ardupilot/libraries/AP_NavEKF3/AP_NavEKF3_MagFusion.cpp
Andrew Tridgell 6f04fae4a0 AP_NavEKF3: added fallback to mag option with external yaw
this allows for a magnetometer to be used as a fallback yaw source in
flight when using an external yaw source such as a GPS. The
magnetometer bias is learned while the GPS yaw is available and
fallback is only done if the mag yaw and GPS yaw are consistent when
fallback is enabled

This also learns the Z gyro bias until first yaw alignment when
MAG_CAL is EXTERNAL_YAW_FALLBACK. This prevents large gyro bias
building while waiting for GPS lock
2020-04-11 21:14:31 +10:00

1410 lines
70 KiB
C++

#include <AP_HAL/AP_HAL.h>
#include "AP_NavEKF3.h"
#include "AP_NavEKF3_core.h"
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
/********************************************************
* RESET FUNCTIONS *
********************************************************/
// Control reset of yaw and magnetic field states
void NavEKF3_core::controlMagYawReset()
{
// Vehicles that can use a zero sideslip assumption (Planes) are a special case
// They can use the GPS velocity to recover from bad initial compass data
// This allows recovery for heading alignment errors due to compass faults
if (assume_zero_sideslip() && !finalInflightYawInit && inFlight ) {
gpsYawResetRequest = true;
return;
} else {
gpsYawResetRequest = false;
}
// Quaternion and delta rotation vector that are re-used for different calculations
Vector3f deltaRotVecTemp;
Quaternion deltaQuatTemp;
bool flightResetAllowed = false;
bool initialResetAllowed = false;
if (!finalInflightYawInit) {
// Use a quaternion division to calculate the delta quaternion between the rotation at the current and last time
deltaQuatTemp = stateStruct.quat / prevQuatMagReset;
prevQuatMagReset = stateStruct.quat;
// convert the quaternion to a rotation vector and find its length
deltaQuatTemp.to_axis_angle(deltaRotVecTemp);
// check if the spin rate is OK - high spin rates can cause angular alignment errors
bool angRateOK = deltaRotVecTemp.length() < 0.1745f;
initialResetAllowed = angRateOK;
flightResetAllowed = angRateOK && !onGround;
}
// Check if conditions for a interim or final yaw/mag reset are met
bool finalResetRequest = false;
bool interimResetRequest = false;
if (flightResetAllowed && !assume_zero_sideslip()) {
// check that we have reached a height where ground magnetic interference effects are insignificant
// and can perform a final reset of the yaw and field states
finalResetRequest = (stateStruct.position.z - posDownAtTakeoff) < -EKF3_MAG_FINAL_RESET_ALT;
// check for increasing height
bool hgtIncreasing = (posDownAtLastMagReset-stateStruct.position.z) > 0.5f;
float yawInnovIncrease = fabsf(innovYaw) - fabsf(yawInnovAtLastMagReset);
// check for increasing yaw innovations
bool yawInnovIncreasing = yawInnovIncrease > 0.25f;
// check that the yaw innovations haven't been caused by a large change in attitude
deltaQuatTemp = quatAtLastMagReset / stateStruct.quat;
deltaQuatTemp.to_axis_angle(deltaRotVecTemp);
bool largeAngleChange = deltaRotVecTemp.length() > yawInnovIncrease;
// if yaw innovations and height have increased and we haven't rotated much
// then we are climbing away from a ground based magnetic anomaly and need to reset
interimResetRequest = hgtIncreasing && yawInnovIncreasing && !largeAngleChange;
}
// an initial reset is required if we have not yet aligned the yaw angle
bool initialResetRequest = initialResetAllowed && !yawAlignComplete;
// a combined yaw angle and magnetic field reset can be initiated by:
magYawResetRequest = magYawResetRequest || // an external request
initialResetRequest || // an initial alignment performed by all vehicle types using magnetometer
interimResetRequest || // an interim alignment required to recover from ground based magnetic anomaly
finalResetRequest; // the final reset when we have achieved enough height to be in stable magnetic field environment
// Perform a reset of magnetic field states and reset yaw to corrected magnetic heading
if (magYawResetRequest || magStateResetRequest) {
// get the euler angles from the current state estimate
Vector3f eulerAngles;
stateStruct.quat.to_euler(eulerAngles.x, eulerAngles.y, eulerAngles.z);
// Use the Euler angles and magnetometer measurement to update the magnetic field states
// and get an updated quaternion
Quaternion newQuat = calcQuatAndFieldStates(eulerAngles.x, eulerAngles.y);
// if a yaw reset has been requested, apply the updated quaternion to the current state
if (magYawResetRequest) {
// previous value used to calculate a reset delta
Quaternion prevQuat = stateStruct.quat;
// calculate the variance for the rotation estimate expressed as a rotation vector
// this will be used later to reset the quaternion state covariances
Vector3f angleErrVarVec = calcRotVecVariances();
// update the quaternion states using the new yaw angle
stateStruct.quat = newQuat;
// update the yaw angle variance using the variance of the measurement
angleErrVarVec.z = sq(MAX(frontend->_yawNoise, 1.0e-2f));
// reset the quaternion covariances using the rotation vector variances
initialiseQuatCovariances(angleErrVarVec);
// calculate the change in the quaternion state and apply it to the output history buffer
prevQuat = stateStruct.quat/prevQuat;
StoreQuatRotate(prevQuat);
// send initial alignment status to console
if (!yawAlignComplete) {
gcs().send_text(MAV_SEVERITY_INFO, "EKF3 IMU%u initial yaw alignment complete",(unsigned)imu_index);
}
// send in-flight yaw alignment status to console
if (finalResetRequest) {
gcs().send_text(MAV_SEVERITY_INFO, "EKF3 IMU%u in-flight yaw alignment complete",(unsigned)imu_index);
} else if (interimResetRequest) {
gcs().send_text(MAV_SEVERITY_WARNING, "EKF3 IMU%u ground mag anomaly, yaw re-aligned",(unsigned)imu_index);
}
// prevent reset of variances in ConstrainVariances()
inhibitMagStates = false;
// update the yaw reset completed status
recordYawReset();
// clear the yaw reset request flag
magYawResetRequest = false;
// clear the complete flags if an interim reset has been performed to allow subsequent
// and final reset to occur
if (interimResetRequest) {
finalInflightYawInit = false;
finalInflightMagInit = false;
}
}
}
}
// this function is used to do a forced re-alignment of the yaw angle to align with the horizontal velocity
// vector from GPS. It is used to align the yaw angle after launch or takeoff.
void NavEKF3_core::realignYawGPS()
{
// get quaternion from existing filter states and calculate roll, pitch and yaw angles
Vector3f eulerAngles;
stateStruct.quat.to_euler(eulerAngles.x, eulerAngles.y, eulerAngles.z);
if ((sq(gpsDataDelayed.vel.x) + sq(gpsDataDelayed.vel.y)) > 25.0f) {
// calculate course yaw angle
float velYaw = atan2f(stateStruct.velocity.y,stateStruct.velocity.x);
// calculate course yaw angle from GPS velocity
float gpsYaw = atan2f(gpsDataDelayed.vel.y,gpsDataDelayed.vel.x);
// Check the yaw angles for consistency
float yawErr = MAX(fabsf(wrap_PI(gpsYaw - velYaw)),fabsf(wrap_PI(gpsYaw - eulerAngles.z)));
// If the angles disagree by more than 45 degrees and GPS innovations are large or no previous yaw alignment, we declare the magnetic yaw as bad
badMagYaw = ((yawErr > 0.7854f) && (velTestRatio > 1.0f) && (PV_AidingMode == AID_ABSOLUTE)) || !yawAlignComplete;
// correct yaw angle using GPS ground course if compass yaw bad
if (badMagYaw) {
// calculate the variance for the rotation estimate expressed as a rotation vector
// this will be used later to reset the quaternion state covariances
Vector3f angleErrVarVec = calcRotVecVariances();
// calculate new filter quaternion states from Euler angles
stateStruct.quat.from_euler(eulerAngles.x, eulerAngles.y, gpsYaw);
// reset the velocity and position states as they will be inaccurate due to bad yaw
velResetSource = GPS;
ResetVelocity();
posResetSource = GPS;
ResetPosition();
// set the yaw angle variance to a larger value to reflect the uncertainty in yaw
angleErrVarVec.z = sq(radians(45.0f));
// reset the quaternion covariances using the rotation vector variances
zeroRows(P,0,3);
