mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-04 15:08:28 -04:00
6f200fa923
Further to refactor of RC_Channel class which included adding get_xx set_xx methods, change reads and writes to the public members to calls to get and set functionsss old public member(int16_t) get function -> int16_t set function (int16_t) (expression where c is an object of type RC_Channel) c.radio_in c.get_radio_in() c.set_radio_in(v) c.control_in c.get_control_in() c.set_control_in(v) c.servo_out c.get_servo_out() c.set_servo_out(v) c.pwm_out c.get_pwm_out() // use existing c.radio_out c.get_radio_out() c.set_radio_out(v) c.radio_max c.get_radio_max() c.set_radio_max(v) c.radio_min c.get_radio_min() c.set_radio_min(v) c.radio_trim c.get_radio_trim() c.set_radio_trim(v); c.min_max_configured() // return true if min and max are configured Because data members of RC_Channels are now private and so cannot be written directly some overloads are provided in the Plane classes to provide the old functionality new overload Plane::stick_mix_channel(RC_Channel *channel) which forwards to the previously existing void stick_mix_channel(RC_Channel *channel, int16_t &servo_out); new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const which forwards to (uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const; Rename functions RC_Channel_aux::set_radio_trim(Aux_servo_function_t function) to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function) RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value) to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value) Rationale: RC_Channel is a complicated class, which combines several functionalities dealing with stick inputs in pwm and logical units, logical and actual actuator outputs, unit conversion etc, etc The intent of this PR is to clarify existing use of the class. At the basic level it should now be possible to grep all places where private variable is set by searching for the set_xx function. (The wider purpose is to provide a more generic and logically simpler method of output mixing. This is a small step)
280 lines
10 KiB
C++
280 lines
10 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include "Copter.h"
|
|
|
|
/*
|
|
compass/motor interference calibration
|
|
*/
|
|
|
|
// setup_compassmot - sets compass's motor interference parameters
|
|
uint8_t Copter::mavlink_compassmot(mavlink_channel_t chan)
|
|
{
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
// compassmot not implemented for tradheli
|
|
return 1;
|
|
#else
|
|
int8_t comp_type; // throttle or current based compensation
|
|
Vector3f compass_base[COMPASS_MAX_INSTANCES]; // compass vector when throttle is zero
|
|
Vector3f motor_impact[COMPASS_MAX_INSTANCES]; // impact of motors on compass vector
|
|
Vector3f motor_impact_scaled[COMPASS_MAX_INSTANCES]; // impact of motors on compass vector scaled with throttle
|
|
Vector3f motor_compensation[COMPASS_MAX_INSTANCES]; // final compensation to be stored to eeprom
|
|
float throttle_pct; // throttle as a percentage 0.0 ~ 1.0
|
|
float throttle_pct_max = 0.0f; // maximum throttle reached (as a percentage 0~1.0)
|
|
float current_amps_max = 0.0f; // maximum current reached
|
|
float interference_pct[COMPASS_MAX_INSTANCES]; // interference as a percentage of total mag field (for reporting purposes only)
|
|
uint32_t last_run_time;
|
|
uint32_t last_send_time;
|
|
bool updated = false; // have we updated the compensation vector at least once
|
|
uint8_t command_ack_start = command_ack_counter;
|
|
|
|
// exit immediately if we are already in compassmot
|
|
if (ap.compass_mot) {
|
|
// ignore restart messages
|
|
return 1;
|
|
}else{
|
|
ap.compass_mot = true;
|
|
}
|
|
|
|
// initialise output
|
|
for (uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
|
|
interference_pct[i] = 0.0f;
|
