_CMD;
} else if (msp.state == MSP_HEADER_CMD && msp.offset < msp.dataSize) {
msp.checksum ^= c;
msp.buf[msp.offset++] = c;
} else if (msp.state == MSP_HEADER_CMD && msp.offset >= msp.dataSize) {
if (msp.checksum == c) {
msp.state = MSP_COMMAND_RECEIVED;
} else {
msp.state = MSP_IDLE;
}
}
return true;
}
/*
update CRC state for blheli protocol
*/
void AP_BLHeli::blheli_crc_update(uint8_t c)
{
blheli.crc = crc_xmodem_update(blheli.crc, c);
}
/*
process one byte of serial input for blheli 4way protocol
*/
bool AP_BLHeli::blheli_4way_process_byte(uint8_t c)
{
if (blheli.state == BLHELI_IDLE) {
if (c == cmd_Local_Escape) {
blheli.state = BLHELI_HEADER_START;
blheli.crc = 0;
blheli_crc_update(c);
} else {
return false;
}
} else if (blheli.state == BLHELI_HEADER_START) {
blheli.command = c;
blheli_crc_update(c);
blheli.state = BLHELI_HEADER_CMD;
} else if (blheli.state == BLHELI_HEADER_CMD) {
blheli.address = c<<8;
blheli.state = BLHELI_HEADER_ADDR_HIGH;
blheli_crc_update(c);
} else if (blheli.state == BLHELI_HEADER_ADDR_HIGH) {
blheli.address |= c;
blheli.state = BLHELI_HEADER_ADDR_LOW;
blheli_crc_update(c);
} else if (blheli.state == BLHELI_HEADER_ADDR_LOW) {
blheli.state = BLHELI_HEADER_LEN;
blheli.param_len = c?c:256;
blheli.offset = 0;
blheli_crc_update(c);
} else if (blheli.state == BLHELI_HEADER_LEN) {
blheli.buf[blheli.offset++] = c;
blheli_crc_update(c);
if (blheli.offset == blheli.param_len) {
blheli.state = BLHELI_CRC1;
}
} else if (blheli.state == BLHELI_CRC1) {
blheli.crc1 = c;
blheli.state = BLHELI_CRC2;
} else if (blheli.state == BLHELI_CRC2) {
uint16_t crc = blheli.crc1<<8 | c;
if (crc == blheli.crc) {
blheli.state = BLHELI_COMMAND_RECEIVED;
} else {
blheli.state = BLHELI_IDLE;
}
}
return true;
}
/*
send a MSP protocol ack
*/
void AP_BLHeli::msp_send_ack(uint8_t cmd)
{
msp_send_reply(cmd, 0, 0);
}
/*
send a MSP protocol reply
*/
void AP_BLHeli::msp_send_reply(uint8_t cmd, const uint8_t *buf, uint8_t len)
{
uint8_t *b = &msp.buf[0];
*b++ = '$';
*b++ = 'M';
*b++ = '>';
*b++ = len;
*b++ = cmd;
// acks do not have a payload
if (len > 0) {
memcpy(b, buf, len);
}
b += len;
uint8_t c = 0;
for (uint8_t i=0; i<len+2; i++) {
c ^= msp.buf[i+3];
}
*b++ = c;
uart->write_locked(&msp.buf[0], len+6, BLHELI_UART_LOCK_KEY);
}
void AP_BLHeli::putU16(uint8_t *b, uint16_t v)
{
b[0] = v;
b[1] = v >> 8;
}
uint16_t AP_BLHeli::getU16(const uint8_t *b)
{
return b[0] | (b[1]<<8);
}
void AP_BLHeli::putU32(uint8_t *b, uint32_t v)
{
b[0] = v;
b[1] = v >> 8;
b[2] = v >> 16;
b[3] = v >> 24;
}
void AP_BLHeli::putU16_BE(uint8_t *b, uint16_t v)
{
b[0] = v >> 8;
b[1] = v;
}
/*
process a MSP command from GCS
*/
void AP_BLHeli::msp_process_command(void)
{
debug("MSP cmd %u len=%u", msp.cmdMSP, msp.dataSize);
switch (msp.cmdMSP) {
case MSP_API_VERSION: {
debug("MSP_API_VERSION");
uint8_t buf[3] = { MSP_PROTOCOL_VERSION, API_VERSION_MAJOR, API_VERSION_MINOR };
msp_send_reply(msp.cmdMSP, buf, sizeof(buf));
break;
}
case MSP_FC_VARIANT:
debug("MSP_FC_VARIANT");
msp_send_reply(msp.cmdMSP, (const uint8_t *)ARDUPILOT_IDENTIFIER, FLIGHT_CONTROLLER_IDENTIFIER_LENGTH);
break;
/*
Notes:
version 3.3.1 adds a reply to MSP_SET_MOTOR which was missing
version 3.3.0 requires a workaround in blheli suite to handle MSP_SET_MOTOR without an ack
*/
case MSP_FC_VERSION: {
debug("MSP_FC_VERSION");
uint8_t version[3] = { 3, 3, 1 };
msp_send_reply(msp.cmdMSP, version, sizeof(version));
break;
}
case MSP_BOARD_INFO: {
debug("MSP_BOARD_INFO");
// send a generic 'ArduPilot ChibiOS' board type
uint8_t buf[7] = { 'A', 'R', 'C', 'H', 0, 0, 0 };
msp_send_reply(msp.cmdMSP, buf, sizeof(buf));
break;
}
case MSP_BUILD_INFO: {
debug("MSP_BUILD_INFO");
// build date, build time, git version
uint8_t buf[26] {
0x4d, 0x61, 0x72, 0x20, 0x31, 0x36, 0x20, 0x32, 0x30,
0x31, 0x38, 0x30, 0x38, 0x3A, 0x34, 0x32, 0x3a, 0x32, 0x39,
0x62, 0x30, 0x66, 0x66, 0x39, 0x32, 0x38};
msp_send_reply(msp.cmdMSP, buf, sizeof(buf));
break;
}
case MSP_REBOOT:
debug("MSP: ignoring reboot command, end serial comms");
hal.rcout->serial_end();
blheli.connected[blheli.chan] = false;
serial_start_ms = 0;
break;
case MSP_UID:
// MCU identifer
debug("MSP_UID");
msp_send_reply(msp.cmdMSP, (const uint8_t *)UDID_START, 12);
break;
case MSP_ADVANCED_CONFIG: {
debug("MSP_ADVANCED_CONFIG");
uint8_t buf[10];
buf[0] = 1; // gyro sync denom
buf[1] = 4; // pid process denom
buf[2] = 0; // use unsynced pwm
buf[3] = (uint8_t)PWM_TYPE_DSHOT150; // motor PWM protocol
putU16(&buf[4], 480); // motor PWM Rate
putU16(&buf[6], 450); // idle offset value
buf[8] = 0; // use 32kHz
buf[9] = 0; // motor PWM inversion
msp_send_reply(msp.cmdMSP, buf, sizeof(buf));
break;
}
case MSP_FEATURE_CONFIG: {