zeroCols(P,0,3);
initialiseQuatCovariances(angleErrVarVec);
// send yaw alignment information to console
gcs().send_text(MAV_SEVERITY_INFO, "EKF3 IMU%u yaw aligned to GPS velocity",(unsigned)imu_index);
// record the yaw reset event
recordYawReset();
// clear all pending yaw reset requests
gpsYawResetRequest = false;
magYawResetRequest = false;
if (use_compass()) {
// request a mag field reset which may enable us to use the magnetometer if the previous fault was due to bad initialisation
magStateResetRequest = true;
// clear the all sensors failed status so that the magnetometers sensors get a second chance now that we are flying
allMagSensorsFailed = false;
}
}
}
}
void NavEKF3_core::alignYawAngle()
{
// calculate the variance for the rotation estimate expressed as a rotation vector
// this will be used later to reset the quaternion state covariances
Vector3f angleErrVarVec = calcRotVecVariances();
if (yawAngDataDelayed.type == 2) {
Vector3f euler321;
stateStruct.quat.to_euler(euler321.x, euler321.y, euler321.z);
stateStruct.quat.from_euler(euler321.x, euler321.y, yawAngDataDelayed.yawAng);
} else if (yawAngDataDelayed.type == 1) {
Vector3f euler312 = stateStruct.quat.to_vector312();
stateStruct.quat.from_vector312(euler312.x, euler312.y, yawAngDataDelayed.yawAng);
}
// set the yaw angle variance to a larger value to reflect the uncertainty in yaw
angleErrVarVec.z = sq(yawAngDataDelayed.yawAngErr);
// reset the quaternion covariances using the rotation vector variances
zeroRows(P,0,3);
zeroCols(P,0,3);
initialiseQuatCovariances(angleErrVarVec);
// send yaw alignment information to console
gcs().send_text(MAV_SEVERITY_INFO, "EKF3 IMU%u yaw aligned",(unsigned)imu_index);
// record the yaw reset event
recordYawReset();
// clear any pending yaw reset requests
gpsYawResetRequest = false;
magYawResetRequest = false;
}
/********************************************************
* FUSE MEASURED_DATA *
********************************************************/
// select fusion of magnetometer data
void NavEKF3_core::SelectMagFusion()
{
// start performance timer
hal.util->perf_begin(_perf_FuseMagnetometer);
// clear the flag that lets other processes know that the expensive magnetometer fusion operation has been performed on that time step
// used for load levelling
magFusePerformed = false;
// Handle case where we are using an external yaw sensor instead of a magnetomer
MagCal magcal = effective_magCal();
if (magcal == MagCal::EXTERNAL_YAW || magcal == MagCal::EXTERNAL_YAW_FALLBACK) {
bool have_fused_gps_yaw = false;
uint32_t now = AP_HAL::millis();
if (storedYawAng.recall(yawAngDataDelayed,imuDataDelayed.time_ms)) {
if (tiltAlignComplete && !yawAlignComplete) {
alignYawAngle();
} else if (tiltAlignComplete && yawAlignComplete) {
fuseEulerYaw(false, true);
} else {
fuseEulerYaw(true, true);
}
have_fused_gps_yaw = true;
last_gps_yaw_fusion_ms = now;
}
if (magcal == MagCal::EXTERNAL_YAW) {
// no fallback
return;
}
// get new mag data into delay buffer
readMagData();
if (have_fused_gps_yaw) {
if (gps_yaw_mag_fallback_active) {
gps_yaw_mag_fallback_active = false;
gcs().send_text(MAV_SEVERITY_INFO, "EKF3 IMU%u yaw external",(unsigned)imu_index);
}
// update mag bias from GPS yaw
gps_yaw_mag_fallback_ok = learnMagBiasFromGPS();
return;
}
// we don't have GPS yaw data and are configured for
// fallback. If we've only just lost GPS yaw
if (now - last_gps_yaw_fusion_ms < 10000) {
// don't fallback to magnetometer fusion for 10s
return;
}
if (!gps_yaw_mag_fallback_ok) {
// mag was not consistent enough with GPS to use it as
// fallback
return;
}
if (!inFlight) {
// don't fall back if not flying
return;
}
if (!gps_yaw_mag_fallback_active) {
gps_yaw_mag_fallback_active = true;
gcs().send_text(MAV_SEVERITY_INFO, "EKF3 IMU%u yaw fallback active",(unsigned)imu_index);
}
// fall through to magnetometer fusion
}
if (magcal != MagCal::EXTERNAL_YAW_FALLBACK) {
// check for and read new magnetometer measurements. We don't
// real for EXTERNAL_YAW_FALLBACK as it has already been read
// above
readMagData();
}
// If we are using the compass and the magnetometer has been unhealthy for too long we declare a timeout
if (magHealth) {
magTimeout = false;
lastHealthyMagTime_ms = imuSampleTime_ms;
} else if ((imuSampleTime_ms - lastHealthyMagTime_ms) > frontend->magFailTimeLimit_ms && use_compass()) {
magTimeout = true;
}
// check for availability of magnetometer or other yaw data to fuse
magDataToFuse = storedMag.recall(magDataDelayed,imuDataDelayed.time_ms);
// Control reset of yaw and magnetic field states if we are using compass data
if (magDataToFuse) {
controlMagYawReset();
}
// determine if conditions are right to start a new fusion cycle
// wait until the EKF time horizon catches up with the measurement
bool dataReady = (magDataToFuse && statesInitialised && use_compass() && yawAlignComplete);
if (dataReady) {
// use the simple method of declination to maintain heading if we cannot use the magnetic field states
if(inhibitMagStates || magStateResetRequest || !magStateInitComplete) {
fuseEulerYaw(false, false);
// zero the test ratio output from the inactive 3-axis magnetometer fusion
magTestRatio.zero();
} else {
// if we are not doing aiding with earth relative observations (eg GPS) then the declination is
// maintained by fusing declination as a synthesised observation
// We also fuse declination if we are using the WMM tables
if (PV_AidingMode != AID_ABSOLUTE ||
(frontend->_mag_ef_limit > 0 && have_table_earth_field)) {
FuseDeclination(0.34f);
}
// fuse the three magnetometer componenents sequentially
hal.util->perf_begin(_perf_test[0]);
for (mag_state.obsIndex = 0; mag_state.obsIndex <= 2; mag_state.obsIndex++) {
FuseMagnetometer();
// don't continue fusion if unhealthy
if (!magHealth) {
hal.util->perf_end(_perf_test[0]);
break;
}
}
hal.util->perf_end(_perf_test[0]);
// zero the test ratio output from the inactive simple magnetometer yaw fusion
yawTestRatio = 0.0f;
}
}
// If we have no magnetometer, fuse in a synthetic heading measurement at 7Hz to prevent the filter covariances
// from becoming badly conditioned. For planes we only do this on-ground because they can align the yaw from GPS when
// airborne. For other platform types we do this all the time.
if (!use_compass()) {
if ((onGround || !assume_zero_sideslip()) && (imuSampleTime_ms - lastSynthYawTime_ms > 140)) {
fuseEulerYaw(true, false);
magTestRatio.zero();
yawTestRatio = 0.0f;
lastSynthYawTime_ms = imuSampleTime_ms;
}
}
// If the final yaw reset has been performed and the state variances are sufficiently low
// record that the earth field has been learned.
if (!magFieldLearned && finalInflightMagInit) {
magFieldLearned = (P[16][16] < sq(0.01f)) && (P[17][17] < sq(0.01f)) && (P[18][18] < sq(0.01f));
}
// record the last learned field variances
if (magFieldLearned && !inhibitMagStates) {
earthMagFieldVar.x = P[16][16];
earthMagFieldVar.y = P[17][17];
earthMagFieldVar.z = P[18][18];
bodyMagFieldVar.x = P[19][19];
bodyMagFieldVar.y = P[20][20];
bodyMagFieldVar.z = P[21][21];
}
// stop performance timer
hal.util->perf_end(_perf_FuseMagnetometer);
}
/*
* Fuse magnetometer measurements using explicit algebraic equations generated with Matlab symbolic toolbox.
* The script file used to generate these and other equations in this filter can be found here:
* https://github.com/PX4/ecl/blob/master/matlab/scripts/Inertial%20Nav%20EKF/GenerateNavFilterEquations.m
*/
void NavEKF3_core::FuseMagnetometer()
{
// declarations
ftype &q0 = mag_state.q0;
ftype &q1 = mag_state.q1;
ftype &q2 = mag_state.q2;
ftype &q3 = mag_state.q3;
ftype &magN = mag_state.magN;
ftype &magE = mag_state.magE;
ftype &magD = mag_state.magD;
ftype &magXbias = mag_state.magXbias;
ftype &magYbias = mag_state.magYbias;
ftype &magZbias = mag_state.magZbias;
uint8_t &obsIndex = mag_state.obsIndex;
Matrix3f &DCM = mag_state.DCM;
Vector3f &MagPred = mag_state.MagPred;
ftype &R_MAG = mag_state.R_MAG;
ftype *SH_MAG = &mag_state.SH_MAG[0];
Vector24 H_MAG;
Vector5 SK_MX;
Vector5 SK_MY;
Vector5 SK_MZ;
// perform sequential fusion of magnetometer measurements.
