ardupilot/libraries/AP_InertialSensor/AP_InertialSensor_Backend.cpp
Gustavo Jose de Sousa 6feea5f64f AP_InertialSensor: Backend: remove function _publish_delta_angle()
Delta angle calculation is now unified, so there is no need for such a method.
That also avoids developers thinking they need that method being called
somewhere in their new drivers.
2015-10-22 16:53:11 +11:00

174 lines
5.3 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL/AP_HAL.h>
#include "AP_InertialSensor.h"
#include "AP_InertialSensor_Backend.h"
AP_InertialSensor_Backend::AP_InertialSensor_Backend(AP_InertialSensor &imu) :
_imu(imu),
_product_id(AP_PRODUCT_ID_NONE)
{}
void AP_InertialSensor_Backend::_rotate_and_correct_accel(uint8_t instance, Vector3f &accel)
{
/*
accel calibration is always done in sensor frame with this
version of the code. That means we apply the rotation after the
offsets and scaling.
*/
// apply offsets
accel -= _imu._accel_offset[instance];
// apply scaling
const Vector3f &accel_scale = _imu._accel_scale[instance].get();
accel.x *= accel_scale.x;
accel.y *= accel_scale.y;
accel.z *= accel_scale.z;
// rotate to body frame
accel.rotate(_imu._board_orientation);
}
void AP_InertialSensor_Backend::_rotate_and_correct_gyro(uint8_t instance, Vector3f &gyro)
{
// gyro calibration is always assumed to have been done in sensor frame
gyro -= _imu._gyro_offset[instance];
gyro.rotate(_imu._board_orientation);
}
/*
rotate gyro vector and add the gyro offset
*/
void AP_InertialSensor_Backend::_publish_gyro(uint8_t instance, const Vector3f &gyro)
{
_imu._gyro[instance] = gyro;
_imu._gyro_healthy[instance] = true;
if (_imu._gyro_sample_rates[instance] <= 0) {
return;
}
// publish delta angle
_imu._delta_angle[instance] = _imu._delta_angle_acc[instance];
_imu._delta_angle_valid[instance] = true;
}
void AP_InertialSensor_Backend::_notify_new_gyro_raw_sample(uint8_t instance,
const Vector3f &gyro)
{
float dt;
if (_imu._gyro_sample_rates[instance] <= 0) {
return;
}
dt = 1.0f / _imu._gyro_sample_rates[instance];
// compute delta angle
Vector3f delta_angle = (gyro + _imu._last_raw_gyro[instance]) * 0.5f * dt;
// compute coning correction
// see page 26 of:
// Tian et al (2010) Three-loop Integration of GPS and Strapdown INS with Coning and Sculling Compensation
// Available: http://www.sage.unsw.edu.au/snap/publications/tian_etal2010b.pdf
// see also examples/coning.py
Vector3f delta_coning = (_imu._delta_angle_acc[instance] +
_imu._last_delta_angle[instance] * (1.0f / 6.0f));
delta_coning = delta_coning % delta_angle;
delta_coning *= 0.5f;
// integrate delta angle accumulator
// the angles and coning corrections are accumulated separately in the
// referenced paper, but in simulation little difference was found between
// integrating together and integrating separately (see examples/coning.py)
_imu._delta_angle_acc[instance] += delta_angle + delta_coning;
// save previous delta angle for coning correction
_imu._last_delta_angle[instance] = delta_angle;
_imu._last_raw_gyro[instance] = gyro;
}
/*
rotate accel vector, scale and add the accel offset
*/
void AP_InertialSensor_Backend::_publish_accel(uint8_t instance, const Vector3f &accel)
{
_imu._accel[instance] = accel;
_imu._accel_healthy[instance] = true;
if (_imu._accel_sample_rates[instance] <= 0) {
return;
}
// publish delta velocity
_imu._delta_velocity[instance] = _imu._delta_velocity_acc[instance];
_imu._delta_velocity_dt[instance] = _imu._delta_velocity_acc_dt[instance];
_imu._delta_velocity_valid[instance] = true;
}
void AP_InertialSensor_Backend::_notify_new_accel_raw_sample(uint8_t instance,
const Vector3f &accel)
{
float dt;
if (_imu._accel_sample_rates[instance] <= 0) {
return;
}
dt = 1.0f / _imu._accel_sample_rates[instance];
#if INS_VIBRATION_CHECK
_imu.calc_vibration_and_clipping(instance, accel, dt);
#endif
// delta velocity
_imu._delta_velocity_acc[instance] += accel * dt;
_imu._delta_velocity_acc_dt[instance] += dt;
}
void AP_InertialSensor_Backend::_set_accel_max_abs_offset(uint8_t instance,
float max_offset)
{
_imu._accel_max_abs_offsets[instance] = max_offset;
}
void AP_InertialSensor_Backend::_set_accel_sample_rate(uint8_t instance,
uint32_t rate)
{
_imu._accel_sample_rates[instance] = rate;
}
// set accelerometer error_count
void AP_InertialSensor_Backend::_set_accel_error_count(uint8_t instance, uint32_t error_count)
{
_imu._accel_error_count[instance] = error_count;
}
void AP_InertialSensor_Backend::_set_gyro_sample_rate(uint8_t instance,
uint32_t rate)
{
_imu._gyro_raw_sample_rates[instance] = rate;
}
// set gyro error_count
void AP_InertialSensor_Backend::_set_gyro_error_count(uint8_t instance, uint32_t error_count)
{
_imu._gyro_error_count[instance] = error_count;
}
// return the requested sample rate in Hz
uint16_t AP_InertialSensor_Backend::get_sample_rate_hz(void) const
{
// enum can be directly cast to Hz
return (uint16_t)_imu._sample_rate;
}
/*
publish a temperature value for an instance
*/
void AP_InertialSensor_Backend::_publish_temperature(uint8_t instance, float temperature)
{
_imu._temperature[instance] = temperature;
}