|
}
|
|
|
|
// check compass is enabled
|
|
if (!g.compass_enabled) {
|
|
gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "Compass disabled");
|
|
ap.compass_mot = false;
|
|
return 1;
|
|
}
|
|
|
|
// check compass health
|
|
compass.read();
|
|
for (uint8_t i=0; i<compass.get_count(); i++) {
|
|
if (!compass.healthy(i)) {
|
|
gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "Check compass");
|
|
ap.compass_mot = false;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// check if radio is calibrated
|
|
pre_arm_rc_checks();
|
|
if (!ap.pre_arm_rc_check) {
|
|
gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "RC not calibrated");
|
|
ap.compass_mot = false;
|
|
return 1;
|
|
}
|
|
|
|
// check throttle is at zero
|
|
read_radio();
|
|
if (channel_throttle->get_control_in() != 0) {
|
|
gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "Throttle not zero");
|
|
ap.compass_mot = false;
|
|
return 1;
|
|
}
|
|
|
|
// check we are landed
|
|
if (!ap.land_complete) {
|
|
gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "Not landed");
|
|
ap.compass_mot = false;
|
|
return 1;
|
|
}
|
|
|
|
// disable cpu failsafe
|
|
failsafe_disable();
|
|
|
|
// initialise compass
|
|
init_compass();
|
|
|
|
// default compensation type to use current if possible
|
|
if (battery.has_current()) {
|
|
comp_type = AP_COMPASS_MOT_COMP_CURRENT;
|
|
}else{
|
|
comp_type = AP_COMPASS_MOT_COMP_THROTTLE;
|
|
}
|
|
|
|
// send back initial ACK
|
|
mavlink_msg_command_ack_send(chan, MAV_CMD_PREFLIGHT_CALIBRATION,0);
|
|
|
|
// flash leds
|
|
AP_Notify::flags.esc_calibration = true;
|
|
|
|
// warn user we are starting calibration
|
|
gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_INFO, "Starting calibration");
|
|
|
|
// inform what type of compensation we are attempting
|
|
if (comp_type == AP_COMPASS_MOT_COMP_CURRENT) {
|
|
gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_INFO, "Current");
|
|
} else{
|
|
gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_INFO, "Throttle");
|
|
}
|
|
|
|
// disable throttle and battery failsafe
|
|
g.failsafe_throttle = FS_THR_DISABLED;
|
|
g.failsafe_battery_enabled = FS_BATT_DISABLED;
|
|
|
|
// disable motor compensation
|
|
compass.motor_compensation_type(AP_COMPASS_MOT_COMP_DISABLED);
|
|
for (uint8_t i=0; i<compass.get_count(); i++) {
|
|
compass.set_motor_compensation(i, Vector3f(0,0,0));
|
|
}
|
|
|
|
// get initial compass readings
|
|
last_run_time = millis();
|
|
while ( millis() - last_run_time < 500 ) {
|
|
compass.accumulate();
|
|
}
|
|
compass.read();
|
|
|
|
// store initial x,y,z compass values
|
|
// initialise interference percentage
|
|
for (uint8_t i=0; i<compass.get_count(); i++) {
|
|
compass_base[i] = compass.get_field(i);
|
|
interference_pct[i] = 0.0f;
|
|
}
|
|
|
|
// enable motors and pass through throttle
|
|
init_rc_out();
|
|
enable_motor_output();
|
|
motors.armed(true);
|
|
|
|
// initialise run time
|
|
last_run_time = millis();
|
|
last_send_time = millis();
|
|
|
|
// main run while there is no user input and the compass is healthy
|
|
while (command_ack_start == command_ack_counter && compass.healthy(compass.get_primary()) && motors.armed()) {
|
|
// 50hz loop
|
|
if (millis() - last_run_time < 20) {
|
|
// grab some compass values
|
|
compass.accumulate();
|
|
hal.scheduler->delay(5);
|
|
continue;
|
|
}
|
|
last_run_time = millis();
|
|
|
|
// read radio input
|
|
read_radio();
|
|
|
|
// pass through throttle to motors
|
|
motors.throttle_pass_through(channel_throttle->get_radio_in());
|
|
|
|
// read some compass values
|
|
compass.read();
|
|
|
|
// read current
|
|
read_battery();
|
|
|
|
// calculate scaling for throttle
|
|
throttle_pct = (float)channel_throttle->get_control_in() / 1000.0f;
|
|
throttle_pct = constrain_float(throttle_pct,0.0f,1.0f);
|
|