// this assumes that the errors in the different components are
// uncorrelated which is not true, however in the absence of covariance
// data fit is the only assumption we can make
// so we might as well take advantage of the computational efficiencies
// associated with sequential fusion
// calculate observation jacobians and Kalman gains
// copy required states to local variable names
q0 = stateStruct.quat[0];
q1 = stateStruct.quat[1];
q2 = stateStruct.quat[2];
q3 = stateStruct.quat[3];
magN = stateStruct.earth_magfield[0];
magE = stateStruct.earth_magfield[1];
magD = stateStruct.earth_magfield[2];
magXbias = stateStruct.body_magfield[0];
magYbias = stateStruct.body_magfield[1];
magZbias = stateStruct.body_magfield[2];
// rotate predicted earth components into body axes and calculate
// predicted measurements
DCM[0][0] = q0*q0 + q1*q1 - q2*q2 - q3*q3;
DCM[0][1] = 2.0f*(q1*q2 + q0*q3);
DCM[0][2] = 2.0f*(q1*q3-q0*q2);
DCM[1][0] = 2.0f*(q1*q2 - q0*q3);
DCM[1][1] = q0*q0 - q1*q1 + q2*q2 - q3*q3;
DCM[1][2] = 2.0f*(q2*q3 + q0*q1);
DCM[2][0] = 2.0f*(q1*q3 + q0*q2);
DCM[2][1] = 2.0f*(q2*q3 - q0*q1);
DCM[2][2] = q0*q0 - q1*q1 - q2*q2 + q3*q3;
MagPred[0] = DCM[0][0]*magN + DCM[0][1]*magE + DCM[0][2]*magD + magXbias;
MagPred[1] = DCM[1][0]*magN + DCM[1][1]*magE + DCM[1][2]*magD + magYbias;
MagPred[2] = DCM[2][0]*magN + DCM[2][1]*magE + DCM[2][2]*magD + magZbias;
// calculate the measurement innovation for each axis
for (uint8_t i = 0; i<=2; i++) {
innovMag[i] = MagPred[i] - magDataDelayed.mag[i];
}
// scale magnetometer observation error with total angular rate to allow for timing errors
R_MAG = sq(constrain_float(frontend->_magNoise, 0.01f, 0.5f)) + sq(frontend->magVarRateScale*imuDataDelayed.delAng.length() / imuDataDelayed.delAngDT);
// calculate common expressions used to calculate observation jacobians an innovation variance for each component
SH_MAG[0] = 2.0f*magD*q3 + 2.0f*magE*q2 + 2.0f*magN*q1;
SH_MAG[1] = 2.0f*magD*q0 - 2.0f*magE*q1 + 2.0f*magN*q2;
SH_MAG[2] = 2.0f*magD*q1 + 2.0f*magE*q0 - 2.0f*magN*q3;
SH_MAG[3] = sq(q3);
SH_MAG[4] = sq(q2);
SH_MAG[5] = sq(q1);
SH_MAG[6] = sq(q0);
SH_MAG[7] = 2.0f*magN*q0;
SH_MAG[8] = 2.0f*magE*q3;
// Calculate the innovation variance for each axis
// X axis
varInnovMag[0] = (P[19][19] + R_MAG + P[1][19]*SH_MAG[0] - P[2][19]*SH_MAG[1] + P[3][19]*SH_MAG[2] - P[16][19]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + (2.0f*q0*q3 + 2.0f*q1*q2)*(P[19][17] + P[1][17]*SH_MAG[0] - P[2][17]*SH_MAG[1] + P[3][17]*SH_MAG[2] - P[16][17]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][17]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][17]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][17]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - (2.0f*q0*q2 - 2.0f*q1*q3)*(P[19][18] + P[1][18]*SH_MAG[0] - P[2][18]*SH_MAG[1] + P[3][18]*SH_MAG[2] - P[16][18]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][18]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][18]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][18]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + (SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)*(P[19][0] + P[1][0]*SH_MAG[0] - P[2][0]*SH_MAG[1] + P[3][0]*SH_MAG[2] - P[16][0]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][0]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][0]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][0]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + P[17][19]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][19]*(2.0f*q0*q2 - 2.0f*q1*q3) + SH_MAG[0]*(P[19][1] + P[1][1]*SH_MAG[0] - P[2][1]*SH_MAG[1] + P[3][1]*SH_MAG[2] - P[16][1]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][1]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][1]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][1]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - SH_MAG[1]*(P[19][2] + P[1][2]*SH_MAG[0] - P[2][2]*SH_MAG[1] + P[3][2]*SH_MAG[2] - P[16][2]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][2]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][2]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][2]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + SH_MAG[2]*(P[19][3] + P[1][3]*SH_MAG[0] - P[2][3]*SH_MAG[1] + P[3][3]*SH_MAG[2] - P[16][3]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][3]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][3]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][3]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - (SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6])*(P[19][16] + P[1][16]*SH_MAG[0] - P[2][16]*SH_MAG[1] + P[3][16]*SH_MAG[2] - P[16][16]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][16]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][16]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][16]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + P[0][19]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2));
if (varInnovMag[0] >= R_MAG) {
faultStatus.bad_xmag = false;
} else {
// the calculation is badly conditioned, so we cannot perform fusion on this step
// we reset the covariance matrix and try again next measurement
CovarianceInit();
faultStatus.bad_xmag = true;
return;
}
// Y axis
varInnovMag[1] = (P[20][20] + R_MAG + P[0][20]*SH_MAG[2] + P[1][20]*SH_MAG[1] + P[2][20]*SH_MAG[0] - P[17][20]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - (2.0f*q0*q3 - 2.0f*q1*q2)*(P[20][16] + P[0][16]*SH_MAG[2] + P[1][16]*SH_MAG[1] + P[2][16]*SH_MAG[0] - P[17][16]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][16]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][16]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][16]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + (2.0f*q0*q1 + 2.0f*q2*q3)*(P[20][18] + P[0][18]*SH_MAG[2] + P[1][18]*SH_MAG[1] + P[2][18]*SH_MAG[0] - P[17][18]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][18]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][18]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][18]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - (SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)*(P[20][3] + P[0][3]*SH_MAG[2] + P[1][3]*SH_MAG[1] + P[2][3]*SH_MAG[0] - P[17][3]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][3]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][3]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][3]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - P[16][20]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][20]*(2.0f*q0*q1 + 2.0f*q2*q3) + SH_MAG[2]*(P[20][0] + P[0][0]*SH_MAG[2] + P[1][0]*SH_MAG[1] + P[2][0]*SH_MAG[0] - P[17][0]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][0]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][0]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][0]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + SH_MAG[1]*(P[20][1] + P[0][1]*SH_MAG[2] + P[1][1]*SH_MAG[1] + P[2][1]*SH_MAG[0] - P[17][1]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][1]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][1]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][1]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + SH_MAG[0]*(P[20][2] + P[0][2]*SH_MAG[2] + P[1][2]*SH_MAG[1] + P[2][2]*SH_MAG[0] - P[17][2]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][2]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][2]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][2]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - (SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6])*(P[20][17] + P[0][17]*SH_MAG[2] + P[1][17]*SH_MAG[1] + P[2][17]*SH_MAG[0] - P[17][17]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][17]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][17]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][17]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - P[3][20]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2));