debug("MSP_FEATURE_CONFIG");
uint8_t buf[4];
putU32(buf, (channel_reversible_mask.get() != 0) ? FEATURE_3D : 0); // from MSPFeatures enum
msp_send_reply(msp.cmdMSP, buf, sizeof(buf));
break;
}
case MSP_STATUS: {
debug("MSP_STATUS");
uint8_t buf[21];
putU16(&buf[0], 1000); // loop time usec
putU16(&buf[2], 0); // i2c error count
putU16(&buf[4], 0x27); // available sensors
putU32(&buf[6], 0); // flight modes
buf[10] = 0; // pid profile index
putU16(&buf[11], 5); // system load percent
putU16(&buf[13], 0); // gyro cycle time
buf[15] = 0; // flight mode flags length
buf[16] = 18; // arming disable flags count
putU32(&buf[17], 0); // arming disable flags
msp_send_reply(msp.cmdMSP, buf, sizeof(buf));
break;
}
case MSP_MOTOR_3D_CONFIG: {
debug("MSP_MOTOR_3D_CONFIG");
uint8_t buf[6];
putU16(&buf[0], 1406); // 3D deadband low
putU16(&buf[2], 1514); // 3D deadband high
putU16(&buf[4], 1460); // 3D neutral
msp_send_reply(msp.cmdMSP, buf, sizeof(buf));
break;
}
case MSP_MOTOR_CONFIG: {
debug("MSP_MOTOR_CONFIG");
uint8_t buf[10];
putU16(&buf[0], 1030); // min throttle
putU16(&buf[2], 2000); // max throttle
putU16(&buf[4], 1000); // min command
// API 1.42
buf[6] = num_motors; // motorCount
buf[7] = motor_poles; // motorPoleCount
buf[8] = 0; // useDshotTelemetry
buf[9] = 0; // FEATURE_ESC_SENSOR
msp_send_reply(msp.cmdMSP, buf, sizeof(buf));
break;
}
case MSP_MOTOR: {
debug("MSP_MOTOR");
// get the output going to each motor
uint8_t buf[16] {};
for (uint8_t i = 0; i < num_motors; i++) {
// if we have a mix of reversible and normal report a PWM of zero, this allows BLHeliSuite to conect
uint16_t v = mixed_type ? 0 : hal.rcout->read(motor_map[i]);
putU16(&buf[2*i], v);
debug("MOTOR %u val: %u",i,v);
}
msp_send_reply(msp.cmdMSP, buf, sizeof(buf));
break;
}
case MSP_SET_MOTOR: {
debug("MSP_SET_MOTOR");
if (!mixed_type) {
// set the output to each motor
uint8_t nmotors = msp.dataSize / 2;
debug("MSP_SET_MOTOR %u", nmotors);
SRV_Channels::set_disabled_channel_mask(0xFFFF);
motors_disabled = true;
EXPECT_DELAY_MS(1000);
hal.rcout->cork();
for (uint8_t i = 0; i < nmotors; i++) {
if (i >= num_motors) {
break;
}
uint16_t v = getU16(&msp.buf[i*2]);
debug("MSP_SET_MOTOR %u %u", i, v);
// map from a MSP value to a value in the range 1000 to 2000
uint16_t pwm = (v < 1000)?0:v;
hal.rcout->write(motor_map[i], pwm);
}
hal.rcout->push();
} else {
debug("mixed type, Motors Disabled");
}
msp_send_ack(msp.cmdMSP);
break;
}
case MSP_SET_PASSTHROUGH: {
debug("MSP_SET_PASSTHROUGH");
if (msp.dataSize == 0) {
msp.escMode = PROTOCOL_4WAY;
} else if (msp.dataSize == 2) {
msp.escMode = (enum escProtocol)msp.buf[0];
msp.portIndex = msp.buf[1];
}
debug("escMode=%u portIndex=%u num_motors=%u", msp.escMode, msp.portIndex, num_motors);
uint8_t n = num_motors;
switch (msp.escMode) {
case PROTOCOL_4WAY:
break;
default:
n = 0;
hal.rcout->serial_end();
serial_start_ms = 0;
break;
}
msp_send_reply(msp.cmdMSP, &n, 1);
break;
}
default:
debug("Unknown MSP command %u", msp.cmdMSP);
break;
}
}
/*
send a blheli 4way protocol reply
*/
void AP_BLHeli::blheli_send_reply(const uint8_t *buf, uint16_t len)
{
uint8_t *b = &blheli.buf[0];
*b++ = cmd_Remote_Escape;
*b++ = blheli.command;
putU16_BE(b, blheli.address); b += 2;
*b++ = len==256?0:len;
memcpy(b, buf, len);
b += len;
*b++ = blheli.ack;
putU16_BE(b, crc_xmodem(&blheli.buf[0], len+6));
uart->write_locked(&blheli.buf[0], len+8, BLHELI_UART_LOCK_KEY);
debug("OutB(%u) 0x%02x ack=0x%02x", len+8, (unsigned)blheli.command, blheli.ack);
}
/*
CRC used when talking to ESCs
*/
uint16_t AP_BLHeli::BL_CRC(const uint8_t *buf, uint16_t len)
{
uint16_t crc = 0;
while (len--) {
uint8_t xb = *buf++;
for (uint8_t i = 0; i < 8; i++) {
if (((xb & 0x01) ^ (crc & 0x0001)) !=0 ) {
crc = crc >> 1;
crc = crc ^ 0xA001;
} else {
crc = crc >> 1;
}
xb = xb >> 1;
}
}
return crc;
}
bool AP_BLHeli::isMcuConnected(void)
{
return blheli.connected[blheli.chan];
}
void AP_BLHeli::setDisconnected(void)
{
blheli.connected[blheli.chan] = false;
blheli.deviceInfo[blheli.chan][0] = 0;
blheli.deviceInfo[blheli.chan][1] = 0;
}
/*
send a set of bytes to an RC output channel
*/
bool AP_BLHeli::BL_SendBuf(const uint8_t *buf, uint16_t len)
{
bool send_crc = isMcuConnected();
if (blheli.chan >= num_motors) {
return false;
}
EXPECT_DELAY_MS(1000);
if (!hal.rcout->serial_setup_output(motor_map[blheli.chan], 19200, motor_mask)) {
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
if (serial_start_ms == 0) {
serial_start_ms = AP_HAL::millis();
}
uint32_t now = AP_HAL::millis();
if (serial_start_ms == 0 || now - serial_start_ms < 1000) {
/*
we've just started the interface. We want it idle for at
least 1 second before we start sending serial data.