|
|
// if throttle is near zero, update base x,y,z values
|
|
if (throttle_pct <= 0.0f) {
|
|
for (uint8_t i=0; i<compass.get_count(); i++) {
|
|
compass_base[i] = compass_base[i] * 0.99f + compass.get_field(i) * 0.01f;
|
|
}
|
|
|
|
// causing printing to happen as soon as throttle is lifted
|
|
} else {
|
|
|
|
// calculate diff from compass base and scale with throttle
|
|
for (uint8_t i=0; i<compass.get_count(); i++) {
|
|
motor_impact[i] = compass.get_field(i) - compass_base[i];
|
|
}
|
|
|
|
// throttle based compensation
|
|
if (comp_type == AP_COMPASS_MOT_COMP_THROTTLE) {
|
|
// for each compass
|
|
for (uint8_t i=0; i<compass.get_count(); i++) {
|
|
// scale by throttle
|
|
motor_impact_scaled[i] = motor_impact[i] / throttle_pct;
|
|
// adjust the motor compensation to negate the impact
|
|
motor_compensation[i] = motor_compensation[i] * 0.99f - motor_impact_scaled[i] * 0.01f;
|
|
}
|
|
|
|
updated = true;
|
|
} else {
|
|
// for each compass
|
|
for (uint8_t i=0; i<compass.get_count(); i++) {
|
|
// current based compensation if more than 3amps being drawn
|
|
motor_impact_scaled[i] = motor_impact[i] / battery.current_amps();
|
|
|
|
// adjust the motor compensation to negate the impact if drawing over 3amps
|
|
if (battery.current_amps() >= 3.0f) {
|
|
motor_compensation[i] = motor_compensation[i] * 0.99f - motor_impact_scaled[i] * 0.01f;
|
|
updated = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// calculate interference percentage at full throttle as % of total mag field
|
|
if (comp_type == AP_COMPASS_MOT_COMP_THROTTLE) {
|
|
for (uint8_t i=0; i<compass.get_count(); i++) {
|
|
// interference is impact@fullthrottle / mag field * 100
|
|
interference_pct[i] = motor_compensation[i].length() / (float)COMPASS_MAGFIELD_EXPECTED * 100.0f;
|
|
}
|
|
}else{
|
|
for (uint8_t i=0; i<compass.get_count(); i++) {
|
|
// interference is impact/amp * (max current seen / max throttle seen) / mag field * 100
|
|
interference_pct[i] = motor_compensation[i].length() * (current_amps_max/throttle_pct_max) / (float)COMPASS_MAGFIELD_EXPECTED * 100.0f;
|
|
}
|
|
}
|
|
|
|
// record maximum throttle and current
|
|
throttle_pct_max = MAX(throttle_pct_max, throttle_pct);
|
|
current_amps_max = MAX(current_amps_max, battery.current_amps());
|
|
|
|
}
|
|
if (AP_HAL::millis() - last_send_time > 500) {
|
|
last_send_time = AP_HAL::millis();
|
|
mavlink_msg_compassmot_status_send(chan,
|
|
channel_throttle->get_control_in(),
|
|
battery.current_amps(),
|
|
interference_pct[compass.get_primary()],
|
|
motor_compensation[compass.get_primary()].x,
|
|
motor_compensation[compass.get_primary()].y,
|
|
motor_compensation[compass.get_primary()].z);
|
|
}
|
|
}
|
|
|
|
// stop motors
|
|
motors.output_min();
|
|
motors.armed(false);
|
|
|
|
// set and save motor compensation
|
|
if (updated) {
|
|
compass.motor_compensation_type(comp_type);
|
|
for (uint8_t i=0; i<compass.get_count(); i++) {
|
|
compass.set_motor_compensation(i, motor_compensation[i]);
|
|
}
|
|
compass.save_motor_compensation();
|
|
// display success message
|
|
gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_INFO, "Calibration successful");
|
|
} else {
|
|
// compensation vector never updated, report failure
|
|
gcs[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_NOTICE, "Failed");
|
|
compass.motor_compensation_type(AP_COMPASS_MOT_COMP_DISABLED);
|
|
}
|
|
|
|
// display new motor offsets and save
|
|
report_compass();
|
|
|
|
// turn off notify leds
|
|
AP_Notify::flags.esc_calibration = false;
|
|
|
|
// re-enable cpu failsafe
|
|
failsafe_enable();
|
|
|
|
// re-enable failsafes
|
|
g.failsafe_throttle.load();
|
|
g.failsafe_battery_enabled.load();
|
|
|
|
// flag we have completed
|
|
ap.compass_mot = false;
|
|
|
|
return 0;
|
|
#endif // FRAME_CONFIG != HELI_FRAME
|
|
}
|
|
|