if (varInnovMag[1] >= R_MAG) {
faultStatus.bad_ymag = false;
} else {
// the calculation is badly conditioned, so we cannot perform fusion on this step
// we reset the covariance matrix and try again next measurement
CovarianceInit();
faultStatus.bad_ymag = true;
return;
}
// Z axis
varInnovMag[2] = (P[21][21] + R_MAG + P[0][21]*SH_MAG[1] - P[1][21]*SH_MAG[2] + P[3][21]*SH_MAG[0] + P[18][21]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + (2.0f*q0*q2 + 2.0f*q1*q3)*(P[21][16] + P[0][16]*SH_MAG[1] - P[1][16]*SH_MAG[2] + P[3][16]*SH_MAG[0] + P[18][16]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][16]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][16]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][16]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - (2.0f*q0*q1 - 2.0f*q2*q3)*(P[21][17] + P[0][17]*SH_MAG[1] - P[1][17]*SH_MAG[2] + P[3][17]*SH_MAG[0] + P[18][17]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][17]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][17]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][17]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + (SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)*(P[21][2] + P[0][2]*SH_MAG[1] - P[1][2]*SH_MAG[2] + P[3][2]*SH_MAG[0] + P[18][2]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][2]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][2]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][2]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + P[16][21]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][21]*(2.0f*q0*q1 - 2.0f*q2*q3) + SH_MAG[1]*(P[21][0] + P[0][0]*SH_MAG[1] - P[1][0]*SH_MAG[2] + P[3][0]*SH_MAG[0] + P[18][0]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][0]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][0]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][0]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - SH_MAG[2]*(P[21][1] + P[0][1]*SH_MAG[1] - P[1][1]*SH_MAG[2] + P[3][1]*SH_MAG[0] + P[18][1]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][1]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][1]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][1]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + SH_MAG[0]*(P[21][3] + P[0][3]*SH_MAG[1] - P[1][3]*SH_MAG[2] + P[3][3]*SH_MAG[0] + P[18][3]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][3]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][3]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][3]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + (SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6])*(P[21][18] + P[0][18]*SH_MAG[1] - P[1][18]*SH_MAG[2] + P[3][18]*SH_MAG[0] + P[18][18]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][18]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][18]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][18]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + P[2][21]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2));
if (varInnovMag[2] >= R_MAG) {
faultStatus.bad_zmag = false;
} else {
// the calculation is badly conditioned, so we cannot perform fusion on this step
// we reset the covariance matrix and try again next measurement
CovarianceInit();
faultStatus.bad_zmag = true;
return;
}
// calculate the innovation test ratios
for (uint8_t i = 0; i<=2; i++) {
magTestRatio[i] = sq(innovMag[i]) / (sq(MAX(0.01f * (float)frontend->_magInnovGate, 1.0f)) * varInnovMag[i]);
}
// check the last values from all components and set magnetometer health accordingly
magHealth = (magTestRatio[0] < 1.0f && magTestRatio[1] < 1.0f && magTestRatio[2] < 1.0f);
// if the magnetometer is unhealthy, do not proceed further
if (!magHealth) {
return;
}
for (obsIndex = 0; obsIndex <= 2; obsIndex++) {
if (obsIndex == 0) {
for (uint8_t i = 0; i<=stateIndexLim; i++) H_MAG[i] = 0.0f;
H_MAG[0] = SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2;
H_MAG[1] = SH_MAG[0];
H_MAG[2] = -SH_MAG[1];
H_MAG[3] = SH_MAG[2];
H_MAG[16] = SH_MAG[5] - SH_MAG[4] - SH_MAG[3] + SH_MAG[6];
H_MAG[17] = 2.0f*q0*q3 + 2.0f*q1*q2;
H_MAG[18] = 2.0f*q1*q3 - 2.0f*q0*q2;
H_MAG[19] = 1.0f;
H_MAG[20] = 0.0f;
H_MAG[21] = 0.0f;
// calculate Kalman gain
SK_MX[0] = 1.0f / varInnovMag[0];
SK_MX[1] = SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6];
SK_MX[2] = SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2;
SK_MX[3] = 2.0f*q0*q2 - 2.0f*q1*q3;
SK_MX[4] = 2.0f*q0*q3 + 2.0f*q1*q2;
Kfusion[0] = SK_MX[0]*(P[0][19] + P[0][1]*SH_MAG[0] - P[0][2]*SH_MAG[1] + P[0][3]*SH_MAG[2] + P[0][0]*SK_MX[2] - P[0][16]*SK_MX[1] + P[0][17]*SK_MX[4] - P[0][18]*SK_MX[3]);
Kfusion[1] = SK_MX[0]*(P[1][19] + P[1][1]*SH_MAG[0] - P[1][2]*SH_MAG[1] + P[1][3]*SH_MAG[2] + P[1][0]*SK_MX[2] - P[1][16]*SK_MX[1] + P[1][17]*SK_MX[4] - P[1][18]*SK_MX[3]);
Kfusion[2] = SK_MX[0]*(P[2][19] + P[2][1]*SH_MAG[0] - P[2][2]*SH_MAG[1] + P[2][3]*SH_MAG[2] + P[2][0]*SK_MX[2] - P[2][16]*SK_MX[1] + P[2][17]*SK_MX[4] - P[2][18]*SK_MX[3]);
Kfusion[3] = SK_MX[0]*(P[3][19] + P[3][1]*SH_MAG[0] - P[3][2]*SH_MAG[1] + P[3][3]*SH_MAG[2] + P[3][0]*SK_MX[2] - P[3][16]*SK_MX[1] + P[3][17]*SK_MX[4] - P[3][18]*SK_MX[3]);
Kfusion[4] = SK_MX[0]*(P[4][19] + P[4][1]*SH_MAG[0] - P[4][2]*SH_MAG[1] + P[4][3]*SH_MAG[2] + P[4][0]*SK_MX[2] - P[4][16]*SK_MX[1] + P[4][17]*SK_MX[4] - P[4][18]*SK_MX[3]);
Kfusion[5] = SK_MX[0]*(P[5][19] + P[5][1]*SH_MAG[0] - P[5][2]*SH_MAG[1] + P[5][3]*SH_MAG[2] + P[5][0]*SK_MX[2] - P[5][16]*SK_MX[1] + P[5][17]*SK_MX[4] - P[5][18]*SK_MX[3]);
Kfusion[6] = SK_MX[0]*(P[6][19] + P[6][1]*SH_MAG[0] - P[6][2]*SH_MAG[1] + P[6][3]*SH_MAG[2] + P[6][0]*SK_MX[2] - P[6][16]*SK_MX[1] + P[6][17]*SK_MX[4] - P[6][18]*SK_MX[3]);
Kfusion[7] = SK_MX[0]*(P[7][19] + P[7][1]*SH_MAG[0] - P[7][2]*SH_MAG[1] + P[7][3]*SH_MAG[2] + P[7][0]*SK_MX[2] - P[7][16]*SK_MX[1] + P[7][17]*SK_MX[4] - P[7][18]*SK_MX[3]);
Kfusion[8] = SK_MX[0]*(P[8][19] + P[8][1]*SH_MAG[0] - P[8][2]*SH_MAG[1] + P[8][3]*SH_MAG[2] + P[8][0]*SK_MX[2] - P[8][16]*SK_MX[1] + P[8][17]*SK_MX[4] - P[8][18]*SK_MX[3]);
Kfusion[9] = SK_MX[0]*(P[9][19] + P[9][1]*SH_MAG[0] - P[9][2]*SH_MAG[1] + P[9][3]*SH_MAG[2] + P[9][0]*SK_MX[2] - P[9][16]*SK_MX[1] + P[9][17]*SK_MX[4] - P[9][18]*SK_MX[3]);
if (!inhibitDelAngBiasStates) {
Kfusion[10] = SK_MX[0]*(P[10][19] + P[10][1]*SH_MAG[0] - P[10][2]*SH_MAG[1] + P[10][3]*SH_MAG[2] + P[10][0]*SK_MX[2] - P[10][16]*SK_MX[1] + P[10][17]*SK_MX[4] - P[10][18]*SK_MX[3]);
Kfusion[11] = SK_MX[0]*(P[11][19] + P[11][1]*SH_MAG[0] - P[11][2]*SH_MAG[1] + P[11][3]*SH_MAG[2] + P[11][0]*SK_MX[2] - P[11][16]*SK_MX[1] + P[11][17]*SK_MX[4] - P[11][18]*SK_MX[3]);
Kfusion[12] = SK_MX[0]*(P[12][19] + P[12][1]*SH_MAG[0] - P[12][2]*SH_MAG[1] + P[12][3]*SH_MAG[2] + P[12][0]*SK_MX[2] - P[12][16]*SK_MX[1] + P[12][17]*SK_MX[4] - P[12][18]*SK_MX[3]);
} else {
// zero indexes 10 to 12 = 3*4 bytes
memset(&Kfusion[10], 0, 12);
}
if (!inhibitDelVelBiasStates) {
Kfusion[13] = SK_MX[0]*(P[13][19] + P[13][1]*SH_MAG[0] - P[13][2]*SH_MAG[1] + P[13][3]*SH_MAG[2] + P[13][0]*SK_MX[2] - P[13][16]*SK_MX[1] + P[13][17]*SK_MX[4] - P[13][18]*SK_MX[3]);
Kfusion[14] = SK_MX[0]*(P[14][19] + P[14][1]*SH_MAG[0] - P[14][2]*SH_MAG[1] + P[14][3]*SH_MAG[2] + P[14][0]*SK_MX[2] - P[14][16]*SK_MX[1] + P[14][17]*SK_MX[4] - P[14][18]*SK_MX[3]);
Kfusion[15] = SK_MX[0]*(P[15][19] + P[15][1]*SH_MAG[0] - P[15][2]*SH_MAG[1] + P[15][3]*SH_MAG[2] + P[15][0]*SK_MX[2] - P[15][16]*SK_MX[1] + P[15][17]*SK_MX[4] - P[15][18]*SK_MX[3]);
} else {
// zero indexes 13 to 15 = 3*4 bytes
memset(&Kfusion[13], 0, 12);
}
// zero Kalman gains to inhibit magnetic field state estimation
if (!inhibitMagStates) {