*/
hal.scheduler->delay(1100);
}
memcpy(blheli.buf, buf, len);
uint16_t crc = BL_CRC(buf, len);
blheli.buf[len] = crc;
blheli.buf[len+1] = crc>>8;
if (!hal.rcout->serial_write_bytes(blheli.buf, len+(send_crc?2:0))) {
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
// 19200 baud is 52us per bit - wait for half a bit between sending and receiving to avoid reading
// the end of the last sent bit by accident
hal.scheduler->delay_microseconds(26);
return true;
}
/*
read bytes from the ESC connection
*/
bool AP_BLHeli::BL_ReadBuf(uint8_t *buf, uint16_t len)
{
bool check_crc = isMcuConnected() && len > 0;
uint16_t req_bytes = len+(check_crc?3:1);
EXPECT_DELAY_MS(1000);
uint16_t n = hal.rcout->serial_read_bytes(blheli.buf, req_bytes);
debug("BL_ReadBuf %u -> %u", len, n);
if (req_bytes != n) {
debug("short read");
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
if (check_crc) {
uint16_t crc = BL_CRC(blheli.buf, len);
if ((crc & 0xff) != blheli.buf[len] ||
(crc >> 8) != blheli.buf[len+1]) {
debug("bad CRC");
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
if (blheli.buf[len+2] != brSUCCESS) {
debug("bad ACK 0x%02x", blheli.buf[len+2]);
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
} else {
if (blheli.buf[len] != brSUCCESS) {
debug("bad ACK1 0x%02x", blheli.buf[len]);
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
}
if (len > 0) {
memcpy(buf, blheli.buf, len);
}
return true;
}
uint8_t AP_BLHeli::BL_GetACK(uint16_t timeout_ms)
{
uint8_t ack;
uint32_t start_ms = AP_HAL::millis();
EXPECT_DELAY_MS(1000);
while (AP_HAL::millis() - start_ms < timeout_ms) {
if (hal.rcout->serial_read_bytes(&ack, 1) == 1) {
return ack;
}
}
// return brNONE, meaning no ACK received in the timeout
return brNONE;
}
bool AP_BLHeli::BL_SendCMDSetAddress()
{
// skip if adr == 0xFFFF
if (blheli.address == 0xFFFF) {
return true;
}
debug("BL_SendCMDSetAddress 0x%04x", blheli.address);
uint8_t sCMD[] = {CMD_SET_ADDRESS, 0, uint8_t(blheli.address>>8), uint8_t(blheli.address)};
if (!BL_SendBuf(sCMD, 4)) {
return false;
}
return BL_GetACK() == brSUCCESS;
}
bool AP_BLHeli::BL_ReadA(uint8_t cmd, uint8_t *buf, uint16_t n)
{
if (BL_SendCMDSetAddress()) {
uint8_t sCMD[] = {cmd, uint8_t(n==256?0:n)};
if (!BL_SendBuf(sCMD, 2)) {
return false;
}
bool ret = BL_ReadBuf(buf, n);
if (ret && n == sizeof(esc_status) && blheli.address == esc_status_addr) {
// display esc_status structure if we see it
struct esc_status status;
memcpy(&status, buf, n);
debug("Prot %u Good %u Bad %u %x %x %x x%x\n",
(unsigned)status.protocol,
(unsigned)status.good_frames,
(unsigned)status.bad_frames,
(unsigned)status.unknown[0],
(unsigned)status.unknown[1],
(unsigned)status.unknown[2],
(unsigned)status.unknown2);
}
return ret;
}
return false;
}
/*
connect to a blheli ESC
*/
bool AP_BLHeli::BL_ConnectEx(void)
{
if (blheli.connected[blheli.chan] != 0) {
debug("Using cached interface 0x%x for %u", blheli.interface_mode[blheli.chan], blheli.chan);
return true;
}
debug("BL_ConnectEx %u/%u at %u", blheli.chan, num_motors, motor_map[blheli.chan]);
setDisconnected();
const uint8_t BootInit[] = {0,0,0,0,0,0,0,0,0,0,0,0,0x0D,'B','L','H','e','l','i',0xF4,0x7D};
if (!BL_SendBuf(BootInit, 21)) {
return false;
}
uint8_t BootInfo[8];
if (!BL_ReadBuf(BootInfo, 8)) {
return false;
}
// reply must start with 471
if (strncmp((const char *)BootInfo, "471", 3) != 0) {
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
// extract device information
blheli.deviceInfo[blheli.chan][2] = BootInfo[3];
blheli.deviceInfo[blheli.chan][1] = BootInfo[4];
blheli.deviceInfo[blheli.chan][0] = BootInfo[5];
blheli.interface_mode[blheli.chan] = 0;
uint16_t *devword = (uint16_t *)blheli.deviceInfo[blheli.chan];
switch (*devword) {
case 0x9307:
case 0x930A:
case 0x930F:
case 0x940B:
blheli.interface_mode[blheli.chan] = imATM_BLB;
debug("Interface type imATM_BLB");
break;
case 0xF310:
case 0xF330:
case 0xF410:
case 0xF390:
case 0xF850:
case 0xE8B1:
case 0xE8B2:
blheli.interface_mode[blheli.chan] = imSIL_BLB;
debug("Interface type imSIL_BLB");
break;
default:
// BLHeli_32 MCU ID hi > 0x00 and < 0x90 / lo always = 0x06
if ((blheli.deviceInfo[blheli.chan][1] > 0x00) && (blheli.deviceInfo[blheli.chan][1] < 0x90) && (blheli.deviceInfo[blheli.chan][0] == 0x06)) {
blheli.interface_mode[blheli.chan] = imARM_BLB;
debug("Interface type imARM_BLB");
} else {
blheli.ack = ACK_D_GENERAL_ERROR;
debug("Unknown interface type 0x%04x", *devword);
break;
}
}
blheli.deviceInfo[blheli.chan][3] = blheli.interface_mode[blheli.chan];
if (blheli.interface_mode[blheli.chan] != 0) {
blheli.connected[blheli.chan] = true;
}
return true;
}
bool AP_BLHeli::BL_SendCMDKeepAlive(void)
{
uint8_t sCMD[] = {CMD_KEEP_ALIVE, 0};
if (!BL_SendBuf(sCMD, 2)) {
return false;
}
if (BL_GetACK() != brERRORCOMMAND) {
return false;
}
return true;
}
bool AP_BLHeli::BL_PageErase(void)
{
if (BL_SendCMDSetAddress()) {
uint8_t sCMD[] = {CMD_ERASE_FLASH, 0x01};
if (!BL_SendBuf(sCMD, 2)) {
return false;
}
return BL_GetACK(3000) == brSUCCESS;
}
return false;
}
void AP_BLHeli::BL_SendCMDRunRestartBootloader(void)
{
uint8_t sCMD[] = {RestartBootloader, 0};
blheli.deviceInfo[blheli.chan][0] = 1;
BL_SendBuf(sCMD, 2);
}
uint8_t AP_BLHeli::BL_SendCMDSetBuffer(const uint8_t *buf, uint16_t nbytes)
{
uint8_t sCMD[] = {CMD_SET_BUFFER, 0, uint8_t(nbytes>>8), uint8_t(nbytes&0xff)};
if (!BL_SendBuf(sCMD, 4)) {
return false;
}
uint8_t ack;
if ((ack = BL_GetACK()) != brNONE) {
debug("BL_SendCMDSetBuffer ack failed 0x%02x", ack);
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
if (!BL_SendBuf(buf, nbytes)) {
debug("BL_SendCMDSetBuffer send failed");
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
return (BL_GetACK(40) == brSUCCESS);
}
bool AP_BLHeli::BL_WriteA(uint8_t cmd, const uint8_t *buf, uint16_t nbytes, uint32_t timeout_ms)
{
if (BL_SendCMDSetAddress()) {
if (!BL_SendCMDSetBuffer(buf, nbytes)) {
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
uint8_t sCMD[] = {cmd, 0x01};
if (!BL_SendBuf(sCMD, 2)) {
return false;
}
return (BL_GetACK(timeout_ms) == brSUCCESS);
}
blheli.ack = ACK_D_GENERAL_ERROR;
return false;
}
uint8_t AP_BLHeli::BL_WriteFlash(const uint8_t *buf, uint16_t n)
{
return BL_WriteA(CMD_PROG_FLASH, buf, n, 500);
}
bool AP_BLHeli::BL_VerifyFlash(const uint8_t *buf, uint16_t n)
{
if (BL_SendCMDSetAddress()) {
if (!BL_SendCMDSetBuffer(buf, n)) {
return false;
}
uint8_t sCMD[] = {CMD_VERIFY_FLASH_ARM, 0x01};
if (!BL_SendBuf(sCMD, 2)) {
return false;
}
uint8_t ack = BL_GetACK(40);
switch (ack) {
case brSUCCESS:
blheli.ack = ACK_OK;
break;
case brERRORVERIFY:
blheli.ack = ACK_I_VERIFY_ERROR;
break;
default:
blheli.ack = ACK_D_GENERAL_ERROR;
break;
}
return true;
}
return false;
}
/*
process a blheli 4way command from GCS
*/
void AP_BLHeli::blheli_process_command(void)
{
debug("BLHeli cmd 0x%02x len=%u", blheli.command, blheli.param_len);
blheli.ack = ACK_OK;
switch (blheli.command) {
case cmd_InterfaceTestAlive: {
debug("cmd_InterfaceTestAlive");
BL_SendCMDKeepAlive();
if (blheli.ack != ACK_OK) {
setDisconnected();
}
uint8_t b = 0;
blheli_send_reply(&b, 1);
break;
}
case cmd_ProtocolGetVersion: {
debug("cmd_ProtocolGetVersion");
uint8_t buf[1];
buf[0] = SERIAL_4WAY_PROTOCOL_VER;
blheli_send_reply(buf, sizeof(buf));
break;
}
case cmd_InterfaceGetName: {
debug("cmd_InterfaceGetName");
uint8_t buf[5] = { 4, 'A', 'R', 'D', 'U' };
blheli_send_reply(buf, sizeof(buf));
break;
}
case cmd_InterfaceGetVersion: {
debug("cmd_InterfaceGetVersion");
uint8_t buf[2] = { SERIAL_4WAY_VERSION_HI, SERIAL_4WAY_VERSION_LO };
blheli_send_reply(buf, sizeof(buf));
break;
}
case cmd_InterfaceExit: {
debug("cmd_InterfaceExit");
msp.escMode = PROTOCOL_NONE;
uint8_t b = 0;
blheli_send_reply(&b, 1);
hal.rcout->serial_end();
serial_start_ms = 0;
if (motors_disabled) {
motors_disabled = false;
SRV_Channels::set_disabled_channel_mask(0);
}
if (uart_locked) {
debug("Unlocked UART");
uart->lock_port(0, 0);
uart_locked = false;
}
memset(blheli.connected, 0, sizeof(blheli.connected));
break;
}
case cmd_DeviceReset: {
debug("cmd_DeviceReset(%u)", unsigned(blheli.buf[0]));
if (blheli.buf[0] >= num_motors) {
debug("bad reset channel %u", blheli.buf[0]);
blheli.ack = ACK_I_INVALID_CHANNEL;
blheli_send_reply(&blheli.buf[0], 1);
break;
}
blheli.chan = blheli.buf[0];
switch (blheli.interface_mode[blheli.chan]) {
case imSIL_BLB:
case imATM_BLB:
case imARM_BLB:
BL_SendCMDRunRestartBootloader();