Kfusion[16] = SK_MX[0]*(P[16][19] + P[16][1]*SH_MAG[0] - P[16][2]*SH_MAG[1] + P[16][3]*SH_MAG[2] + P[16][0]*SK_MX[2] - P[16][16]*SK_MX[1] + P[16][17]*SK_MX[4] - P[16][18]*SK_MX[3]);
Kfusion[17] = SK_MX[0]*(P[17][19] + P[17][1]*SH_MAG[0] - P[17][2]*SH_MAG[1] + P[17][3]*SH_MAG[2] + P[17][0]*SK_MX[2] - P[17][16]*SK_MX[1] + P[17][17]*SK_MX[4] - P[17][18]*SK_MX[3]);
Kfusion[18] = SK_MX[0]*(P[18][19] + P[18][1]*SH_MAG[0] - P[18][2]*SH_MAG[1] + P[18][3]*SH_MAG[2] + P[18][0]*SK_MX[2] - P[18][16]*SK_MX[1] + P[18][17]*SK_MX[4] - P[18][18]*SK_MX[3]);
Kfusion[19] = SK_MX[0]*(P[19][19] + P[19][1]*SH_MAG[0] - P[19][2]*SH_MAG[1] + P[19][3]*SH_MAG[2] + P[19][0]*SK_MX[2] - P[19][16]*SK_MX[1] + P[19][17]*SK_MX[4] - P[19][18]*SK_MX[3]);
Kfusion[20] = SK_MX[0]*(P[20][19] + P[20][1]*SH_MAG[0] - P[20][2]*SH_MAG[1] + P[20][3]*SH_MAG[2] + P[20][0]*SK_MX[2] - P[20][16]*SK_MX[1] + P[20][17]*SK_MX[4] - P[20][18]*SK_MX[3]);
Kfusion[21] = SK_MX[0]*(P[21][19] + P[21][1]*SH_MAG[0] - P[21][2]*SH_MAG[1] + P[21][3]*SH_MAG[2] + P[21][0]*SK_MX[2] - P[21][16]*SK_MX[1] + P[21][17]*SK_MX[4] - P[21][18]*SK_MX[3]);
} else {
// zero indexes 16 to 21 = 6*4 bytes
memset(&Kfusion[16], 0, 24);
}
// zero Kalman gains to inhibit wind state estimation
if (!inhibitWindStates) {
Kfusion[22] = SK_MX[0]*(P[22][19] + P[22][1]*SH_MAG[0] - P[22][2]*SH_MAG[1] + P[22][3]*SH_MAG[2] + P[22][0]*SK_MX[2] - P[22][16]*SK_MX[1] + P[22][17]*SK_MX[4] - P[22][18]*SK_MX[3]);
Kfusion[23] = SK_MX[0]*(P[23][19] + P[23][1]*SH_MAG[0] - P[23][2]*SH_MAG[1] + P[23][3]*SH_MAG[2] + P[23][0]*SK_MX[2] - P[23][16]*SK_MX[1] + P[23][17]*SK_MX[4] - P[23][18]*SK_MX[3]);
} else {
// zero indexes 22 to 23 = 2*4 bytes
memset(&Kfusion[22], 0, 8);
}
// set flags to indicate to other processes that fusion has been performed and is required on the next frame
// this can be used by other fusion processes to avoid fusing on the same frame as this expensive step
magFusePerformed = true;
magFuseRequired = true;
} else if (obsIndex == 1) { // Fuse Y axis
// calculate observation jacobians
for (uint8_t i = 0; i<=stateIndexLim; i++) H_MAG[i] = 0.0f;
H_MAG[0] = SH_MAG[2];
H_MAG[1] = SH_MAG[1];
H_MAG[2] = SH_MAG[0];
H_MAG[3] = 2.0f*magD*q2 - SH_MAG[8] - SH_MAG[7];
H_MAG[16] = 2.0f*q1*q2 - 2.0f*q0*q3;
H_MAG[17] = SH_MAG[4] - SH_MAG[3] - SH_MAG[5] + SH_MAG[6];
H_MAG[18] = 2.0f*q0*q1 + 2.0f*q2*q3;
H_MAG[19] = 0.0f;
H_MAG[20] = 1.0f;
H_MAG[21] = 0.0f;
// calculate Kalman gain
SK_MY[0] = 1.0f / varInnovMag[1];
SK_MY[1] = SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6];
SK_MY[2] = SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2;
SK_MY[3] = 2.0f*q0*q3 - 2.0f*q1*q2;
SK_MY[4] = 2.0f*q0*q1 + 2.0f*q2*q3;
Kfusion[0] = SK_MY[0]*(P[0][20] + P[0][0]*SH_MAG[2] + P[0][1]*SH_MAG[1] + P[0][2]*SH_MAG[0] - P[0][3]*SK_MY[2] - P[0][17]*SK_MY[1] - P[0][16]*SK_MY[3] + P[0][18]*SK_MY[4]);
Kfusion[1] = SK_MY[0]*(P[1][20] + P[1][0]*SH_MAG[2] + P[1][1]*SH_MAG[1] + P[1][2]*SH_MAG[0] - P[1][3]*SK_MY[2] - P[1][17]*SK_MY[1] - P[1][16]*SK_MY[3] + P[1][18]*SK_MY[4]);
Kfusion[2] = SK_MY[0]*(P[2][20] + P[2][0]*SH_MAG[2] + P[2][1]*SH_MAG[1] + P[2][2]*SH_MAG[0] - P[2][3]*SK_MY[2] - P[2][17]*SK_MY[1] - P[2][16]*SK_MY[3] + P[2][18]*SK_MY[4]);
Kfusion[3] = SK_MY[0]*(P[3][20] + P[3][0]*SH_MAG[2] + P[3][1]*SH_MAG[1] + P[3][2]*SH_MAG[0] - P[3][3]*SK_MY[2] - P[3][17]*SK_MY[1] - P[3][16]*SK_MY[3] + P[3][18]*SK_MY[4]);
Kfusion[4] = SK_MY[0]*(P[4][20] + P[4][0]*SH_MAG[2] + P[4][1]*SH_MAG[1] + P[4][2]*SH_MAG[0] - P[4][3]*SK_MY[2] - P[4][17]*SK_MY[1] - P[4][16]*SK_MY[3] + P[4][18]*SK_MY[4]);
Kfusion[5] = SK_MY[0]*(P[5][20] + P[5][0]*SH_MAG[2] + P[5][1]*SH_MAG[1] + P[5][2]*SH_MAG[0] - P[5][3]*SK_MY[2] - P[5][17]*SK_MY[1] - P[5][16]*SK_MY[3] + P[5][18]*SK_MY[4]);
Kfusion[6] = SK_MY[0]*(P[6][20] + P[6][0]*SH_MAG[2] + P[6][1]*SH_MAG[1] + P[6][2]*SH_MAG[0] - P[6][3]*SK_MY[2] - P[6][17]*SK_MY[1] - P[6][16]*SK_MY[3] + P[6][18]*SK_MY[4]);
Kfusion[7] = SK_MY[0]*(P[7][20] + P[7][0]*SH_MAG[2] + P[7][1]*SH_MAG[1] + P[7][2]*SH_MAG[0] - P[7][3]*SK_MY[2] - P[7][17]*SK_MY[1] - P[7][16]*SK_MY[3] + P[7][18]*SK_MY[4]);
Kfusion[8] = SK_MY[0]*(P[8][20] + P[8][0]*SH_MAG[2] + P[8][1]*SH_MAG[1] + P[8][2]*SH_MAG[0] - P[8][3]*SK_MY[2] - P[8][17]*SK_MY[1] - P[8][16]*SK_MY[3] + P[8][18]*SK_MY[4]);
Kfusion[9] = SK_MY[0]*(P[9][20] + P[9][0]*SH_MAG[2] + P[9][1]*SH_MAG[1] + P[9][2]*SH_MAG[0] - P[9][3]*SK_MY[2] - P[9][17]*SK_MY[1] - P[9][16]*SK_MY[3] + P[9][18]*SK_MY[4]);
if (!inhibitDelAngBiasStates) {
Kfusion[10] = SK_MY[0]*(P[10][20] + P[10][0]*SH_MAG[2] + P[10][1]*SH_MAG[1] + P[10][2]*SH_MAG[0] - P[10][3]*SK_MY[2] - P[10][17]*SK_MY[1] - P[10][16]*SK_MY[3] + P[10][18]*SK_MY[4]);
Kfusion[11] = SK_MY[0]*(P[11][20] + P[11][0]*SH_MAG[2] + P[11][1]*SH_MAG[1] + P[11][2]*SH_MAG[0] - P[11][3]*SK_MY[2] - P[11][17]*SK_MY[1] - P[11][16]*SK_MY[3] + P[11][18]*SK_MY[4]);
Kfusion[12] = SK_MY[0]*(P[12][20] + P[12][0]*SH_MAG[2] + P[12][1]*SH_MAG[1] + P[12][2]*SH_MAG[0] - P[12][3]*SK_MY[2] - P[12][17]*SK_MY[1] - P[12][16]*SK_MY[3] + P[12][18]*SK_MY[4]);
} else {
// zero indexes 10 to 12 = 3*4 bytes
memset(&Kfusion[10], 0, 12);
}
if (!inhibitDelVelBiasStates) {
Kfusion[13] = SK_MY[0]*(P[13][20] + P[13][0]*SH_MAG[2] + P[13][1]*SH_MAG[1] + P[13][2]*SH_MAG[0] - P[13][3]*SK_MY[2] - P[13][17]*SK_MY[1] - P[13][16]*SK_MY[3] + P[13][18]*SK_MY[4]);
Kfusion[14] = SK_MY[0]*(P[14][20] + P[14][0]*SH_MAG[2] + P[14][1]*SH_MAG[1] + P[14][2]*SH_MAG[0] - P[14][3]*SK_MY[2] - P[14][17]*SK_MY[1] - P[14][16]*SK_MY[3] + P[14][18]*SK_MY[4]);
Kfusion[15] = SK_MY[0]*(P[15][20] + P[15][0]*SH_MAG[2] + P[15][1]*SH_MAG[1] + P[15][2]*SH_MAG[0] - P[15][3]*SK_MY[2] - P[15][17]*SK_MY[1] - P[15][16]*SK_MY[3] + P[15][18]*SK_MY[4]);
} else {
// zero indexes 13 to 15 = 3*4 bytes
memset(&Kfusion[13], 0, 12);
}
// zero Kalman gains to inhibit magnetic field state estimation
if (!inhibitMagStates) {
Kfusion[16] = SK_MY[0]*(P[16][20] + P[16][0]*SH_MAG[2] + P[16][1]*SH_MAG[1] + P[16][2]*SH_MAG[0] - P[16][3]*SK_MY[2] - P[16][17]*SK_MY[1] - P[16][16]*SK_MY[3] + P[16][18]*SK_MY[4]);
Kfusion[17] = SK_MY[0]*(P[17][20] + P[17][0]*SH_MAG[2] + P[17][1]*SH_MAG[1] + P[17][2]*SH_MAG[0] - P[17][3]*SK_MY[2] - P[17][17]*SK_MY[1] - P[17][16]*SK_MY[3] + P[17][18]*SK_MY[4]);
Kfusion[18] = SK_MY[0]*(P[18][20] + P[18][0]*SH_MAG[2] + P[18][1]*SH_MAG[1] + P[18][2]*SH_MAG[0] - P[18][3]*SK_MY[2] - P[18][17]*SK_MY[1] - P[18][16]*SK_MY[3] + P[18][18]*SK_MY[4]);
Kfusion[19] = SK_MY[0]*(P[19][20] + P[19][0]*SH_MAG[2] + P[19][1]*SH_MAG[1] + P[19][2]*SH_MAG[0] - P[19][3]*SK_MY[2] - P[19][17]*SK_MY[1] - P[19][16]*SK_MY[3] + P[19][18]*SK_MY[4]);
Kfusion[20] = SK_MY[0]*(P[20][20] + P[20][0]*SH_MAG[2] + P[20][1]*SH_MAG[1] + P[20][2]*SH_MAG[0] - P[20][3]*SK_MY[2] - P[20][17]*SK_MY[1] - P[20][16]*SK_MY[3] + P[20][18]*SK_MY[4]);
Kfusion[21] = SK_MY[0]*(P[21][20] + P[21][0]*SH_MAG[2] + P[21][1]*SH_MAG[1] + P[21][2]*SH_MAG[0] - P[21][3]*SK_MY[2] - P[21][17]*SK_MY[1] - P[21][16]*SK_MY[3] + P[21][18]*SK_MY[4]);
} else {
// zero indexes 16 to 21 = 6*4 bytes
memset(&Kfusion[16], 0, 24);
}
// zero Kalman gains to inhibit wind state estimation
if (!inhibitWindStates) {
Kfusion[22] = SK_MY[0]*(P[22][20] + P[22][0]*SH_MAG[2] + P[22][1]*SH_MAG[1] + P[22][2]*SH_MAG[0] - P[22][3]*SK_MY[2] - P[22][17]*SK_MY[1] - P[22][16]*SK_MY[3] + P[22][18]*SK_MY[4]);
Kfusion[23] = SK_MY[0]*(P[23][20] + P[23][0]*SH_MAG[2] + P[23][1]*SH_MAG[1] + P[23][2]*SH_MAG[0] - P[23][3]*SK_MY[2] - P[23][17]*SK_MY[1] - P[23][16]*SK_MY[3] + P[23][18]*SK_MY[4]);
} else {
// zero indexes 22 to 23 = 2*4 bytes
memset(&Kfusion[22], 0, 8);
}
// set flags to indicate to other processes that fusion has been performed and is required on the next frame
// this can be used by other fusion processes to avoid fusing on the same frame as this expensive step
magFusePerformed = true;
magFuseRequired = true;
}
else if (obsIndex == 2) // we are now fusing the Z measurement
{