break;
case imSK:
break;
}
blheli_send_reply(&blheli.chan, 1);
setDisconnected();
break;
}
case cmd_DeviceInitFlash: {
debug("cmd_DeviceInitFlash(%u)", unsigned(blheli.buf[0]));
if (blheli.buf[0] >= num_motors) {
debug("bad channel %u", blheli.buf[0]);
blheli.ack = ACK_I_INVALID_CHANNEL;
blheli_send_reply(&blheli.buf[0], 1);
break;
}
blheli.chan = blheli.buf[0];
blheli.ack = ACK_OK;
BL_ConnectEx();
uint8_t buf[4] = {blheli.deviceInfo[blheli.chan][0],
blheli.deviceInfo[blheli.chan][1],
blheli.deviceInfo[blheli.chan][2],
blheli.deviceInfo[blheli.chan][3]}; // device ID
blheli_send_reply(buf, sizeof(buf));
break;
}
case cmd_InterfaceSetMode: {
debug("cmd_InterfaceSetMode(%u)", unsigned(blheli.buf[0]));
blheli.interface_mode[blheli.chan] = blheli.buf[0];
blheli_send_reply(&blheli.interface_mode[blheli.chan], 1);
break;
}
case cmd_DeviceRead: {
uint16_t nbytes = blheli.buf[0]?blheli.buf[0]:256;
debug("cmd_DeviceRead(%u) n=%u", blheli.chan, nbytes);
uint8_t buf[nbytes];
uint8_t cmd = blheli.interface_mode[blheli.chan]==imATM_BLB?CMD_READ_FLASH_ATM:CMD_READ_FLASH_SIL;
if (!BL_ReadA(cmd, buf, nbytes)) {
nbytes = 1;
}
blheli_send_reply(buf, nbytes);
break;
}
case cmd_DevicePageErase: {
uint8_t page = blheli.buf[0];
debug("cmd_DevicePageErase(%u) im=%u", page, blheli.interface_mode[blheli.chan]);
switch (blheli.interface_mode[blheli.chan]) {
case imSIL_BLB:
case imARM_BLB: {
if (blheli.interface_mode[blheli.chan] == imARM_BLB) {
// Address =Page * 1024
blheli.address = page << 10;
} else {
// Address =Page * 512
blheli.address = page << 9;
}
debug("ARM PageErase 0x%04x", blheli.address);
BL_PageErase();
blheli.address = 0;
blheli_send_reply(&page, 1);
break;
}
default:
blheli.ack = ACK_I_INVALID_CMD;
blheli_send_reply(&page, 1);
break;
}
break;
}
case cmd_DeviceWrite: {
uint16_t nbytes = blheli.param_len;
debug("cmd_DeviceWrite n=%u im=%u", nbytes, blheli.interface_mode[blheli.chan]);
uint8_t buf[nbytes];
memcpy(buf, blheli.buf, nbytes);
switch (blheli.interface_mode[blheli.chan]) {
case imSIL_BLB:
case imATM_BLB:
case imARM_BLB: {
BL_WriteFlash(buf, nbytes);
break;
}
case imSK: {
debug("Unsupported flash mode imSK");
break;
}
}
uint8_t b=0;
blheli_send_reply(&b, 1);
break;
}
case cmd_DeviceVerify: {
uint16_t nbytes = blheli.param_len;
debug("cmd_DeviceWrite n=%u im=%u", nbytes, blheli.interface_mode[blheli.chan]);
switch (blheli.interface_mode[blheli.chan]) {
case imARM_BLB: {
uint8_t buf[nbytes];
memcpy(buf, blheli.buf, nbytes);
BL_VerifyFlash(buf, nbytes);
break;
}
default:
blheli.ack = ACK_I_INVALID_CMD;
break;
}
uint8_t b=0;
blheli_send_reply(&b, 1);
break;
}
case cmd_DeviceReadEEprom: {
uint16_t nbytes = blheli.buf[0]?blheli.buf[0]:256;
uint8_t buf[nbytes];
debug("cmd_DeviceReadEEprom n=%u im=%u", nbytes, blheli.interface_mode[blheli.chan]);
switch (blheli.interface_mode[blheli.chan]) {
case imATM_BLB: {
if (!BL_ReadA(CMD_READ_EEPROM, buf, nbytes)) {
blheli.ack = ACK_D_GENERAL_ERROR;
}
break;
}
default:
blheli.ack = ACK_I_INVALID_CMD;
break;
}
if (blheli.ack != ACK_OK) {
nbytes = 1;
buf[0] = 0;
}
blheli_send_reply(buf, nbytes);
break;
}
case cmd_DeviceWriteEEprom: {
uint16_t nbytes = blheli.param_len;
uint8_t buf[nbytes];
memcpy(buf, blheli.buf, nbytes);
debug("cmd_DeviceWriteEEprom n=%u im=%u", nbytes, blheli.interface_mode[blheli.chan]);
switch (blheli.interface_mode[blheli.chan]) {
case imATM_BLB:
BL_WriteA(CMD_PROG_EEPROM, buf, nbytes, 3000);
break;
default:
blheli.ack = ACK_D_GENERAL_ERROR;
break;
}
uint8_t b = 0;
blheli_send_reply(&b, 1);
break;
}
case cmd_DeviceEraseAll:
case cmd_DeviceC2CK_LOW:
default:
// ack=unknown command
blheli.ack = ACK_I_INVALID_CMD;
debug("Unknown BLHeli protocol 0x%02x", blheli.command);
uint8_t b = 0;
blheli_send_reply(&b, 1);
break;
}
}
/*
process an input byte, return true if we have received a whole
packet with correct CRC
*/
bool AP_BLHeli::process_input(uint8_t b)
{
bool valid_packet = false;
if (msp.escMode == PROTOCOL_4WAY && blheli.state == BLHELI_IDLE && b == '$') {
debug("Change to MSP mode");
msp.escMode = PROTOCOL_NONE;
hal.rcout->serial_end();
serial_start_ms = 0;
}
if (msp.escMode != PROTOCOL_4WAY && msp.state == MSP_IDLE && b == '/') {
debug("Change to BLHeli mode");
memset(blheli.connected, 0, sizeof(blheli.connected));
msp.escMode = PROTOCOL_4WAY;
}
if (msp.escMode == PROTOCOL_4WAY) {
blheli_4way_process_byte(b);
} else {
msp_process_byte(b);
}
if (msp.escMode == PROTOCOL_4WAY) {
if (blheli.state == BLHELI_COMMAND_RECEIVED) {
valid_packet = true;
last_valid_ms = AP_HAL::millis();
if (uart->lock_port(BLHELI_UART_LOCK_KEY, 0)) {
uart_locked = true;
}
blheli_process_command();
blheli.state = BLHELI_IDLE;
msp.state = MSP_IDLE;
}
} else if (msp.state == MSP_COMMAND_RECEIVED) {
if (msp.packetType == MSP_PACKET_COMMAND) {
valid_packet = true;
if (uart->lock_port(BLHELI_UART_LOCK_KEY, 0)) {
uart_locked = true;
}
last_valid_ms = AP_HAL::millis();
msp_process_command();
}
msp.state = MSP_IDLE;
blheli.state = BLHELI_IDLE;
}
return valid_packet;
}
/*
protocol handler for detecting BLHeli input
*/
bool AP_BLHeli::protocol_handler(uint8_t b, AP_HAL::UARTDriver *_uart)
{
uart = _uart;
if (hal.util->get_soft_armed()) {
// don't allow MSP control when armed
return false;
}
return process_input(b);
}
/*
run a connection test to the ESCs. This is used to test the
operation of the BLHeli ESC protocol
*/
void AP_BLHeli::run_connection_test(uint8_t chan)
{
run_test.set_and_notify(0);
debug_uart = hal.console;
uint8_t saved_chan = blheli.chan;
if (chan >= num_motors) {
gcs().send_text(MAV_SEVERITY_INFO, "ESC: bad channel %u", chan);
return;
}
blheli.chan = chan;
gcs().send_text(MAV_SEVERITY_INFO, "ESC: Running test on channel %u", blheli.chan);
bool passed = false;
for (uint8_t tries=0; tries<5; tries++) {
EXPECT_DELAY_MS(3000);
blheli.ack = ACK_OK;
setDisconnected();
if (BL_ConnectEx()) {
uint8_t buf[256];
uint8_t cmd = blheli.interface_mode[blheli.chan]==imATM_BLB?CMD_READ_FLASH_ATM:CMD_READ_FLASH_SIL;
passed = true;
blheli.address = blheli.interface_mode[blheli.chan]==imATM_BLB?0:0x7c00;
passed &= BL_ReadA(cmd, buf, sizeof(buf));
if (blheli.interface_mode[blheli.chan]==imARM_BLB) {
if (passed) {
// read status structure
blheli.address = esc_status_addr;
passed &= BL_SendCMDSetAddress();
}
if (passed) {
struct esc_status status;
passed &= BL_ReadA(CMD_READ_FLASH_SIL, (uint8_t *)&status, sizeof(status));
}
}
BL_SendCMDRunRestartBootloader();
break;
}
}
hal.rcout->serial_end();
SRV_Channels::set_disabled_channel_mask(0);
motors_disabled = false;
serial_start_ms = 0;
blheli.chan = saved_chan;
gcs().send_text(MAV_SEVERITY_INFO, "ESC: Test %s", passed?"PASSED":"FAILED");
debug_uart = nullptr;
}
/*
update BLHeli
*/
void AP_BLHeli::update(void)
{
bool motor_control_active = false;
for (uint8_t i = 0; i < num_motors; i++) {
bool reversed = ((1U<< motor_map[i]) & channel_reversible_mask.get()) != 0;
if (hal.rcout->read( motor_map[i]) != (reversed ? 1500 : 1000)) {
motor_control_active = true;
}
}
uint32_t now = AP_HAL::millis();
if (initialised && uart_locked &&
((timeout_sec && now - last_valid_ms > uint32_t(timeout_sec.get())*1000U) ||
(motor_control_active && now - last_valid_ms > MOTOR_ACTIVE_TIMEOUT))) {
// we're not processing requests any more, shutdown serial
// output
if (serial_start_ms) {
hal.rcout->serial_end();
serial_start_ms = 0;
}
if (motors_disabled) {
motors_disabled = false;
SRV_Channels::set_disabled_channel_mask(0);
}
debug("Unlocked UART");
uart->lock_port(0, 0);
uart_locked = false;
if (motor_control_active) {
for (uint8_t i = 0; i < num_motors; i++) {
bool reversed = ((1U<<motor_map[i]) & channel_reversible_mask.get()) != 0;
hal.rcout->write(motor_map[i], reversed ? 1500 : 1000);
}
}
}
if (initialised || (channel_mask.get() == 0 && channel_auto.get() == 0)) {
if (initialised && run_test.get() > 0) {
run_connection_test(run_test.get() - 1);
}
}
}
/*
Initialize BLHeli, called by SRV_Channels::init()
Used to install protocol handler
*/
void AP_BLHeli::init(void)
{
initialised = true;
run_test.set_and_notify(0);
// only install pass-thru protocol handler if either auto or the motor mask are set
if (channel_mask.get() != 0 || channel_auto.get() != 0) {
if (last_control_port > 0 && last_control_port != control_port) {
gcs().install_alternative_protocol((mavlink_channel_t)(MAVLINK_COMM_0+last_control_port), nullptr);
last_control_port = -1;
}