// calculate observation jacobians
for (uint8_t i = 0; i<=stateIndexLim; i++) H_MAG[i] = 0.0f;
H_MAG[0] = SH_MAG[1];
H_MAG[1] = -SH_MAG[2];
H_MAG[2] = SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2;
H_MAG[3] = SH_MAG[0];
H_MAG[16] = 2.0f*q0*q2 + 2.0f*q1*q3;
H_MAG[17] = 2.0f*q2*q3 - 2.0f*q0*q1;
H_MAG[18] = SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6];
H_MAG[19] = 0.0f;
H_MAG[20] = 0.0f;
H_MAG[21] = 1.0f;
// calculate Kalman gain
SK_MZ[0] = 1.0f / varInnovMag[2];
SK_MZ[1] = SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6];
SK_MZ[2] = SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2;
SK_MZ[3] = 2.0f*q0*q1 - 2.0f*q2*q3;
SK_MZ[4] = 2.0f*q0*q2 + 2.0f*q1*q3;
Kfusion[0] = SK_MZ[0]*(P[0][21] + P[0][0]*SH_MAG[1] - P[0][1]*SH_MAG[2] + P[0][3]*SH_MAG[0] + P[0][2]*SK_MZ[2] + P[0][18]*SK_MZ[1] + P[0][16]*SK_MZ[4] - P[0][17]*SK_MZ[3]);
Kfusion[1] = SK_MZ[0]*(P[1][21] + P[1][0]*SH_MAG[1] - P[1][1]*SH_MAG[2] + P[1][3]*SH_MAG[0] + P[1][2]*SK_MZ[2] + P[1][18]*SK_MZ[1] + P[1][16]*SK_MZ[4] - P[1][17]*SK_MZ[3]);
Kfusion[2] = SK_MZ[0]*(P[2][21] + P[2][0]*SH_MAG[1] - P[2][1]*SH_MAG[2] + P[2][3]*SH_MAG[0] + P[2][2]*SK_MZ[2] + P[2][18]*SK_MZ[1] + P[2][16]*SK_MZ[4] - P[2][17]*SK_MZ[3]);
Kfusion[3] = SK_MZ[0]*(P[3][21] + P[3][0]*SH_MAG[1] - P[3][1]*SH_MAG[2] + P[3][3]*SH_MAG[0] + P[3][2]*SK_MZ[2] + P[3][18]*SK_MZ[1] + P[3][16]*SK_MZ[4] - P[3][17]*SK_MZ[3]);
Kfusion[4] = SK_MZ[0]*(P[4][21] + P[4][0]*SH_MAG[1] - P[4][1]*SH_MAG[2] + P[4][3]*SH_MAG[0] + P[4][2]*SK_MZ[2] + P[4][18]*SK_MZ[1] + P[4][16]*SK_MZ[4] - P[4][17]*SK_MZ[3]);
Kfusion[5] = SK_MZ[0]*(P[5][21] + P[5][0]*SH_MAG[1] - P[5][1]*SH_MAG[2] + P[5][3]*SH_MAG[0] + P[5][2]*SK_MZ[2] + P[5][18]*SK_MZ[1] + P[5][16]*SK_MZ[4] - P[5][17]*SK_MZ[3]);
Kfusion[6] = SK_MZ[0]*(P[6][21] + P[6][0]*SH_MAG[1] - P[6][1]*SH_MAG[2] + P[6][3]*SH_MAG[0] + P[6][2]*SK_MZ[2] + P[6][18]*SK_MZ[1] + P[6][16]*SK_MZ[4] - P[6][17]*SK_MZ[3]);
Kfusion[7] = SK_MZ[0]*(P[7][21] + P[7][0]*SH_MAG[1] - P[7][1]*SH_MAG[2] + P[7][3]*SH_MAG[0] + P[7][2]*SK_MZ[2] + P[7][18]*SK_MZ[1] + P[7][16]*SK_MZ[4] - P[7][17]*SK_MZ[3]);
Kfusion[8] = SK_MZ[0]*(P[8][21] + P[8][0]*SH_MAG[1] - P[8][1]*SH_MAG[2] + P[8][3]*SH_MAG[0] + P[8][2]*SK_MZ[2] + P[8][18]*SK_MZ[1] + P[8][16]*SK_MZ[4] - P[8][17]*SK_MZ[3]);
Kfusion[9] = SK_MZ[0]*(P[9][21] + P[9][0]*SH_MAG[1] - P[9][1]*SH_MAG[2] + P[9][3]*SH_MAG[0] + P[9][2]*SK_MZ[2] + P[9][18]*SK_MZ[1] + P[9][16]*SK_MZ[4] - P[9][17]*SK_MZ[3]);
if (!inhibitDelAngBiasStates) {
Kfusion[10] = SK_MZ[0]*(P[10][21] + P[10][0]*SH_MAG[1] - P[10][1]*SH_MAG[2] + P[10][3]*SH_MAG[0] + P[10][2]*SK_MZ[2] + P[10][18]*SK_MZ[1] + P[10][16]*SK_MZ[4] - P[10][17]*SK_MZ[3]);
Kfusion[11] = SK_MZ[0]*(P[11][21] + P[11][0]*SH_MAG[1] - P[11][1]*SH_MAG[2] + P[11][3]*SH_MAG[0] + P[11][2]*SK_MZ[2] + P[11][18]*SK_MZ[1] + P[11][16]*SK_MZ[4] - P[11][17]*SK_MZ[3]);
Kfusion[12] = SK_MZ[0]*(P[12][21] + P[12][0]*SH_MAG[1] - P[12][1]*SH_MAG[2] + P[12][3]*SH_MAG[0] + P[12][2]*SK_MZ[2] + P[12][18]*SK_MZ[1] + P[12][16]*SK_MZ[4] - P[12][17]*SK_MZ[3]);
} else {
// zero indexes 10 to 12 = 3*4 bytes
memset(&Kfusion[10], 0, 12);
}
if (!inhibitDelVelBiasStates) {
Kfusion[13] = SK_MZ[0]*(P[13][21] + P[13][0]*SH_MAG[1] - P[13][1]*SH_MAG[2] + P[13][3]*SH_MAG[0] + P[13][2]*SK_MZ[2] + P[13][18]*SK_MZ[1] + P[13][16]*SK_MZ[4] - P[13][17]*SK_MZ[3]);
Kfusion[14] = SK_MZ[0]*(P[14][21] + P[14][0]*SH_MAG[1] - P[14][1]*SH_MAG[2] + P[14][3]*SH_MAG[0] + P[14][2]*SK_MZ[2] + P[14][18]*SK_MZ[1] + P[14][16]*SK_MZ[4] - P[14][17]*SK_MZ[3]);
Kfusion[15] = SK_MZ[0]*(P[15][21] + P[15][0]*SH_MAG[1] - P[15][1]*SH_MAG[2] + P[15][3]*SH_MAG[0] + P[15][2]*SK_MZ[2] + P[15][18]*SK_MZ[1] + P[15][16]*SK_MZ[4] - P[15][17]*SK_MZ[3]);
} else {
// zero indexes 13 to 15 = 3*4 bytes
memset(&Kfusion[13], 0, 12);
}
// zero Kalman gains to inhibit magnetic field state estimation
if (!inhibitMagStates) {
Kfusion[16] = SK_MZ[0]*(P[16][21] + P[16][0]*SH_MAG[1] - P[16][1]*SH_MAG[2] + P[16][3]*SH_MAG[0] + P[16][2]*SK_MZ[2] + P[16][18]*SK_MZ[1] + P[16][16]*SK_MZ[4] - P[16][17]*SK_MZ[3]);
Kfusion[17] = SK_MZ[0]*(P[17][21] + P[17][0]*SH_MAG[1] - P[17][1]*SH_MAG[2] + P[17][3]*SH_MAG[0] + P[17][2]*SK_MZ[2] + P[17][18]*SK_MZ[1] + P[17][16]*SK_MZ[4] - P[17][17]*SK_MZ[3]);
Kfusion[18] = SK_MZ[0]*(P[18][21] + P[18][0]*SH_MAG[1] - P[18][1]*SH_MAG[2] + P[18][3]*SH_MAG[0] + P[18][2]*SK_MZ[2] + P[18][18]*SK_MZ[1] + P[18][16]*SK_MZ[4] - P[18][17]*SK_MZ[3]);
Kfusion[19] = SK_MZ[0]*(P[19][21] + P[19][0]*SH_MAG[1] - P[19][1]*SH_MAG[2] + P[19][3]*SH_MAG[0] + P[19][2]*SK_MZ[2] + P[19][18]*SK_MZ[1] + P[19][16]*SK_MZ[4] - P[19][17]*SK_MZ[3]);
Kfusion[20] = SK_MZ[0]*(P[20][21] + P[20][0]*SH_MAG[1] - P[20][1]*SH_MAG[2] + P[20][3]*SH_MAG[0] + P[20][2]*SK_MZ[2] + P[20][18]*SK_MZ[1] + P[20][16]*SK_MZ[4] - P[20][17]*SK_MZ[3]);
Kfusion[21] = SK_MZ[0]*(P[21][21] + P[21][0]*SH_MAG[1] - P[21][1]*SH_MAG[2] + P[21][3]*SH_MAG[0] + P[21][2]*SK_MZ[2] + P[21][18]*SK_MZ[1] + P[21][16]*SK_MZ[4] - P[21][17]*SK_MZ[3]);
} else {
// zero indexes 16 to 21 = 6*4 bytes
memset(&Kfusion[16], 0, 24);
}
// zero Kalman gains to inhibit wind state estimation
if (!inhibitWindStates) {
Kfusion[22] = SK_MZ[0]*(P[22][21] + P[22][0]*SH_MAG[1] - P[22][1]*SH_MAG[2] + P[22][3]*SH_MAG[0] + P[22][2]*SK_MZ[2] + P[22][18]*SK_MZ[1] + P[22][16]*SK_MZ[4] - P[22][17]*SK_MZ[3]);
Kfusion[23] = SK_MZ[0]*(P[23][21] + P[23][0]*SH_MAG[1] - P[23][1]*SH_MAG[2] + P[23][3]*SH_MAG[0] + P[23][2]*SK_MZ[2] + P[23][18]*SK_MZ[1] + P[23][16]*SK_MZ[4] - P[23][17]*SK_MZ[3]);
} else {
// zero indexes 22 to 23 = 2*4 bytes
memset(&Kfusion[22], 0, 8);
}
// set flags to indicate to other processes that fusion has been performed and is required on the next frame
// this can be used by other fusion processes to avoid fusing on the same frame as this expensive step
magFusePerformed = true;
}
// correct the covariance P = (I - K*H)*P
// take advantage of the empty columns in KH to reduce the
// number of operations
for (unsigned i = 0; i<=stateIndexLim; i++) {
for (unsigned j = 0; j<=3; j++) {
KH[i][j] = Kfusion[i] * H_MAG[j];
}
for (unsigned j = 4; j<=15; j++) {
KH[i][j] = 0.0f;
}
for (unsigned j = 16; j<=21; j++) {
KH[i][j] = Kfusion[i] * H_MAG[j];
}
for (unsigned j = 22; j<=23; j++) {
KH[i][j] = 0.0f;
}
}
for (unsigned j = 0; j<=stateIndexLim; j++) {
for (unsigned i = 0; i<=stateIndexLim; i++) {
ftype res = 0;
res += KH[i][0] * P[0][j];
res += KH[i][1] * P[1][j];
res += KH[i][2] * P[2][j];
res += KH[i][3] * P[3][j];
res += KH[i][16] * P[16][j];
res += KH[i][17] * P[17][j];
res += KH[i][18] * P[18][j];
res += KH[i][19] * P[19][j];
res += KH[i][20] * P[20][j];
res += KH[i][21] * P[21][j];
KHP[i][j] = res;
}
}
// Check that we are not going to drive any variances negative and skip the update if so
bool healthyFusion = true;
for (uint8_t i= 0; i<=stateIndexLim; i++) {
if (KHP[i][i] > P[i][i]) {
healthyFusion = false;
}
}
if (healthyFusion) {
// update the covariance matrix
for (uint8_t i= 0; i<=stateIndexLim; i++) {
for (uint8_t j= 0; j<=stateIndexLim; j++) {
P[i][j] = P[i][j] - KHP[i][j];
}
}
// force the covariance matrix to be symmetrical and limit the variances to prevent ill-conditioning.
ForceSymmetry();
ConstrainVariances();
// correct the state vector
for (uint8_t j= 0; j<=stateIndexLim; j++) {
statesArray[j] = statesArray[j] - Kfusion[j] * innovMag[obsIndex];
}
// add table constraint here for faster convergence
if (have_table_earth_field && frontend->_mag_ef_limit > 0) {
MagTableConstrain();
}
stateStruct.quat.normalize();
} else {
// record bad axis
if (obsIndex == 0) {
faultStatus.bad_xmag = true;
} else if (obsIndex == 1) {
faultStatus.bad_ymag = true;
} else if (obsIndex == 2) {
faultStatus.bad_zmag = true;
}
CovarianceInit();
return;
}
}
}
/*
* Fuse magnetic heading measurement using explicit algebraic equations generated with Matlab symbolic toolbox.