if (gcs().install_alternative_protocol((mavlink_channel_t)(MAVLINK_COMM_0+control_port),
FUNCTOR_BIND_MEMBER(&AP_BLHeli::protocol_handler,
bool, uint8_t, AP_HAL::UARTDriver *))) {
debug("BLHeli installed on port %u", (unsigned)control_port);
last_control_port = control_port;
}
}
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
// with IOMCU the local (FMU) channels start at 8
chan_offset = 8;
}
#endif
uint16_t mask = uint16_t(channel_mask.get());
/*
allow mode override - this makes it possible to use DShot for
rovers and subs, plus for quadplane fwd motors
*/
AP_HAL::RCOutput::output_mode mode = AP_HAL::RCOutput::MODE_PWM_NONE;
AP_Motors::pwm_type otype = AP_Motors::pwm_type(output_type.get());
switch (otype) {
case AP_Motors::PWM_TYPE_ONESHOT:
mode = AP_HAL::RCOutput::MODE_PWM_ONESHOT;
break;
case AP_Motors::PWM_TYPE_ONESHOT125:
mode = AP_HAL::RCOutput::MODE_PWM_ONESHOT125;
break;
case AP_Motors::PWM_TYPE_BRUSHED:
mode = AP_HAL::RCOutput::MODE_PWM_BRUSHED;
break;
case AP_Motors::PWM_TYPE_DSHOT150:
mode = AP_HAL::RCOutput::MODE_PWM_DSHOT150;
break;
case AP_Motors::PWM_TYPE_DSHOT300:
mode = AP_HAL::RCOutput::MODE_PWM_DSHOT300;
break;
case AP_Motors::PWM_TYPE_DSHOT600:
mode = AP_HAL::RCOutput::MODE_PWM_DSHOT600;
break;
case AP_Motors::PWM_TYPE_DSHOT1200:
mode = AP_HAL::RCOutput::MODE_PWM_DSHOT1200;
break;
default:
break;
}
if (mask && mode != AP_HAL::RCOutput::MODE_PWM_NONE) {
hal.rcout->set_output_mode(mask, mode);
}
uint16_t digital_mask = 0;
// setting the digital mask changes the min/max PWM values
// it's important that this is NOT done for non-digital channels as otherwise
// PWM min can result in motors turning. set for individual overrides first
if (mask && otype >= AP_Motors::PWM_TYPE_DSHOT150) {
digital_mask = mask;
}
#if APM_BUILD_TYPE(APM_BUILD_ArduCopter) || APM_BUILD_TYPE(APM_BUILD_ArduPlane) || APM_BUILD_TYPE(APM_BUILD_Rover)
/*
plane and copter can use AP_Motors to get an automatic mask
*/
#if APM_BUILD_TYPE(APM_BUILD_Rover)
AP_MotorsUGV *motors = AP::motors_ugv();
#else
AP_Motors *motors = AP::motors();
#endif
if (motors) {
uint16_t motormask = motors->get_motor_mask();
// set the rest of the digital channels
if (motors->get_pwm_type() >= AP_Motors::PWM_TYPE_DSHOT150) {
digital_mask |= motormask;
}
mask |= motormask;
}
#endif
// tell SRV_Channels about ESC capabilities
SRV_Channels::set_digital_outputs(digital_mask, uint16_t(channel_reversible_mask.get()) & digital_mask);
// the dshot ESC type is required in order to send the reversed/reversible dshot command correctly
hal.rcout->set_dshot_esc_type(SRV_Channels::get_dshot_esc_type());
hal.rcout->set_reversible_mask(uint16_t(channel_reversible_mask.get()) & digital_mask);
hal.rcout->set_reversed_mask(uint16_t(channel_reversed_mask.get()) & digital_mask);
#ifdef HAL_WITH_BIDIR_DSHOT
// possibly enable bi-directional dshot
hal.rcout->set_motor_poles(motor_poles);
hal.rcout->set_bidir_dshot_mask(uint16_t(channel_bidir_dshot_mask.get()) & digital_mask);
#endif
// add motors from channel mask
for (uint8_t i=0; i<16 && num_motors < max_motors; i++) {
if (mask & (1U<<i)) {
motor_map[num_motors] = i;
num_motors++;
}
}
motor_mask = mask;
debug("ESC: %u motors mask=0x%04x", num_motors, mask);
// check if we have a combination of reversable and normal
mixed_type = (mask != (mask & channel_reversible_mask.get())) && (channel_reversible_mask.get() != 0);
if (num_motors != 0 && telem_rate > 0) {
AP_SerialManager *serial_manager = AP_SerialManager::get_singleton();
if (serial_manager) {
telem_uart = serial_manager->find_serial(AP_SerialManager::SerialProtocol_ESCTelemetry,0);
}
}
}
/*
read an ESC telemetry packet
*/
void AP_BLHeli::read_telemetry_packet(void)
{
#if HAL_WITH_ESC_TELEM
uint8_t buf[telem_packet_size];
if (telem_uart->read(buf, telem_packet_size) < telem_packet_size) {
// short read, we should have 10 bytes ready when this function is called
return;
}
// calculate crc
uint8_t crc = 0;
for (uint8_t i=0; i<telem_packet_size-1; i++) {
crc = crc8_dvb(buf[i], crc, 0x07);
}
if (buf[telem_packet_size-1] != crc) {
// bad crc
debug("Bad CRC on %u", last_telem_esc);
return;
}
// record the previous rpm so that we can slew to the new one
uint16_t new_rpm = ((buf[7]<<8) | buf[8]) * 200 / motor_poles;
const uint8_t motor_idx = motor_map[last_telem_esc];
// we have received valid data, mark the ESC as now active
hal.rcout->set_active_escs_mask(1<<motor_idx);
update_rpm(motor_idx - chan_offset, new_rpm);
TelemetryData t {
.temperature_cdeg = int16_t(buf[0] * 100),
.voltage = float(uint16_t((buf[1]<<8) | buf[2])) * 0.01,
.current = float(uint16_t((buf[3]<<8) | buf[4])) * 0.01,
.consumption_mah = float(uint16_t((buf[5]<<8) | buf[6])),
};
update_telem_data(motor_idx - chan_offset, t,
AP_ESC_Telem_Backend::TelemetryType::CURRENT
| AP_ESC_Telem_Backend::TelemetryType::VOLTAGE
| AP_ESC_Telem_Backend::TelemetryType::CONSUMPTION
| AP_ESC_Telem_Backend::TelemetryType::TEMPERATURE);
if (debug_level >= 2) {
uint16_t trpm = new_rpm;
if (has_bidir_dshot(last_telem_esc)) {
trpm = hal.rcout->get_erpm(motor_idx);
if (trpm != 0xFFFF) {
trpm = trpm * 200 / motor_poles;
}
}
hal.console->printf("ESC[%u] T=%u V=%f C=%f con=%f RPM=%u e=%.1f t=%u\n",
last_telem_esc,
t.temperature_cdeg,
t.voltage,
t.current,
t.consumption_mah,
trpm, hal.rcout->get_erpm_error_rate(motor_idx), (unsigned)AP_HAL::millis());
}
#endif // HAL_WITH_ESC_TELEM
}
/*
log bidir telemetry - only called if BLH telemetry is not active
*/
void AP_BLHeli::log_bidir_telemetry(void)
{
uint32_t now = AP_HAL::millis();
if (debug_level >= 2 && now - last_log_ms[last_telem_esc] > 100) {
if (has_bidir_dshot(last_telem_esc)) {
const uint8_t motor_idx = motor_map[last_telem_esc];
uint16_t trpm = hal.rcout->get_erpm(motor_idx);
const float terr = hal.rcout->get_erpm_error_rate(motor_idx);
if (trpm != 0xFFFF) { // don't log invalid values as they are never used
trpm = trpm * 200 / motor_poles;
}
last_log_ms[last_telem_esc] = now;
hal.console->printf("ESC[%u] RPM=%u e=%.1f t=%u\n", last_telem_esc, trpm, terr, (unsigned)AP_HAL::millis());
}
}
if (!SRV_Channels::have_digital_outputs()) {
return;
}
// ask the next ESC for telemetry
uint8_t idx_pos = last_telem_esc;
uint8_t idx = (idx_pos + 1) % num_motors;
for (; idx != idx_pos; idx = (idx_pos + 1) % num_motors) {
if (SRV_Channels::have_digital_outputs(1U << motor_map[idx])) {
break;
}
}
if (SRV_Channels::have_digital_outputs(1U << motor_map[idx])) {
last_telem_esc = idx;
}
}
/*
update BLHeli telemetry handling
This is called on push() in SRV_Channels
*/
void AP_BLHeli::update_telemetry(void)
{
#ifdef HAL_WITH_BIDIR_DSHOT
// we might only have bi-dir dshot
if (channel_bidir_dshot_mask.get() != 0 && !telem_uart) {
log_bidir_telemetry();
}
#endif
if (!telem_uart || !SRV_Channels::have_digital_outputs()) {
return;
}
uint32_t now = AP_HAL::micros();
uint32_t telem_rate_us = 1000000U / uint32_t(telem_rate.get() * num_motors);
if (telem_rate_us < 2000) {
// make sure we have a gap between frames
telem_rate_us = 2000;
}
if (!telem_uart_started) {
// we need to use begin() here to ensure the correct thread owns the uart
telem_uart->begin(115200);
telem_uart_started = true;
}
uint32_t nbytes = telem_uart->available();
if (nbytes > telem_packet_size) {
// if we have more than 10 bytes then we don't know which ESC
// they are from. Throw them all away
telem_uart->discard_input();
return;
}
if (nbytes > 0 &&
nbytes < telem_packet_size &&
(last_telem_byte_read_us == 0 ||
now - last_telem_byte_read_us < 1000)) {
// wait a bit longer, we don't have enough bytes yet
if (last_telem_byte_read_us == 0) {
last_telem_byte_read_us = now;
}
return;
}
if (nbytes > 0 && nbytes < telem_packet_size) {
// we've waited long enough, discard bytes if we don't have 10 yet
telem_uart->discard_input();
return;
}
if (nbytes == telem_packet_size) {
// we have a full packet ready to parse
read_telemetry_packet();
last_telem_byte_read_us = 0;
}
if (now - last_telem_request_us >= telem_rate_us) {
// ask the next ESC for telemetry
uint8_t idx_pos = last_telem_esc;
uint8_t idx = (idx_pos + 1) % num_motors;
for (; idx != idx_pos; idx = (idx_pos + 1) % num_motors) {
if (SRV_Channels::have_digital_outputs(1U << motor_map[idx])) {
break;
}
}
uint16_t mask = 1U << motor_map[idx];
if (SRV_Channels::have_digital_outputs(mask)) {
hal.rcout->set_telem_request_mask(mask);
last_telem_esc = idx;
last_telem_request_us = now;
}
}
}
#endif // HAVE_AP_BLHELI_SUPPORT