* The script file used to generate these and other equations in this filter can be found here:
* https://github.com/PX4/ecl/blob/master/matlab/scripts/Inertial%20Nav%20EKF/GenerateNavFilterEquations.m
* This fusion method only modifies the orientation, does not require use of the magnetic field states and is computationally cheaper.
* It is suitable for use when the external magnetic field environment is disturbed (eg close to metal structures, on ground).
* It is not as robust to magnetometer failures.
* It is not suitable for operation where the horizontal magnetic field strength is weak (within 30 degrees latitude of the magnetic poles)
*
* The following booleans are passed to the function to control the fusion process:
*
* usePredictedYaw - Set this to true if no valid yaw measurement will be available for an extended periods.
* This uses an innovation set to zero which prevents uncontrolled quaternion covaraince growth.
* UseExternalYawSensor - Set this to true if yaw data from an external yaw sensor is being used instead of the magnetometer.
*/
void NavEKF3_core::fuseEulerYaw(bool usePredictedYaw, bool useExternalYawSensor)
{
float q0 = stateStruct.quat[0];
float q1 = stateStruct.quat[1];
float q2 = stateStruct.quat[2];
float q3 = stateStruct.quat[3];
// yaw measurement error variance (rad^2)
float R_YAW;
if (!useExternalYawSensor) {
R_YAW = sq(frontend->_yawNoise);
} else {
R_YAW = sq(yawAngDataDelayed.yawAngErr);
}
// determine if a 321 or 312 Euler sequence is best
bool useEuler321 = true;
if (useExternalYawSensor) {
// If using an external sensor, the definition of yaw is specified through the sensor interface
if (yawAngDataDelayed.type == 2) {
useEuler321 = true;
} else if (yawAngDataDelayed.type == 1) {
useEuler321 = false;
} else {
// invalid selection
return;
}
} else {
// if using the magnetometer, it is determined automatically
useEuler321 = (fabsf(prevTnb[0][2]) < fabsf(prevTnb[1][2]));
}
// calculate observation jacobian, predicted yaw and zero yaw body to earth rotation matrix
float yawAngPredicted;
float H_YAW[4];
Matrix3f Tbn_zeroYaw;
if (useEuler321) {
// calculate observation jacobian when we are observing the first rotation in a 321 sequence
float t9 = q0*q3;
float t10 = q1*q2;
float t2 = t9+t10;
float t3 = q0*q0;
float t4 = q1*q1;
float t5 = q2*q2;
float t6 = q3*q3;
float t7 = t3+t4-t5-t6;
float t8 = t7*t7;
if (t8 > 1e-6f) {
t8 = 1.0f/t8;
} else {
return;
}
float t11 = t2*t2;
float t12 = t8*t11*4.0f;
float t13 = t12+1.0f;
float t14;
if (fabsf(t13) > 1e-6f) {
t14 = 1.0f/t13;
} else {
return;
}
H_YAW[0] = t8*t14*(q3*t3-q3*t4+q3*t5+q3*t6+q0*q1*q2*2.0f)*-2.0f;
H_YAW[1] = t8*t14*(-q2*t3+q2*t4+q2*t5+q2*t6+q0*q1*q3*2.0f)*-2.0f;
H_YAW[2] = t8*t14*(q1*t3+q1*t4+q1*t5-q1*t6+q0*q2*q3*2.0f)*2.0f;
H_YAW[3] = t8*t14*(q0*t3+q0*t4-q0*t5+q0*t6+q1*q2*q3*2.0f)*2.0f;
// Get the 321 euler angles
Vector3f euler321;
stateStruct.quat.to_euler(euler321.x, euler321.y, euler321.z);
yawAngPredicted = euler321.z;
// set the yaw to zero and calculate the zero yaw rotation from body to earth frame
Tbn_zeroYaw.from_euler(euler321.x, euler321.y, 0.0f);
} else {
// calculate observation jacobian when we are observing a rotation in a 312 sequence
float t9 = q0*q3;
float t10 = q1*q2;
float t2 = t9-t10;
float t3 = q0*q0;
float t4 = q1*q1;
float t5 = q2*q2;
float t6 = q3*q3;
float t7 = t3-t4+t5-t6;
float t8 = t7*t7;
if (t8 > 1e-6f) {
t8 = 1.0f/t8;
} else {
return;
}
float t11 = t2*t2;
float t12 = t8*t11*4.0f;
float t13 = t12+1.0f;
float t14;
if (fabsf(t13) > 1e-6f) {
t14 = 1.0f/t13;
} else {
return;
}
H_YAW[0] = t8*t14*(q3*t3+q3*t4-q3*t5+q3*t6-q0*q1*q2*2.0f)*-2.0f;
H_YAW[1] = t8*t14*(q2*t3+q2*t4+q2*t5-q2*t6-q0*q1*q3*2.0f)*-2.0f;
H_YAW[2] = t8*t14*(-q1*t3+q1*t4+q1*t5+q1*t6-q0*q2*q3*2.0f)*2.0f;
H_YAW[3] = t8*t14*(q0*t3-q0*t4+q0*t5+q0*t6-q1*q2*q3*2.0f)*2.0f;
// Get the 321 euler angles
Vector3f euler312 = stateStruct.quat.to_vector312();
yawAngPredicted = euler312.z;
// set the yaw to zero and calculate the zero yaw rotation from body to earth frame
Tbn_zeroYaw.from_euler312(euler312.x, euler312.y, 0.0f);
}
// Calculate the innovation
float innovation;
if (!usePredictedYaw) {
if (!useExternalYawSensor) {
// Use the difference between the horizontal projection and declination to give the measured yaw
// rotate measured mag components into earth frame
Vector3f magMeasNED = Tbn_zeroYaw*magDataDelayed.mag;
float yawAngMeasured = wrap_PI(-atan2f(magMeasNED.y, magMeasNED.x) + MagDeclination());
innovation = wrap_PI(yawAngPredicted - yawAngMeasured);
} else {
// use the external yaw sensor data
innovation = wrap_PI(yawAngPredicted - yawAngDataDelayed.yawAng);
}
} else {
// setting the innovation to zero enables quaternion covariance growth to be constrained when there is no
// method of observing yaw
innovation = 0.0f;
}
// Copy raw value to output variable used for data logging
innovYaw = innovation;
// Calculate innovation variance and Kalman gains, taking advantage of the fact that only the first 4 elements in H are non zero
float PH[4];
float varInnov = R_YAW;
for (uint8_t rowIndex=0; rowIndex<=3; rowIndex++) {
PH[rowIndex] = 0.0f;
for (uint8_t colIndex=0; colIndex<=3; colIndex++) {
PH[rowIndex] += P[rowIndex][colIndex]*H_YAW[colIndex];
}
varInnov += H_YAW[rowIndex]*PH[rowIndex];
}
float varInnovInv;
if (varInnov >= R_YAW) {
varInnovInv = 1.0f / varInnov;
// output numerical health status
faultStatus.bad_yaw = false;
} else {
// the calculation is badly conditioned, so we cannot perform fusion on this step
// we reset the covariance matrix and try again next measurement
CovarianceInit();
// output numerical health status
faultStatus.bad_yaw = true;
return;
}
// calculate Kalman gain
for (uint8_t rowIndex=0; rowIndex<=stateIndexLim; rowIndex++) {
Kfusion[rowIndex] = 0.0f;
for (uint8_t colIndex=0; colIndex<=3; colIndex++) {
Kfusion[rowIndex] += P[rowIndex][colIndex]*H_YAW[colIndex];
}
Kfusion[rowIndex] *= varInnovInv;
}
// calculate the innovation test ratio
yawTestRatio = sq(innovation) / (sq(MAX(0.01f * (float)frontend->_yawInnovGate, 1.0f)) * varInnov);
// Declare the magnetometer unhealthy if the innovation test fails
if (yawTestRatio > 1.0f) {
magHealth = false;
// On the ground a large innovation could be due to large initial gyro bias or magnetic interference from nearby objects
// If we are flying, then it is more likely due to a magnetometer fault and we should not fuse the data
if (inFlight) {
return;
}
} else {
magHealth = true;
}
// limit the innovation so that initial corrections are not too large
if (innovation > 0.5f) {
innovation = 0.5f;
} else if (innovation < -0.5f) {
innovation = -0.5f;
}
// correct the covariance using P = P - K*H*P taking advantage of the fact that only the first 3 elements in H are non zero
// calculate K*H*P
for (uint8_t row = 0; row <= stateIndexLim; row++) {
for (uint8_t column = 0; column <= 3; column++) {
KH[row][column] = Kfusion[row] * H_YAW[column];
}
}
for (uint8_t row = 0; row <= stateIndexLim; row++) {
for (uint8_t column = 0; column <= stateIndexLim; column++) {
float tmp = KH[row][0] * P[0][column];
tmp += KH[row][1] * P[1][column];
tmp += KH[row][2] * P[2][column];
tmp += KH[row][3] * P[3][column];
KHP[row][column] = tmp;
}
}
// Check that we are not going to drive any variances negative and skip the update if so
bool healthyFusion = true;
for (uint8_t i= 0; i<=stateIndexLim; i++) {
if (KHP[i][i] > P[i][i]) {
healthyFusion = false;
}
}
if (healthyFusion) {
// update the covariance matrix
for (uint8_t i= 0; i<=stateIndexLim; i++) {
for (uint8_t j= 0; j<=stateIndexLim; j++) {
P[i][j] = P[i][j] - KHP[i][j];
}
}
// force the covariance matrix to be symmetrical and limit the variances to prevent ill-conditioning.
ForceSymmetry();
ConstrainVariances();
// correct the state vector
for (uint8_t i=0; i<=stateIndexLim; i++) {
statesArray[i] -= Kfusion[i] * innovation;
}
stateStruct.quat.normalize();
// record fusion numerical health status
faultStatus.bad_yaw = false;
} else {
// record fusion numerical health status
faultStatus.bad_yaw = true;
}
}
/*
* Fuse declination angle using explicit algebraic equations generated with Matlab symbolic toolbox.
* The script file used to generate these and other equations in this filter can be found here:
* https://github.com/PX4/ecl/blob/master/matlab/scripts/Inertial%20Nav%20EKF/GenerateNavFilterEquations.m
* This is used to prevent the declination of the EKF earth field states from drifting during operation without GPS
* or some other absolute position or velocity reference
*/
void NavEKF3_core::FuseDeclination(float declErr)
{
// declination error variance (rad^2)
const float R_DECL = sq(declErr);
// copy required states to local variables
float magN = stateStruct.earth_magfield.x;
float magE = stateStruct.earth_magfield.y;
// prevent bad earth field states from causing numerical errors or exceptions
if (magN < 1e-3f) {
return;
}
// Calculate observation Jacobian and Kalman gains
// Calculate intermediate variables
float t2 = magE*magE;
float t3 = magN*magN;
float t4 = t2+t3;
// if the horizontal magnetic field is too small, this calculation will be badly conditioned
if (t4 < 1e-4f) {
return;
}
float t5 = P[16][16]*t2;
float t6 = P[17][17]*t3;
float t7 = t2*t2;
float t8 = R_DECL*t7;
float t9 = t3*t3;
float t10 = R_DECL*t9;
float t11 = R_DECL*t2*t3*2.0f;
float t14 = P[16][17]*magE*magN;
float t15 = P[17][16]*magE*magN;
float t12 = t5+t6+t8+t10+t11-t14-t15;
float t13;
if (fabsf(t12) > 1e-6f) {
t13 = 1.0f / t12;
} else {
return;
}
float t18 = magE*magE;
float t19 = magN*magN;
float t20 = t18+t19;
float t21;
if (fabsf(t20) > 1e-6f) {
t21 = 1.0f/t20;
} else {
return;
}
// Calculate the observation Jacobian
// Note only 2 terms are non-zero which can be used in matrix operations for calculation of Kalman gains and covariance update to significantly reduce cost
float H_DECL[24] = {};
H_DECL[16] = -magE*t21;
H_DECL[17] = magN*t21;
Kfusion[0] = -t4*t13*(P[0][16]*magE-P[0][17]*magN);
Kfusion[1] = -t4*t13*(P[1][16]*magE-P[1][17]*magN);
Kfusion[2] = -t4*t13*(P[2][16]*magE-P[2][17]*magN);
Kfusion[3] = -t4*t13*(P[3][16]*magE-P[3][17]*magN);
Kfusion[4] = -t4*t13*(P[4][16]*magE-P[4][17]*magN);
Kfusion[5] = -t4*t13*(P[5][16]*magE-P[5][17]*magN);
Kfusion[6] = -t4*t13*(P[6][16]*magE-P[6][17]*magN);
Kfusion[7] = -t4*t13*(P[7][16]*magE-P[7][17]*magN);
Kfusion[8] = -t4*t13*(P[8][16]*magE-P[8][17]*magN);
Kfusion[9] = -t4*t13*(P[9][16]*magE-P[9][17]*magN);
if (!inhibitDelAngBiasStates) {
Kfusion[10] = -t4*t13*(P[10][16]*magE-P[10][17]*magN);
Kfusion[11] = -t4*t13*(P[11][16]*magE-P[11][17]*magN);
Kfusion[12] = -t4*t13*(P[12][16]*magE-P[12][17]*magN);
} else {
// zero indexes 10 to 12 = 3*4 bytes
memset(&Kfusion[10], 0, 12);
}
if (!inhibitDelVelBiasStates) {
Kfusion[13] = -t4*t13*(P[13][16]*magE-P[13][17]*magN);
Kfusion[14] = -t4*t13*(P[14][16]*magE-P[14][17]*magN);
Kfusion[15] = -t4*t13*(P[15][16]*magE-P[15][17]*magN);
} else {
// zero indexes 13 to 15 = 3*4 bytes
memset(&Kfusion[13], 0, 12);
}
if (!inhibitMagStates) {
Kfusion[16] = -t4*t13*(P[16][16]*magE-P[16][17]*magN);
Kfusion[17] = -t4*t13*(P[17][16]*magE-P[17][17]*magN);
Kfusion[18] = -t4*t13*(P[18][16]*magE-P[18][17]*magN);
Kfusion[19] = -t4*t13*(P[19][16]*magE-P[19][17]*magN);
Kfusion[20] = -t4*t13*(P[20][16]*magE-P[20][17]*magN);
Kfusion[21] = -t4*t13*(P[21][16]*magE-P[21][17]*magN);
} else {
// zero indexes 16 to 21 = 6*4 bytes
memset(&Kfusion[16], 0, 24);
}
if (!inhibitWindStates) {
Kfusion[22] = -t4*t13*(P[22][16]*magE-P[22][17]*magN);
Kfusion[23] = -t4*t13*(P[23][16]*magE-P[23][17]*magN);
} else {
// zero indexes 22 to 23 = 2*4 bytes
memset(&Kfusion[22], 0, 8);
}
// get the magnetic declination
float magDecAng = MagDeclination();
// Calculate the innovation
float innovation = atan2f(magE , magN) - magDecAng;
// limit the innovation to protect against data errors
if (innovation > 0.5f) {
innovation = 0.5f;
} else if (innovation < -0.5f) {
innovation = -0.5f;
}
// correct the covariance P = (I - K*H)*P
// take advantage of the empty columns in KH to reduce the
// number of operations
for (unsigned i = 0; i<=stateIndexLim; i++) {
for (unsigned j = 0; j<=15; j++) {
KH[i][j] = 0.0f;
}
KH[i][16] = Kfusion[i] * H_DECL[16];
KH[i][17] = Kfusion[i] * H_DECL[17];
for (unsigned j = 18; j<=23; j++) {
KH[i][j] = 0.0f;
}
}
for (unsigned j = 0; j<=stateIndexLim; j++) {
for (unsigned i = 0; i<=stateIndexLim; i++) {
KHP[i][j] = KH[i][16] * P[16][j] + KH[i][17] * P[17][j];
}
}
// Check that we are not going to drive any variances negative and skip the update if so
bool healthyFusion = true;
for (uint8_t i= 0; i<=stateIndexLim; i++) {
if (KHP[i][i] > P[i][i]) {
healthyFusion = false;
}
}
if (healthyFusion) {
// update the covariance matrix
for (uint8_t i= 0; i<=stateIndexLim; i++) {
for (uint8_t j= 0; j<=stateIndexLim; j++) {
P[i][j] = P[i][j] - KHP[i][j];
}
}
// force the covariance matrix to be symmetrical and limit the variances to prevent ill-conditioning.
ForceSymmetry();
ConstrainVariances();
// correct the state vector
for (uint8_t j= 0; j<=stateIndexLim; j++) {
statesArray[j] = statesArray[j] - Kfusion[j] * innovation;
}
stateStruct.quat.normalize();
// record fusion health status
faultStatus.bad_decl = false;
} else {
// record fusion health status
faultStatus.bad_decl = true;
}
}
/********************************************************
* MISC FUNCTIONS *
********************************************************/
// align the NE earth magnetic field states with the published declination
void NavEKF3_core::alignMagStateDeclination()
{
// don't do this if we already have a learned magnetic field
if (magFieldLearned) {
return;
}
// get the magnetic declination
float magDecAng = MagDeclination();
// rotate the NE values so that the declination matches the published value
Vector3f initMagNED = stateStruct.earth_magfield;
float magLengthNE = norm(initMagNED.x,initMagNED.y);
stateStruct.earth_magfield.x = magLengthNE * cosf(magDecAng);
stateStruct.earth_magfield.y = magLengthNE * sinf(magDecAng);
if (!inhibitMagStates) {
// zero the corresponding state covariances if magnetic field state learning is active
float var_16 = P[16][16];
float var_17 = P[17][17];
zeroRows(P,16,17);
zeroCols(P,16,17);
P[16][16] = var_16;
P[17][17] = var_17;
// fuse the declination angle to establish covariances and prevent large swings in declination
// during initial fusion
FuseDeclination(0.1f);
}
}
// record a magnetic field state reset event
void NavEKF3_core::recordMagReset()
{
magStateInitComplete = true;
if (inFlight) {
finalInflightMagInit = true;
}
// take a snap-shot of the vertical position, quaternion and yaw innovation to use as a reference
// for post alignment checks
posDownAtLastMagReset = stateStruct.position.z;
quatAtLastMagReset = stateStruct.quat;
yawInnovAtLastMagReset = innovYaw;
}
/*
learn magnetometer biases from GPS yaw. Return true if the
resulting mag vector is close enough to the one predicted by GPS
yaw to use it for fallback
*/
bool NavEKF3_core::learnMagBiasFromGPS(void)
{
if (!have_table_earth_field) {
// we need the earth field from WMM
return false;
}
if (!inFlight) {
// don't start learning till we've started flying
return false;
}
mag_elements mag_data;
if (!storedMag.recall(mag_data, imuDataDelayed.time_ms)) {
// no mag data to correct
return false;
}
// combine yaw with current quaternion to get yaw corrected quaternion
Quaternion quat = stateStruct.quat;
if (yawAngDataDelayed.type == 2) {
Vector3f euler321;
quat.to_euler(euler321.x, euler321.y, euler321.z);
quat.from_euler(euler321.x, euler321.y, yawAngDataDelayed.yawAng);
} else if (yawAngDataDelayed.type == 1) {
Vector3f euler312 = quat.to_vector312();
quat.from_vector312(euler312.x, euler312.y, yawAngDataDelayed.yawAng);
}
// build the expected body field from orientation and table earth field
Matrix3f dcm;
quat.rotation_matrix(dcm);
Vector3f expected_body_field = dcm.transposed() * table_earth_field_ga;
// calculate error in field
Vector3f err = (expected_body_field - mag_data.mag) + stateStruct.body_magfield;
// learn body frame mag biases
stateStruct.body_magfield -= err * EK3_GPS_MAG_LEARN_RATE;
// check if error is below threshold. If it is then we can
// fallback to magnetometer on failure of external yaw
float err_length = err.length();
// we allow for yaw backback to compass if we have had 50 samples
// in a row below the threshold. This corresponds to 10 seconds
// for a 5Hz GPS
const uint8_t fallback_count_threshold = 50;
if (err_length > EK3_GPS_MAG_LEARN_LIMIT) {
gps_yaw_fallback_good_counter = 0;
} else if (gps_yaw_fallback_good_counter < fallback_count_threshold) {
gps_yaw_fallback_good_counter++;
}
bool ok = gps_yaw_fallback_good_counter >= fallback_count_threshold;
if (ok) {
// mark mag healthy to prevent a magTimeout when we start using it
lastHealthyMagTime_ms = imuSampleTime_ms;
}
return ok;
}